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Abstract. We study certain quantum spin systems which are equivalent to
stochastic Ising models. We show that any translationally invariant quantum
ground state is given by integration of Gibbs measure. The existence of mass gap
is shown to be the same as exponentially fast convergence of stochastic models to
invariant states.

1. Introduction

In [6], we introduce a class of quantum spin systems using translationally invariant
ground states. The aim of this paper is to extend our results to a wider class of
potentials.

Our new idea is as follows. Assuming certain convergence of finite ground state
vectors, we rewrite the Hamiltonian in the form of a generator of a Markov
semi-group on the classical spin system.

The ground state property is almost equivalent to the invariance of a measure
with respect to the associated Markov semigroup. The proof is rather algebraic.
We also prove the existence of the gap of the spectrum of quantum Hamiltonian
using results of stochastic Ising models. We use a C* algebraic approach. (See [2]
for the basics.)

We first introduce some notations. We consider the algebra of observables A
which is the UHF C* algebra,

Λ = (X)M2(C). (1.1)

So A is generated by Pauli spin matrices σψ (α = x, y, z) onjth site, σψ is a selfadjoint
unitary satisfying

, σ<*>] = σψσf - σfσ^ = 0, (1.2a)

</> = iεα (,//\ (1.2b)

* Permanent address: Department of Mathematics, Tokyo Metropolitan University, Tokyo,
Japan



80 T. Matsui

where safiy is the totally antisymmetric tensor with

εxyz = 1.

By Λloc9 we denote the dense polynomial algebra generated by σψ. We also define
B as the commutative C* algebra generated by σψ and we set

Let X be the configuration space of classical Ising spin

X = {U-\f. (1.3)

By product topology, X is a compact space. By σij\ we denote the spin variable
at the site j . Then the algebra of continuous functions on X can be identified with B,

σψ = σU). (1.4)

The quantum spin Hamiltonian we consider is

H= - Σ VA(σz)σx(A)- Σ * W > ( L 5 )
AΦ0 jet1

where the first sum of (1.5) is taken over all non-empty subsets A in ΊLd and

σx(A)=\\σψ. (1-6)
jeA

VA(σz) and Wj(σz) are in Bloc.
Throughout this paper, we make the following assumptions.

Assumption 1.1.

(i) (Finite rangeness) There exists r > 0 such that

VA(Gz) = 0 far \A\>r diameter of A >r , (1.7)

where \A\ is the number of points in A.

(ii) The Hamiltonian (1.5) is (lattice) translationally invariant. So we assume that

^(VA(σz))=VA+k(pz\ (1.8a)

*k(Wj(σz))=Wj+k(σz), (1.8b)

where αk is an automorphism of A determined by

for j , k in Έd a = x, y, z.

(iii) VA(σz) and Wj(σz) are self adjoint elements of Bloc. Furthermore we assume

VA{σ2)^Q, (1.9a)

VA(σz)>0 if |/1 | = 1, (1.9b)

and

0. (1.10)

It is well known that (1.5) gives rise to a 1 parameter group of automorphisms
of A (see [2]).

yt(Q) = eitHQe-itH (1.11)
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for t in real and Q in A. We call γt() the time evolution of quantum system. A
state W is a ground state of yt if and only if

\jtW(Q%(Q))\t=o^0 (1.12)

for any Q in Aloc.
Let Wbe a ground state and {π w (.),ί2 w ,^ w } be the G.N.S. triple (πw(.) the

representation, Ωw the cyclic vector and Jf w the Hubert space). Then there exists
a selfadjoint operator Hw such that

(i) H w ^ 0 , HWΩW = O, (1.13)

(ii) e' ' " ~ π w ( 0 e - ί ί H w = πw(y,(β)). (1.14)

Note that (1.5) does not always converge in ground state representations and we
have no explicit construction of Hw in general. Hw plays a role of the regularized
Hamiltonian.

Next we consider classical spins. Any element f(σz) oϊBloc can written as follows:

Σ
B

Using (1.15) we set (for positive δ)

Σ ^ I I U I I I (1.16)Σ
A

where : \A\ + diameter of A. (1-17)

If δ is non-negative, we can prove

11/11 ^ 11/II,. (1.18)

For f(σz) of (1.15), we also define

f{A)(σz)= Σ fsσAB). (1.19)
\AnB\:odά

Let A be a finite cube. We consider the quantum Hamiltonian on Λ. Consider the
following equation:

- Σ K > z ) / > < > - Σ » > z ) = £Λ, (1.20)
JΛ

where VA(σz) and Wj(σz) are ones appeared in (1.5) and EΛ is ground state energy
of the Hamiltonian on A. We impose the periodic boundary condition for (1.20).
Then the solution of (1.20) exists in the sense that we can find the unique element
hΛ(σz) in Bloc satisfying (1.19) and (1.20). See [6].

Assumption 1.2. We impose the periodic boundary condition for (1.20):
(i) \\h{^(σz)\\δ is bounded uniformly in A and Bfor \B\ = 1.
(ii) Let Aι be the hypercube ofΊLd centered at the origin with the volume (21)d. The
following limit exists in the norm || \\δ(δ> 0):

). (1.21)
l~* oo

Note that h(^(σz) is defined via a single function hΛ(σz) and h{B)(σz) are not
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independent (for different B). We can define the classical potential h(σz) as follows:

hiB)(σz)= Σ hAσz(A), (1.22a)
\AnB\oάά

*(*,)= Σ hΛσt(A) (L22b)

By the decay condition (1.16), we can prove the following:

Lemma 1.3. Let ε be positive. Then there exists lε such that ifΛ =>Λl9 l>lε,

Σ I V * I < 4 (L23a)

dmB>lε

<ί (1.23b)
5

and

Σ\hΛ,B-hB\<ε (1.24)
B3j

if distance (j, dΛ)>lε

Proof. (1.23) is a consequence of Assumption 1.2 (i). So we choose l0 such that
(1.23) is valid. Next we choose /ε (>/ 0) such that

\\hV\σz)-h*\σz)\\<\ (1.25)

for A > Λlε. By translational invariance (or periodicity of boundary conditions)
(1.25) implies

s-Λjιl<f (1-26)

Thus we have (1.24) if distance (7, dΛ) > lε (q.e.d.).

Remark 1.4.
(i) The assumption 1.2 can be proved for weakly coupled models by the expansion
of [5]. For the Heisenberg model with an external field

H = - λ X σψ - Σ (σiMjΊ + < W Ί + σψσ(p)
J IJ-JΊ = I

the classical potential h(σ) is identically zero. So we have several models of physical
interest in our framework.
(ii) In [6], we proved uniqueness of a translationally invariant ground state for
the case that ||/iO) | |^ is small. We will study the case that ||Λ0) | |5 is finite, but is
large in the rest of this paper.
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2. L2 Space of Gibbs Measure

In this section, we consider the representation of A on the L2 space of the Gibbs
measure. We assume that readers have some familiarity with the notation of Gibbs
measure. For basic facts about Gibbs measure, see [4].

In what follows, the commutative algebra B is regained as the set of continuous
functions o n l = { l ,- l } z d . (We use σω instead of σψ.) Let dμ(σ) be a Gibbs
measure on X for the potential

h(σ)= Σ hA^{A\ (2.1)
Aczti*

where hA are determined by (1.21) and (1.22). For a subset C of ΊLd and σ in X,
we set

- < 7 ω if; is in C

\σ^ otherwise' ( }

So σc is the spin flip at C.
We now construct the representation of A on L2(μ). Set

F(σj), (2.3a)

(2.3b)

where F(σ) is in L2(μ). Note that

^ = exp{2ΣMμ)l. (2.4)
w) [ % j

Proposition 2.1. Equation (2.3) gives rise to a representation of the C* algebra A on
the Hilbert space of square integrable functions L2(μ). Furthermore, the von Neumann
algebra generated by nμ(σz

j)) is L°°(μ) (acting as multiplication operators) and maίmally
abelian in L2(μ).

The above proposition follows directly from the definitions. Let Ωμ be the
constant function 1. It is cyclic and separating for πμ(B)" = L°°(μ).

Proposition 2.2. The representation πμ(.) of A is irreducible if and only if μ is an
extremal Gibbs measure.

Proposition 2.2 was proved for the quantum Potts models in [7] (see
Theorem 2.5 of [6]). We note that (2.3) implies

(Ωβ9 π(l(σz(A)σx(B)Ωμ) = f dμ(σ)^^ Jσ(A). (2.5)

The next task is to construct a regularized Hamiltonian Hμ on L2(μ). Let A be a
cube in Έd, and we set

HA=- Σ yA(σz){σz(A)-eh{A)(σz)l (2.6)
ACΛΛΦ0

where hiA)(σz) is defined in (1.21).
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limπμ(HΛ) = ί/μ.
Λ~*ao

Furthermore πμ (Aϊoc)Ωμ is a core for Hμ and Hμ is positive,

Proposition 2.3. The following limit exists in the sense of strong resolvent convergence:

(2.7)

(2.8)

(2.9)

(2.10)

>,β] (2.H)

HμΩμ = 0.

Proof. We first show that

for Q in Aloc. In view of (1.20), we have

lini

for sufficiently large Λ. Here we used the fact that Q is strictly local element, and
H is of finite range. We consider Q = σ^0). For simplicity of exposition, we assume

VA(σ2) = 0 if \Λ\>1

VA(σz)=l if \A\ = l.

It suffices to estimate

Each summand of (2.13) is bounded by

We also use

eh
U)(σ0) _ gΛω(σ) =

(2.12a)

(2.12b)

(2.13)

u

Thus (2.13) is bounded by the following two terms:

(2.14a)

I - hΛσ)

(2.14b)

By the boundedness assumption of ^'(σ), we have

js/i
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jeλ ABJ,0

AaO

In (2.14a) we split the sum as

Σ + Σ
\j-dΛ\>lE \j-dΛ\<lε

In the first term, we apply (1.24), so

jeΛ

jeΛjoeΛ

Σ
\j-dΛ\>lε

In the second term of (2.15), we use decay of potential. So

\j-dΛ\<l, \j-dΛ\<it

(2.16)

Σ
\j-dΛ\<lεA3j,0

ύCt Σ e~δUl (2-17)
\J-dΛ\<lε

So (2.17) goes to zero as A goes to Έά. Thus we have (2.10). The claim of the
proposition follows from (2.10) and the fact that AloQ is a dense subset of analytic
elements of yt(.)9 and

HΛΩΛ=0. (2.18)

See Theorem 6.2.4 of [1] and Theorem VIII, 25. of e [8]. (q.e.d.)

Remark 2.4. Observant reads may realize that (2.6) is the generator of a Markov
semigroup S(t) on C(X). It is possible to prove that the following equation gives
rise to a Markov generator (see [4]),

Jim πμ(HΛ)πμ(Q)Ωμ = πμ([H, Ql)Ωμ (2.19)
Λ -* oo

for Q in #i o c . We will return to this observation later.

3. Main Results

Let μ b e a Gibbs measure and Wμ be the vector state associated to Ωμ of the
preceding section. We can now state our main results of this paper.

Let A be a cube of TLd

HΛ=~ Σ VA(σx)σx{A)-ΣwA°*)> ( 3 1 )

where we use the periodic boundary condition. Let EΛ be the smallest eigenvalue
oϊHΛ.
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Theorem 3.1. Suppose a state W satisfies the following:

W(HΛ) = 0 (3.2)

for any finite A.
(i) W is a ground state ofyt (in the sense of (1.12)) and there exists a Gibbs measure
μfor h(σ) in (1.22) such that

W(σz(A)σx(B)) = J dμ(σ)σ(A)\^^ J'*. (3.3)

Ύheι G.N.S. representation associated with W is equivalent to (2.3),
(ii) Let Hw be the selfadjoint operator defined by (2.7). Then Hw satisfies (1.13) and
(1.14).
(iii) W is a pure ground state if and only if μ is an extremal Gibbs measure of X.

Corollary 3.2. Let W be a translationally invariant ground state, then there exists
a translationally invariant Gibbs measure μ such that all the conclusions of
Theorem 3.1 are valid.

Remark 3.3.
(i) The above results are valid if we use free boundary conditions.

(ii) Corollary 3.2 should be compared with Theorem 5.12 of [4].

Next consider the case that the Gibbs measure is unique. Let L be the generator
of the Stochastic Ising model determined by

L = Σ VU)(σz){nμ(σψ) - πj/\σz))}. (3.4)
JeZd

Theorem 3.4. Suppose that the Gibbs measure for h(σ) is unique. Suppose further that
the L2 spectrum of the (unique) selfadjoint extension ofL in (3.4) has a gap ε above
zero eigenvalue, i.e. spec(L)n(0,ε) = 0. Then the spectrum of Hμ has a gap larger
than ε above zero eigenvalue. The zero eigenvalue is of multiplicity one.

Remark 3.5. We now have many results on the gap of spectrum of L. (See [4, 3]
and references therein.) Theorem 3.4 implies the existence of gap for weakly coupled
(= high temperature) models treated in [6].

We can also establish the existence of gap for highly anisotropic Heisenberg
model of spin 1/2 (without the external field term). This means that

F > z ) = 0 if \A\ Φ2, (3.5a)

VA(σz)>0 if \A\ = 2, (3.5b)

in the notation (1.5). The ground site is doubly degenerated and it causes some
complications. We will explain this in a separate paper.

4. Proofs

We give a proof of results stated in Sect. 3. Let A be a subset of Έd. We set

. (4.1)
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Lemma 4.1.

\C*A VA{σz)CA = ( - 1 ) F > Z ) K ( Λ ) - <PA)^}. (4.2)

Proof. Note that

σx{.A)ewl)hiAHai) = e-W2)hίA>{^σx(A), (4-3)

this follows from the definition of h{A\σz). Then (1.10) and (4.3) lead to (4.2). (q.e.d.)

Lemma 4.2. Equation (3.2) implies the following

W(C*ACA) = 0 (4.4)

for any A with \A\ = 1.

Proof. By Lemma 4.2, (3.2) leads to

ΣA(σz)CA) = 0). (4.5)Σ
A

By our assumption (1.9), we get (4.8).

Poof of Theorem 3.1. Let W be a state of A satisfying (3.2). Let {πw(.),ΩWiJ^w}
be the G.N.S. triple for W. Then Lemma 4.2 and (4.1) (4.3) imply

πw(Cω)Ωw = 0, (4.6a)

πw{σψ)Ωw = πw(ehU){^)Ωw. (4.6b)

Let μ be the measure on X defined by

μμ(σ)σ(A)=W(σz(A)) (4.7)

The adjoint action Ad (σψ) implements the spin flip a t ; on C(X). So (4.6) may read

^ H (4.8)
Due to Lemma 2.1 of [9], μ is a Gibbs measure for h(σ). (The measure satisfying
(4.11) is known to be a solution of the DLR equation.) So we have (1). Other
statements of the theorem follows from results of Sect. 2. (q.e.d.)

Corollary 3.2 follows from Lemma 4.3, Theorem 3.1 and a result of [1], namely,
if W is a translationally invariant ground state, then

Lemma 4.3.

lim - L || (HΛι -EΛι)- HΛι || = 0. (4.10)
ί - + o o | / l |

Proof For simplicity, we again assume (2.12). By (1.20)

(HΛι-EΛl)-HΛι=Σ { « ^ ' J - e " Ή (4.1
jΛ
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S ί Σ IUT+ . ««>

So using Lemma 1.3 we have.

11(4.11)11

We now turn to Theorem 3.4. (q.e.d.)

Lemma 4.4.

(i) Let W be a pure ground state ofyt. The self adjoint operator satisfying {1.13) and
(1.14) is unique.

(ii) Suppose that W is a pure ground state satisfying

W(A*δ(A)) ^ ε(W(A*A) - \ W(A)\2) (4.13)

for any A in Aloc and

lH,Al (4.14)

Then the unique self adjoint operator Hw of(1.13) and (1.14) has a gap of size ε in
the spectrum above zero. The zero eigenvalue is of multiplicity one.

Proof of Lemma 4.4. Let {πw(.\ Ωw, J4TW} be the G.N.S. triple of W. It follows from
irreducibility of πw(.). Next recall that πw(Aloc)Ωw is core for Hw (elements of Aloc

are analytic for γt(.)), see [2]. Equation (4.13) is equivalent to

(ξA,HwξA)^ε(ξA,ξA\ (4.15a)

where

ξA = πw(A)Ωw - (Ωw, πw(A)Ωw) x Ωw. (4.15b)

(Note W(A*δ(A)) = (πw(A)Ωw,Hwπw(A)Ωw)). As πw(Aloc)Ωw is core, (4.15) says
that the spectrum of Hw is larger than ε in the orthogonal complement of Ωw. So
we have the conclusion, (q.e.d.)

Proof of Theorem 3.4. Let W and μ be as in Theorem 3.4. Then first we have for
any A in Έd,

W(C*ACA) = 0. (4.16)

This is due to (2.3) and (2.4). Thus

W(Q*δ(Q))= lim X W(Q*lC*AVA(σz)CA,Ql)

^ Σ W(Q*C$VA(σ2)CAQ)=W(Q*LQ) (4.17)
\A\ = 1

for any Q in Aloc. Here L is the selfadjoint extension of L in (3.4). If L has a gap
ε of spectrum above zero eigenvalue it is easy to show

(πw(Q)Ωw,Lπw(Q)Ωw) ^ε{\\πw(Q)Ωw||
2 - ||(Ωwπw(Q)Ωw)\\2

= ε{W(Q*Q)-\W(Q)\2}. (4.18)

Due to (4.18) and Lemma 4.4, we have Theorem 3.4. (q.e.d.)
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