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Abstract. The behaviour of classical solutions of the relativistic Vlasov—Maxwell
system under small perturbations of the initial data is investigated. First it is shown
that the solutions depend continuously on the initial data with respect to various
norms. The main result is on global solutions: A global solution whose electro-
magnetic field decays in a certain way for large times is shown to remain global
under small perturbations of the initial data and to retain the decay behaviour of
the field. Therefore, such global solutions are generic. This result implies the
existence of global solutions for nearly symmetric initial data.

1. Introduction

Consider a collisionless plasma with N different species of particles, where a particle
of species a has rest mass m, and charge e,. Each species is described by a particle
density f,(t, x, v), where t = 0 denotes time, xeR> position, and veR> momentum.
The particles may move at relativistic speeds and are assumed to interact only by
the electromagnetic forces they create themselves so that the density functions
(f)R=1 = f together with the selfconsistent electromagnetic fields E , and B, evolve
according to the relativistic Vlasov—Maxwell system (RVM):

Oifat 0205 fo+e(Ep+ 0, x By)d, [, =0, 1<a=ZN,
O,E;—curlB, = —4nj,, divE,=4np,,
Here
N
pf(t, X)Z= Zl eaffa(ts X, l))dl)
and

Jrt,x):=Y e,[0,f.(t x,v)dv

M=
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denote the total charge and current densities, and

is the relativistic speed of a particle of species a with momentum v where the speed
of light is assumed to be 1.

We are interested in the corresponding initial value problem; that is, we impose
initial conditions

fO)=1f, E/0=E, B,0)=8,,
where the data have to satisfy the compatibility conditions

divEf=47zﬁf, div§f=0.

Throughout this paper solutions are always classical solutions; that is, f, E,, and
B/ are C' with respect to all variables and satisfy the equations in the classical sense.

The purpose of this paper is to investigate the behaviour of classical solutions
of RVM under small perturbations of the initial data. First we consider local
solutions, obtaining results on continuous dependence on the initial data in various
norms. Then we consider a class of global solutions exhibiting a certain asymptotic
behaviour of the fields for large times. It is shown that the asymptotic behaviour
of these solutions is stable under small perturbations of the initial data; that is,
the perturbed solution remains global and retains its asymptotic: behaviour.
This general result applies to spherically symmetric solutions implying global
existence for nearly symmetric data and extending Schaeffer’s results from the
case of the Vlasov—Poisson system to the relativistic Vlasov—Maxwell system,
cf. [14].

Before going into more detail a brief survey of the known results on RVM may
be useful. Glassey and Strauss [6] showed that a local solution is actually global,
if the momenta remain bounded on its interval of existence. By establishing the
required bound on the momenta, Glassey, Schaeffer, and Strauss proved global
existence for small data [8] and for nearly neutral data [5]. For further results on
RVM and related problems see the references.

If B, =0 and Maxwell’s equations are replaced by Poisson’s equation for the
potential of E, the resulting system is known as the relativistic Vlasov—Poisson
system RVP; by further replacing 6, by v one obtains the Vlasov—Poisson system
VP. For results on VP and RVP see the references. Schaeffer [15] proved that
as the speed of light tends to infinity, the corresponding solutions of RVM tend
to solutions of VP.

With some minor modifications the results of the present paper also hold for
VP and RVP, while the proofs are greatly simplified by the fact that Poisson’s
equation is elliptic and much easier to analyse than the hyperbolic Maxwell system.

The paper is organized as follows: In the next section we state and briefly
discuss the main results. For easier reference we collect a few known results on
RVM in the third section. In the fourth section local perturbation is investigated,
while the fifth section is devoted to global perturbation.
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2. Main Results

For easier reference, we now state and briefly discuss our main results, postponing
the proofs to later sections. To this end we need some notation. For an interval
I =R define

C*(I):={C:I-1]0, o[|C continuous and increasing},
C~(I):={C:I-[0, o[|C continuous and decreasing}.

For a solution (f, E, B) define K ;:=(E, B,). Initial data will be taken from the
following class:

2 = D(Ro, Uo, Ko):= {(/, K )eCLR®,RY) x C’(R*,R)|f 20,
supp f < Bg,(0) x By, (0), div E, = 4np,div B, =0,
|0.K ;(x)] < Ko(1 + Ry +|x])727%i=0,1,2, xeR?},
where Ry >0,U, >0, and Ko >0, and B,(2):= {yeR3||y —z| <r}.
It follows from [6] that for each (f,K 7)ED there exists a unique, classical
solution (f, K) of the corresponding initial value problem on a maximal interval
of existence which we denote by [0, T(f, K)[.

Consider (4, g)e@ In order to study the behaviour of the solution (g, K,)
corresponding to these initial data under perturbation of the data, define

dii=1f =gl + 1K~ Kl

for (f, K 1)€2. Here and in the following |||, denotes the infinity norm of the
derivatives of the argument up to the order k.

Theorem 1. There exist a constant &, > 0, a function 0,€C~(]0,,[) with ,liin(l) a,(B)=

T(g,K,), and a function {,eC* ([0, T(g, K,)[) such that for all initial data f, K 1)ED
with d, < e, the corresponding solution (f, K ) satisfies

T(f,Ky) >0,(d;)
and
1O —g@®)llo+ 1 Kp(t) — K, oo {10y, te[0,0,(dy)]

In order to prove the global perturbation result we need continuous dependence
also with respect to the first derivatives in x and v. To this end define

dyi= | f ~ Gl + 1Ky~ Kgll2,en
for (f,K )€ and consider the following regularity assumption on the solution
(4, K,):

® The mapping [0, T(g, K,)[3t—g()e CZ(R®)
is well defined and continuous with respect to |||, -

Theorem 2. Assume that (g, K,) satisfies condition (R). Then there exist a constant
e,€]0,¢,], a function 6,eC~ (]0 &,[) with 11m 0,(f)=T(9,K,), and a function

{,€C* ([0, T(g,K,)[) such that for all mltlal data (/K 1)ED with d,<e, the
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corresponding solution (f, K ;) satisfies
T(f,K;)>0,(d;) 2 0,(d,)
and
1f@®) = g@)l1,0 + 1 Kp(t) = Kg(0) 1,00 = {2(0)ds,  t€[0,0,(d5)].

It follows from [16] that condition (R) is satisfied if the initial data (g, Kg) are
smooth enough. Note that, if the unperturbed solution (g,K,) is global, the
perturbed solution (f, K ) exists for arbitrarily long times by the above theorems
whenever d, or d, are small enough. However, these theorems do not imply that
the perturbed solution is global, too. The perturbation of global solutions is
investigated under the assumption that the field K, satisfies the following decay
condition:

T(g9,K,) = oo, and there are constants K; =0 and «; > 1/2,0, 20
with o, + a, > 1 such that
(D) 1K, (X)) = K (1+8)7*(1+ R+ —[x])"*,
[0:K,(t, )| £ K (14+8)"*(1 + Ry + 1t —[x[) 77"
fort=0and |x| <R, +t.

The following theorem is the main result of the present paper.

Theorem 3. Assume that (g, K,) satisfies conditions (R) and (D). Then there exist
constants &, >0 and C > 0 such that for all initial data (f,K 7)ED with d, < &5 the
corresponding solution (f,K ) is global and satisfies

K (t,x)| SC(1+Ry+t+]|x|)"*(1+ R+t —|x])7F,
10, K (t,x)| SC(1+Ro+t+|x)7 (1 + Ry +t—|x])~"*

for t=0and | x| <Ry +t.

Note that the perturbed, global solution (f, K ) obtained in Theorem 3 satisfies
condition (D) with «; = 1 and «, = 3/4, which may be a stronger estimate than the
initial assumption on the unperturbed solution (g, K,). Horst [10] suggested the
estimate

1K@l =p@), 10:K,(0)] =q(0), 20

with

I (tq(d) + p(6))dt < oo

instead of condition (D). While this might be sufficient for global existence of the
perturbed solution, the perturbed solution will in general not exhibit the same sort
of decay, as may be seen by perturbing off the trivial solution g =K, =0 with
f =0and observing that a solution of the homogeneous Maxwell system in general
decays only like ¢! with respect to the infinity norm on R3. It is the key idea of
the proof of Theorem 3 that the term (1 + R, + t — [x|)”** introduces an additional
decay of the fields, but only well inside the light cone; that is, for |x| < R, + Ct
with 0 < C < 1. For these reasons condition (D) seems to be more natural than
Horst’s suggestion.
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Having proved Theorem 3 we will also establish a global estimate for the
deviation of (f, K,) from (g, K,) at the end of Sect. 5.

Finally, it remains to be seen that there exist nontrivial solutions (g,K,)
satisfying conditions (R) and (D). As an example consider spherically symmetric
solutions. For (x,v)eIR® with x # 0 define

XV
r:=|x|5 Wi=-——0, F2=x21)2—(X'U)2=|xxv|2

x|
and call § spherically symmetric if
g(x,v)=g(r,w,F) for x#0.

If all particles have charges of the same sign, the forces are repulsive, the plasma
disperses and the fields decay. In the other case this may be achieved by assuming
that initially all particles move outward fast enough to escape to infinity:

There is a constant § > 0 such that w>§ + lea| M [ m2 +£2+ 5?
E) or r

for (x,v)esuppg, with x #0,1 <a <N,

where
N
M:=3 |e,|[[du(x,v)dvdx.
a=1

Theorem 4. Assume that 0< §eC2(R®) is spherically symmetric and satisfies
condition (E) if there are particles with charges of different signs. Define

° . X — y o S .

Eg(x)‘= _[ ng(Y)d.% Bg'= 0
and choose Ry >0, Uy >0, and K, > 0 such that (g, Iég)e@(Ro,a Uy, Ko). Then there
exist constants ¢ >0 and C >0 such that for all initial data (f,K;)e9 with d, <&
the corresponding solution (f, K ) is global and satisfies

IKo(t,x)| SC(1+Ro+t+|x|)" (1 +Ro+t—|x|)7%,
Iafo(t,x)l SCA+Ry+t+|x]) 1 +Ro+1t—1x|)~ 74

for t=0and |x| SR, +t.

This result is analogous to the one obtained in [14] for VP and extends the class
of globally solvable initial data for RVM to not necessarily small or nearly neutral
data. In order to prove Theorem 4, conditions (R) and (D) have to be verified.
Since in the spherically symmetric case RVM reduces to RVP, this belongs to the
investigation of RVP rather than RVM. Thus, the proofs are not included here, and
the reader is referred to [10] and [12].

Remark. Besides greater generality our reason for considering N different particle
species lies in the fact that it may well make a difference whether there are particles
with charges of different signs or not when checking condition (D), cf. Theorem 4.
However, in the proofs of the other theorems it only makes the notation
cumbersome to assume more than one particle species, but poses no additional
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 difficulties. Thus, from now on we assume N=1, m;=e¢; =1 and drop the
subscript in 9,, f; etc.

3. Preliminary Results on RYM
The following lemma is a reformulation of results due to Glassey and Strauss and
an immediate consequence of [6], Proposition 8.

Lemma 3.1. Given (f,K 7)EZD there exists a unique, classical solution (f, K ;) of RVM
with initial data (f,K) on a maximal interval of existence [0, T(f,K)[. If

sup {|v||(x,v)esupp f(t),0=t < T(f,K,)} < o0,

then the solution is global; that is, T(f,K ;) = co.
Next we recall some well known properties of the characteristics of RVM.
Lemma 3.2. The characteristic system

X =19,

0= E(t,x)+ 0 x Bf(t,x)
has a unique solution (X ;(-,t, x,v), V(,t,x,v)) on the interval [0, T(f, K ;)[ with

X, t,x,0)=x, Vtt,x,0v)=0,
where te[0, T(f, K ;)[ and (x,v)eR®. For s,te[0, T(f,K)[ the mapping
R®3(x, v)>(X ((s, 2, X, ), V,(s, 1, x,v))eR®

is a measure preserving C-diffeomorphism. Furthermore,
d
%f(s, X ;(s,t,x,0), V(s,1,x,0)) =0, 5,te[0, T(f,K,)[, (x,0)eRE,

and supp f(t) = Bg,+.(0) x R is compact for te[0, T(f,K,)[.

The following integral representation of the electromagnetic fields, due to Glassey
and Strauss, is a key ingredient in our arguments.

Lemma 3.3. There exist functions
kr, kse C{weR?||w| =1} x R?)
with
|kr(@, ) [ks(@,0)| S C/1+02, |o|=1, veR?,

such that for each solution (f,K,) with initial data ( f,K 1)ED the following
representation holds:

Ef= Ef,D+Ef,T+ Ef,S’

where

1 .
E;p(t,x)= ) tcurle(y)dSy

x—y|=
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— E S (y):(y — x))dS
+ ) |x-£1= (Ef(y) + 0:E4(y) (y — x))dS,
1 o+
4 [-2E2 . f(y, v)dvds,,
dy
Ef,T(trx):: _‘. jkr(w:l’)f(t—lx—ﬂay,v)dv 2
Ix=y|=t |x—y
dy
Ef,S(t3x):= I fks(w:v)(fo)(t—‘x—)’L)’,U)dU‘_,
|x=Ylst |x —y|
and
y—Xx
w:= =xI’ L(t,x,v):= E/(t,x) + 0 x Bf(t,x).

The representation for B, is completely analogous with kernels having the same
properties as the ones for E,.

Proof. These formulas are given in [6], Theorem 3 with
1—0% o+ 0
kT((D, U)Z m ((D + U) ks(w U) (m)

For the estimates of the kernels cf. [7], p. 481, the explicit form of the data term
which is not given in [6] may be verified by going through the proof. [

We will also need a representation for the derivatives of the fields, which is again
due to Glassey and Strauss, cf. [6], Theorem 4.

Lemma 3.4. There exist functions
krr, krss ksse C({|lo] =1} x R?)
with
0,ksseC({|o] =1} x R3),
'kTT(w7 D)', IkTS(a)9 U)la lkSS(w3 U)', lakaS(w: l))l é C(l + w.ﬁ)_Aa le = 13 UGR3
and
[ kpr(w,v)dS,=0, veR3,

lo|=1
such that for each solution (f,K ) with initial data ( f.K 1)ED and k=1,2,3, the
following representation holds:
0uEr=E;rpp+E;rr+Efrs+Epss+Epg,
where
Ef,DD(t’ X)Z= axkEf D(t x)
[ w(w + 0)
2 = (L+ )1+ 0-0)
1 % o ( w+?

Ctey= 1+ od \14o

f(y, v)dvds,

>(fo)(y v)dvdS,,
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d
E;rr(t,x):= § [kpr(w,0)f(t—]x—yl,, v)dv—y—s,
Ix=y|<t [x —y|

d
Eprst,x):= [ [kps(o,0)(fL)(E—1x =y, U)dl"“y—z,
|lx=y|=t [x —yl
d
Epsst:x)i= | [kso(@,0)S(fL)(t—|x~yl,y,0)dv—>—,
lx=y| st |x —yl

w+?

1
R R t .
1 + 02 |a)|j=1 (1 +(0‘ﬁ)3 wdewf( 5 X, U)dU

E; p(t,x):=|

Here

:=lim
Ix=ylst 70 eg|x=y|st

denotes the Cauchy principal value of the integral and
S:=0,+ 0-0,.

The derivatives of B, can be represented in a completely analogous way with kernels
having the same properties as the ones for E .

Corollary 3.5. For a maximal solution (f, K ;) of RVM with initial data from 9 the
mappings

[0, T(f, K ;) [3t— f()eC;: (R, RY),
and
[0, T(f, Kf)[atl-—»Kf(t)eC,}(]R:*, RS)

are well defined and continuous with respect to the norm |||, .

4. Local Results

In order to prove Theorem 1, we have to introduce a few definitions and collect
some auxiliary lemmas first. Throughout this section assume that (f, K;)e2 with
d; <1. Any constant or function CeC*([0,T(g,K,)[) may depend on the
unperturbed solution (g, K,), but not on the perturbed solution (f, K), and may
change from line to line. Define
To(f, Kr):=sup {te[0,min {T(f, K ), T(g, K,) } [|
1K y(s) — Kyg() | oo < (1 + )2, 5€[0, 1]}

and
t
U@®):=Uo+1 +£ [ Kg(s)llods, te[0, T(g, K,)[-
Note that Lemma 3.5 and the assumption d; <1 imply Ty(f,K,)>0 and that

UeC*([0,T(g,K,)[). On the interval [0, To(f,K,;)[ we may now estimate the
momenta as follows:

Lemma 4.1. For all initial data (f,K ;)2 and te[0, To(f, K )[
sup {|v|(x, v)esupp f(t)} < U(?).
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Proof. The proof is immediate, since
supp f(t) = {(X (t,0,x,0), V; (£, 0,x,0))]|(x, v)esupp f}
and
IV(t,0,%,0)| S K, (0) o S 1K@l + (14072 1[0, To(f, K, ). O

Using Lemma 3.3 and Lemma 4.1 we obtain an estimate for the difference of the
fields on the interval [0, To(f, K, )[:

Lemma 4.2. There exists a function CeC ([0, T(g, K,)[) such that for all initial
data (f, K)eD with d, <1 and te[0, To(f, K)[ the following estimate holds:

1K 4(8) — K)o < C(t)d, + COUE)*
‘<ossu§, /(D)= 9@+ i 1K (z) — K,y(7) def)

Remark. The reason for making the dependence on U explicit in the above estimate
will become apparent in the proof of Theorem 1.

Proof. Consider the integral representation for E, and E; given in Lemma 3.3.
Obviously

I Es p(t) — E; p(0) | o < C(t)d; .

By Lemma 4.1, it suffices to integrate over v with [v| S U(t — |x — y|) £ U(¢t) in the
formulas for E, 1, E; s, E, 1, and E, 5. Thus, we may estimate

[kr(w, )], | ks(w,v)] < CU(t)
to obtain

1E7.20 ~ By 10w S COUG* sup | /6~ g(0)]

and

IEf,S(t>x)—Eg,S(t,x)|§CU(I)I j “. ()lfo—ngKt—lx—YI,y,U)dU
X t

—ylstlv|sU

|x—yl|’
Putting
\fL;— gL,| < |fIK; — K, | + |K,I|f — g
and
FIS1f oS ldlle+1

into the last estimate yields

I Ey,s(0) — Eyis0) .0 < C(r)U(t)‘*( sup 1) = g0l + [ 1K, )~ K,0)| wdr>.

Analogous estimates for the difference B, — B, complete the proof. [
Proof of Theorem 1. Let (f,I&,)e@ satisfy d; <1. For 0<s <t <min {T(f,K,),
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T(g,K,)} and (x,v)elR® we have

d

%((f - g)(S, Xf(s9 L, X, U), Vf(sa L, X, U)))

= —(avg(Lf - Lg))(sa Xf(S, t, X, 0)9 Vf(s9 t> X, U))
Integrating this equation from O to ¢ and estimating, we obtain

(f = 9)(t,x,0) = (f = §)(X (0, £, x,v), V{0, £, x,v))
— [@u Ly~ L) X s bx, 0 Vst xo)ds (@)
and
1O — 9001 f—dla+ 5 18,96) 1 | K 8) — Kyfs) | ods.  (42)
For te[0, To(f, K,)[ Lemma 4.2 and the estimate (4.2) imply
1K (6) - K0l < C(t)U(t)“(cu + I 1K /(7) — Ky(D) | wdr).
Since the functions C and U are increasing, we have for 0<t <t < T,(f,K ),
1K) — Kyt oo < c<r')U(t')4<d1 + y | K ;(z) — Ky | wdr).

Now apply Gronwall’s lemma, set t' =t, and obtain
1K)~ Ko(0)l 0 S(1+1)72E,0d;,  te[0, To(f, KL, 43)
where &,eC*([0, T(g, K,)[) is defined by
&1(8):=(1 4+ 1)*C(U(1)* exp (tCOU ().
Obviously ¢, is strictly increasing, and li(mK &)= 0. If T(g,K,)= oo, this

t—=T(g,Kg)
follows from lim(1 +¢)*> = oo, if T(g,K,) < o0, then Lemma 3.1, applied to the

t— o0
solution (g, K,), implies lim U(f) = co. Define
t—T(g9,Kg)

. 1 (1
&;:= min {l,m—)}, a.(B):= (&) 1(%) for 0<B<e,
to obtain
0,€C7(10,¢[), lemé o1(B)=T(g,K,).
If d; <e, then o,(d,)>0, and on the interval [0,min {o,(d,), To(f,K,)}[ the
estimate (4.3) implies
IKy(0) — K)o <31+ 872 (4.4)

Assume that T(f, K ) < o,(d,). This entails

To(f, K )=min {T(g,K,), T(f,K[)} = T(f,K),
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so we may apply Lemma 4.1 on the whole interval [0, T(f, K )[, obtaining
sup {|vl|(x,v)esup f()} SUE) S U(T(f,K;)) < o0

in contradiction to Lemma 3.1. Thus we have shown that T(f,K,) > o,(d,), by
(4.4) this yields Ty(f,K,) > 0,(d,), and by (4.3) we finally get

IK A1) = Kyl o < (1 +8)72,(t)dy, te[0,0,(d,)].
Observing (4.2) completes the proof. [J
In addition to Theorem 1 the above proof also established the following result:
Corollary 4.3. Assume that (f,K 1)ED with d; <&, and te[0,0,(d,)]. Then
K ) — K0l =1 +1)72
and
sup {[v||(x,v)esup f(1)} < U(1).

We now turn to the proof of Theorem 2. The following lemma gives an estimate
for the differences of the spatial derivatives of the fields similar to Lemma 4.2.

Lemma 4.4. There exists a function CeC*([0, T(g, K,)[) such that for all initial
data ( f K 1)ED with d; < &, and te[0,0,(d,)] the following estimate holds:

_t_

10:K 4(8) = 0:Ky(D) [ oo = C(t)U(t)4<dz+ sup [|0.f(7) — 0:9(1) |

+ j; ” afo(T) - ax1<g(‘l") ” ood‘c)'

Proof. First note that it would be possible, but unnecessarily complicated to use
Lemma 3.4 at this point. Instead, we use Lemma 3.3 and differentiate under the
integral sign. Since the proof is then similar to the proof of Lemma 4.2 we only
treat the difference 0,E; 5 — 0,E, 5. With

d
0.E; s(t,x) = f f ks(w,v)0(f L, )t —|x—yl,y, U)dU_y_—,
[x=YIstlo] £U@ [x—yl

the corresponding expression for d,E, s and Lemma 4.1 we obtain the estimate
lafo,S(t’ x) - ang,S(t’ x)'
d
SCUO [ [ 0dfL) — 3Ll —Ix— v,y hdv—=—

Ix=Ylstl0] U | I
for te[0,0,(d,)] and xelR3. Putting
[0(fLy) — 0AgLy)| = 10.f — 0:g||K s +10:911K s — K|
+IS10K;— 0K, +1f —gllo Ky,
1@ le=1 o= 1dlo+1,
IK (D)o = I Kg() oo + 1 K f(7) — Ky(D) |
S K@)l + E1(0)dy = Cl7)



52 G. Rein

and
/() = 9@l + 1 K f(7) — Ky(0) | o = 4 (0)dy,  7€[0,0,(dy)]
into the estimate for 0,E, 5 — 0,E, 5, we end up with

" afo,S(t) - ang,S(t) ” ©

=CU (t)4<d 1+ sup 10/ (x) — 0:9(D) | + i 10K £(z) — 0. K,y(7) | wdf)-

<t=<t

The remaining estimates are similar and therefore omitted. [J

In order to prove Theorem 2 we need to estimate the derivatives of the
characteristics of f with respect to x and v.

Lemma 4.5. For (f, K €D, 0<s<t<T(f,K,), and (x,0)eR® the following esti-
mates hold:

10X 15,8, X,0)| + 10,V (5,8, %, )| exp<f(3 + 3By + 5fo(T)IIw)dT>,

10,X 55,2, %,0)| + 18,V 4(s, 1, x, v)| < exp (jt'(3 + 3Byl + afo(T)”oo)dT>'

Proof. Differentiating the characteristic system we obtain
d 0, V(s V(s
2 5% =—\/% Lo I;‘}((z)),,,,z,
8V (6) = (5, X 9) 0 X (9)+ L (2,B,(5, X)) 0, X /)
ds * J1+Vs) -
+< 06 Vi(s) 0, Vi(s) Vi(s)V(s)
S (+ViT

Now some straightforward estimates and Gronwall’s lemma yield the desired result.

a

Proof of Theorem 2. Assume that the unperturbed solution (g, K,) satisfies the
regularity condition (R) and differentiate equation (4.1) to obtain

axk(f - g)(ta X, U) = ax(f - gn)(Xf(O’ L, X, l)), Vf(()’ L, X, v))'akaf(Oa L, X, U)
+0,(f — )X (0,1,x,0), V0,1, X,0))0,, V0,1, X, 0)

— 05 V4(8) V(s)

> X B (s, X £(5)).

t
- j(ax(Lf - Lg)'akaf(S, L, x, U)
0
+ 04,V (5,1, %,0) X (By — B))-0,4(s, X 1(s), V £(s))ds
t
— J(Ly ~ L,)(0,0,9° 0, X £(5,1, X, v)
0

+ 029°0,, V(s t,x,0))ds. 4.5
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For te[0, T(f,K)[ define
P(t):=sup {|0,X (s, 1, x,0)[ + |0,V (5,2, x,0)|[0 < s = ¢, (x,v)eRE}.
Assuming (f, I%f)eg with d, <é¢, and t€[0,0,(d,)], Theorem 1, Eq. (4.5) and
Lemma 4.4 imply
t
10K £(t) — 0.K,() o = COOU()*(1 + P(t))<dz + g 10K f(s) — 0K () ood5>~

Gronwall’s lemma now gives the following estimate for te[0,q,(d,)]:
10K 1(t) — 0:Ky(D) Il s < COU@*(1 + P(t))exp (t(CA)U)*(1 + P(1)))d,.  (4.6)

Thus, the function P, which depends on (f, K ), has to be estimated independently
of (f,K;). By Lemma 4.5 and Theorem 1,

P(t) = exp ( j) B+31By(s) s+ 3C1(s)ds + [ 0:K 4(3) | oo + | 0K 1(5) — 0K () w)dS>

Sexp <i (C(s) + 10K y(s) — 0K () oo)ds)s te[0,0,(dy)]-
Since d, <¢; £1,
Ty(f,Ky):=sup {te[0,0,(d )11 0K (s) — 0K (), <1, 0<5 <1t} >0,
and
P(t) < exp (i (Cls) + 1)d5>, te[0, Ty (f,K[) ],
0
where CeC™*([0, T(g, K,)[). Define
P(t):= exp <jt'(C(s) + 1)ds>, te[0, T(g, K,)[,
0
and
&:(0):= COU®*(1 + P(2)) exp ((C)U(D)*(1 + P(r))),
and observe that the function &,eC*([0, T(g,K,)[) is strictly increasing with

lim &,(t)= co. For te[0, T, (f, K,)] the estimate (4.6) implies

t=T(g,Kg)
10K £(t) — 0:K () Il » < &5(0)d,. 4.7)
Now

1
€i= min{sl,—}, o2(B):=min{o,(B),(£)"'(1/B)}, 0<B<e,
¢2(0)
yields
GZGC_(]Os 82[)9 ;I_I;l‘(l) aZ(ﬁ) = T(gs Ky)

Assume that T,(f,K;) < 0,(d,) for d, <e,. Then the estimate (4.7) implies
10K ((T1(f, K ) — O:Ko(T1(f, K ) oo < &2(02(d2))d, =1,
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contradicting the definition on T,(f, K ). Hence
05(dy) S Ty (£, Kp) S 04(dy) < T(f,K)
For te[0,0,(d,)] we have established the estimate

” afo(t) - ax1<g(t) ” © é éZ(t)d23

putting this into (4.5) results in a corresponding estimate for || 0, f(t) — 0,9(t) || -
Since 0,(d,) < 6,(d,), all the estimates from Theorem 1 remain valid on the interval
[0,0,(d;)], so only the difference 0, f(t) — d,9(t) remains to be estimated. To this
end note that on the interval [0,0,(d,)] Lemma 4.5 implies

Q(t):=sup {|0,X ((s,2,x,0)| +13,V (s, 1,x,0)[|0 < s < ¢, (x,)eR®} < P(2).

This completes the proof, since the remaining estimate now follows from an
equation for 9, (f —g)(t,x,v) analogous to (4.5) and the already established
estimates for || K () — Ky(?)ll1,, and [ /(1) —g(0) ] O

5. Global Results

5.1. Global Existence of the Perturbed Solution. Let us briefly describe the idea of
the proof of Theorem 3. The decay condition (D) implies the existence of a time
T, >0 such that for larger times the field K, (t) and its derivative 9,K,(t) are so
small that the solution (g, K,) behaves almost like a free streaming. Theorem 2
implies that for d, small enough the perturbed solution (f, K ;) also behaves almost
like a free streaming, at least on some interval I, which starts at T;. On this interval
the volume of the support of the function f(t, x, ) decays like ¢ ~3 and the momenta
remain bounded. This implies estimates for the field and its derivative such that
the interval I may be extended to infinity and the proof is complete.

For the rest of this section let (g, K,) be a solution satisfying the conditions (R)
and (D). Constants such as C,c,,C,,c,,C, may depend on (g, K,), but not on the
perturbed solution (f, K ); dependence on (f, K ) is always explicitly noted.

A first consequence of condition (D) is the following estimate for the momenta
of the perturbed solution.

Lemma 5.1. There is a constant ¢, >0 such that
sup {[o]|(x, v)esupp ()} < ¢,
for all initial data (f, I%f)eg with d, < e, and te[0,0,(d,)].
Proof. Take te[0,0(d,)]. Because of g,(d,) < 0,(d,) and Corollary 4.3 we have
1K)~ K, 0)lo <1402
Together with condition (D) this implies
K (t,x)| S K 1 +8) (1 +Ro+t—[x])72+(1+1)72% [x|<Ry+t
Without loss of generality we may assume a, < 1/2. Now observe that
supp f(8) = {(X ;(2,0,x,0), V(£,0,x,v))|(x,v)esupp f}



Generic Global Solutions of RVM 55

and define
u(t):=sup {|V,(s,0,x,0)[[0<s<t}, a(t):= __u(t)_
1+ u(®)?
for (x,v)esupp f. The characteristic system implies
| X (5,0,, 0)] = | 4(s, 0, x,0)| < (s),

whence
| X £(s)| = Rg + sil(s),

and
[V(5,0,%,0)| < Ky(1+8)"(1 + Ro +5— X (s))) "%+ (1 +5) 72
SK(1+s) (1451 —4(s) =+ (1+5)"2
Integrating this inequality we obtain

WS T+ Up+ K, (14571 + 5(1 — d(9))=ds.
[

A short computation shows that

and hence
t
u(t) 1+ Uy + 272K, [(145)7%(1 + u(s)?)2ds,
0

where a:= o, +a,. Let z:[0,t,,,[ > IR* be the maximal solution of
#t) =22K,(1+ )71 + z()»)™, 2(0)=2+ U,.

Obviously, u(t) < z(t) for 0 <t < min {¢,,, 0,(d>)}. Thus, the lemma is established
if we can show that sup z(s) < co. The assumption « = «; + «, > 1 implies

s=0
i(l—%dhzaq{lg(l +5)"ds

<22K, [ (1+5)"%ds < 0.
[

On the other hand,
T dz
o(1+z(s)%) 20y (1 + 22"’

whence
sup, > o(t) d z
———— < 0
Aoy (1+2%)=

Because of the assumption o, < 1/2 this entails supz(f) < oo, and the proof is
complete. [] 120
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For the rest of this section assume that (f, K 1)€D with d, <&, so that Theorem
2 and Lemma 5.1 apply.

The Free Streaming Condition. Let us make precise what we mean by saying
that a solution (f, K) behaves almost like a free streaming. To this end choose
pel1/2, min {a;,0/2,3/4} [, where a = a; + a,.

Definition 5.2. Let (f, K ) be a classical solution of RVM,0=a<b < T(f,K,) and
1> 0. The solution (f, K ) satisfies condition (FS) with respect to the constant 1 on
the interval [a,b[, if the estimates

IK (&, )| <n(1+ Ro+t+Ix))P(1 + Ry +t —|x]) 7%,
10K (t,x)| Sn(l+Ro+t+|x)""(1+Ro+t—|x|)~~!
hold for te[a,b[ and xeR3 with |x| < R, +t.

For n small enough we obtain the following estimates for the support of the function
f(®) on the interval [a,b[:

Lemma 5.3. There is a constant n; >0 such that if a solution (f,K;) satisfies
condition (FS) with respect to a constant n <, on an interval [a,b[ < [0, T(f,K,)[
with a < g,(d,), then

supp f(t) = {(x,v)eR®||x| SR, + C;t,|v| £ C,}, 0=t<b,
where Cy:=2c, and Cy:=C,(1 + C?)~ 12,

Proof. Let n > 0 be arbitrary. For t€[0,0,(d,)] the claim follows from Lemma 5.1
with ¢, instead of C;. For (x,v)esupp f define

f:=sup {te[a, b[||V(5,0,x,v)| = C,, 5€[0,1]}.

The assumption a < o,(d,) implies > a, and on the interval [a, [ we obtain
t ~ A~
| X ;(t,0,%,0)| SRy + [ |V (5,0, x,0)|ds £ Ry + C,t.
0

Now (FS) implies
K (6, X ) S0l +Ro+t+ X 0) A1+ Ry +t — | X ,(1)])7*
Sl +0)7P1+Ry+t—Ry—Cyt)#
Sl —C) 1+,
and hence
"N t
'Vf(taoaxa U)l é l Vf(a90ax9 D)l + '7(1 - Cl)_ﬂj(l + S)_Zpds
Sei+n(1—-C)PRB-17Y, ast<L

Choosing#,:=4¢,(1 — C,)’(2B — 1) we get | V (¢, 0, x,v)| < 3¢, on the interval [a, I,
which by definition of f entails f = b and the proof is complete. []

To further exploit condition (FS) we need the following Gronwall lemma for second
order differential inequalities:
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Lemma 5.4. Assume that c{,c,€C ™ ([a, o[) with
[e¢]
I:= { (¢,(0) + ¢,(0))do < o0,
a

c3,¢4 =0 and xeC?([a,t]) with x(t) = x(t) = 0 and
[%(3)] = ey ()(IX()| + (£ = s)c3 + c4) + €2()(|X(5)] + ¢3)
for0<a=<s=<t<oo. Then
[x(s)| S ((t — s)es +eg)le’, a<s<t.
Proof. Obviously

x(s)= — j X(t)dz = j X(o)daodr,

A ey

whence

1)) <[ 101 dz =:2(6).
Now some straightforward estimatess yield
26 < [ (0,(0) + ¢3(0))2(0)do + (¢ = ) + ¢4) [ (04(0) + ¢,(0))do.
Ifags’§s§:t,then s
2095 [(0e4(0) + cx@)e(0)o + (= $)es + ) [ (6,(0) + 0D,

and Gronwall’s lemma completes the proof. [

The next lemma will be used to estimate the diameter and thus the volume of the
support of the function f(t, x, °).

Lemma 5.5. There are constants n,€]0,n,] and c, > 0 such that if a solution (f, K ;)
satisfies condition (FS) with respect to the constant 1, on an interval [a,b[ <
[0, T(f,K,)[ with a < 6,(d,), then

[ X f(s,t,%,0) — X (5,2, %,0')| 2 c,(t — s)|v — V|
for (x,v),(x,v")esupp f(t) and a<s <t <b.
Proof. For (x,v), (x,v")esupp f(t) and a < s <t < b define
x(s):= X (s, 8, x,v), 0(s):= I7f(s, t,Xx,0)
and x'("), 9'() analogously. One immediately checks that
%(5) = J (5, x(6), 6(5)).
where
J (5, %,0):= /1~ 02 (E(s,X) + 0 x B,(s,x) — 6 E (s, x)0).
Define

y(s)=x(s)—xX'(S)+(t—s)(0—17), a<s<t<b
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to obtain y(¢) = y(t) =0 and
|F(s)] = [X(s) — %'(s)|
= |J (s, x(s), 6(s)) — J 5 (s, x'(s), 7'(5))]
< sup1 [0,J £(5, Tx(5) + (1 — 7)xX'(s), B(5))] | x(5) — X'($)|

T o=

+ oiuls) ) [05J (s, x'(s), T0(s) + (1 — T)0'(s))| |B(s) — O'(s)|.
A short computation proves
4
Iakaf(sa X, ﬁ)l é zlafo(Sa X)I, laﬁk‘]f(sax’ ﬁ)l é ﬁle(so X)|

Now take #5e]0,n,]. Since (x,v)esupp f(¢), and hence (x(s),v(s))esupp f(s),
Lemma 5.3 implies

X SRo+Cys, o) Sy,
for a £ s =t < b, and analogous estimates hold for x'(s) and v'(s). Hence
|7x(s) + (1 = 9)x(5)| S Ro + Cy5
[to(s) + (1 =)' (s)| = C;, 0TS L
Using condition (FS) we obtain the estimates

sup [0,J ¢(s, 7x(s) + (1 — 7)x'(s), (s))|
1

0=t
SCrl+5) P11+ Ry+5—Ry—Cys) P 1<yl +5)7 271,
sup [9,J ¢(s,x'(s), 70(s) + (1 — 7)0'(s))|
0=st=1

C ~
< 217(1 +85) A1+ Ry +s—Ry—Cis) P <Cy(1 +5)~ %
1

J1-C
Thus, the function y satisfies
7)1 < Cr(1 +5) 727 |x(s) — x'(s)| + Cr(1 + 5) =P | 8(s) — 0'(s)]
S Cn(1+5)" 271 (|y@)| + (=)0 —8'])
+Cn(L+ )" 2#(|(s)| + [0 = 0')),
and Lemma 5.4 implies
Iy =10 —0'|nle’(t—s), a<s=<t<b,

where

I'= [ (Co(1+0)" %71+ C(1 + 0)"**)do < c0.
0

Choose 1,€]0,7,] such that 5,Ie"™! < 1/2 to obtain
| X f(5,8,%,0) = X 4(s5,8,%,0) + (t = 8)(0 — )| = | y(s)| < 3(t — )| 6 — O],
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and hence
| X (5,8, %,0) — X (s, 2, x,0)| 2 3(t — s)| 0 — ¥
Since
PIREL AT
Lemma 5.3 implies
fv—?'|= osup [0,p(td+ (1 — 1)) |0 =0 | S Clo— 7|

<t=1
for (x,v),(x,v")esupp f(t), and
|Xf(S’ t’x’v) —'Xf(sa t,x,l?l)l g c2(t - S)lv - vll'
This completes the proof. [J

Finally, condition (FS) implies the following estimate for the derivative of f with
respect to x, which we will need to estimate 0,K

Lemma 5.6. Thereisaconstant c; > 0suchthat if a solution (f, K ;) satisfies condition
(FS) with respect to the constant n, on an intervall [a,b[ < [0, T(f,K)[ with
a=<o,(d,), then

10:f Ol =3l f@1,0, tela,bL.
Proof. The equation
ft,x,0)= f(a,X;(a,t,x,0), Vi(a,t,x,v)), t=a
implies
0. f(t,x,v) =0, f(a,X ((a,t,x,v), V((a,t,x,0))0.X ((a,t,x,0v)
+0,f(a, X g(a,t,x,0), Vi(a,t,x,0))0, V,(a,t, x,0),

and hence

10, %, 0)| S 1 f(@)11,00(10:X p(a, 1, %, 0)| + 0, V (g, 8, x, 1))

for te[a, T(f, K ;)[ and (x, v)eIR®. Now proceed similarly to the proof of Lemma 5.5
to estimate the derivatives of the characteristics with respect to x. Since

XI(S, t, X, U) = .If(S, Xf(s)’ I7](8)),
we have
0n X (8) = 0T (5 X 1(5), V(5)) 05, X 1(5) + 0y 1 (5, X 1(5), V(5)) 0, X 1(5).

From the proof of Lemma 5.5 we recall the estimates

10:J (5, %, 0)| < Cl0Kf(5,X)], [0, 1(s, %, 0)| = =K 4(s,x)].

C
S
For (x,v)esupp f(t) and 0 <s <t < b Lemma 5.3 implies

|X (5,6, x,0)| SRy + Cys, |V,(5,8,%,0)| < C;.
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Define
x(8):= 0, X ;(s,t,x,v) — idgs
to obtain
X(s)| < C(L + )72 7 (Ix(s)] + 1) + C(1 +5) 2| X(s)|

and x(t) = %(t) = 0. Thus, for a <s <t <b and (x,v)esupp f(¢) Lemma 5.4 implies
|x(s)] = C, and hence

[0, X ;(s,t,x,0)| SC + 1.
To estimate 0,V observe that
O, Vf(s) = 6"€ (8, X £(5)) 0, X f(5) + Oy, I7f(s) X By(s, X ((s))
+ Vi(s) X (0B (s, X 1(5)) 0, X £(5)),
and thus,
18 V(s)| S C(1+5) 271+ C(1 +5)"210, V,(s)].

Integrating this estimate and applying Gronwall’s lemma gives the desired estimate
for 0,V,(s,t,x,v) and completes the proof. [

Estimates of the Fields. In order to estimate the data terms in Lemma 3.3 and
Lemma 3.4 we need the following two technical lemmas:

Lemma 5.7. Assume that he C(R?) and ke{2,3,4} with
[h(x)| S Ko(1+ R+ [x[)7*, xeR3.

Then
[ h(yds,
lx=y|=t
< 4nK.t (1+Ro+t—|x)71, in case k=2
=TT U+ Ryt 4 1x) A+ Ro+t—|x]) %2 incase k=34

for t =0 and xeR3 with |x| <Ry +1t.
Proof. Obviously

| j: h(y)dS,| <Ko [ (1+Ro+|y))7*ds,
x=—y|=t x—y|=t
=Kot* | (14 R, +|x+tw|)7*dS,,.
lo|=1

It is easily seen that
ux):= [ (14 Ro+|x+tw|)"*dS,

lol=1

depends on r:=|x| only. With abuse of notation we have

ux)=u(r):= [ (1+Ro+|re+tw|)"*dS,,

lo|=1
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where e:= (0,0, 1), and for r < R, + ¢ this implies

2n

ur)= [ [(1+ Ro+/r* +t* + 2rtcos ) *sin 0d0d¢
00

1 AdA 1 ttr dAi
== [ —2t <o [ —
2nrt |1£rl(1+Ro+l)k_ nrtt£r(1+Ro+A)k_1

using the substitution A= /r? + ¢ + 2rt cos 6. Straightforward calculations now
complete the proof. []

Lemma 5.8. Assume that he C,(R?) with supp h < Bg,(0). Then

| h()dS,| <4n| k|, min {R3,¢*}

Jx—y|=t

for xelR3® and t 2 0.

Proof. Let 1 Bry® be the characteristic function of Bg,(0) and S,(x):=
{yeR?||x — y| =t}. Obviously

[ hO)dS,

|x—y|=t

< "h”ool II 1BR0(0)(J’)dSy
x—y|=t

= [lhl Vol (S:(x) N Bg,(0))

< |lh || min {vol, S,(x), vol, Sg,(0) }

=4r| h|,min{t* RE}. O
We are now going to estimate the fields of a solution under the condition that the
momenta remain bounded and the volume of the support of f(t,x,-) decays. In

the proof of Theorem 3 the perturbed solution will satisfy these conditions on
some interval by (FS) and its consequences.

Lemma 5.9. For all constants Cy,C, > 0 there exists a constant C* > 0 having the
following property: If a solution (f, K ;) on an interval [0, b[ with initial data (f, K ;)e2
satisfies

(@) sup {|v||(x, v)esupp f()} < C;, te[0,b[,
(ii) vol(supp f(t,x,")) S C,(1+1)73, xelR3, te[0,b[,
then

K t,x)| SC*(1+Ro+t+|x])""A+Ro+t—|x])7*
for te[0,b[ and xeR3 with |x| < Ry +t.
Proof. We use the integral representation
Eq=E;p+Err+E;s

from Lemma 3.3 and estimate these terms under the assumptions (i) and (ii). The
estimates for B, are completely analogous.
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Estimate for E; ,: Consider t >0 and xeR? with |x| < R, +t. We have

1 o o
E; p(t, x)=ﬁ | curl B,(y)dS, + =tEf(y)dS,,

Ix=yl=t 4mt? lx-J;’l

1 .
+ W Ix—£|=t afo(y) (y - x)dSy

1 w+0

£, x)dvds,

A

tx=Yy=t|v|2U, 1 + @D
=l +1,+13+1,.
Since (f, K 1)€D, Lemma 5.7 applies to the terms I,,I,,1; and gives

I, £Ko(1+Ro+1t+|x)" A+ Ro+t—|x])77,
L S Kot 7 '1+Ro+t—|x|) 71,
;] Kol +Ry+t+|x|)"*(1+Ry+t—]x|)~ L.

On the other hand, |I,| < || E, |l < C, and hence
ILISCA+Roy+t+|x])"'A+Ro+1t—|x|)~ "
By applying Lemma 5.8 to the term I, we obtain

- 4 g
Ll < 4n(t = 0o) ™' S U3 /1ot~ min (RE, 2} S C(L+9) 7"

Since f(y,") =0 for |x| <t —R, and |x — y| =t, and
A+Ro+t+|x|)"'A+Ry+t—|x|)"'=C1 +1)~!
for t — Ry =|x|<t+R,, we get
[, SCA+Ro+t+(x))"'A+Ro+t—|x])"Y, x|SR+t

Thus, for t =20 and xelR?® with |x| < R, +t we have

|E;p(t,x)| SC1+Ro+t+I|x])" (1 +Ro+1t—|x|)"% 5.1
Estimate for E; r: For (f, Iff)e@ with d, <&, <1 and te[0, T(f, K,)[ we have
I Olo=17l0=<lglle+1. (5:2)
Define
1, 1§R0+T
1 4):= {0, A>Ro+7

For te[0,b[ and xeR3 with |x| < R, + ¢ the assumptions (i) and (ii) together with
(5.2) imply

d
IEf,T(t,X)IéI [ lkT(w,v)lf(t—|x~yI,y,v)dv-le

x=y|st [o]=C; |x—y
<C [ (+i—lx—y) gl —lx =yl ) -2
T xylse T x =y
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since f(t1,y,") =0 for |y| > Ry + t. Now |y| < R, +t — |x — y| entails
(I+t—[x—y) P SCA+Ro+t—[x—y[+[y])~>

and hence

_ d
IE;z(601SC [ (1+Ro+t—|x—yl+]y) > —2.
|x=y| st |x—yl

Applying [6], Lemma 7 and defining r:=|x| yields
t r+t—t ld/l d‘L’

&y

rop—t+q(1+Ry+1t+A)>3t—1

[E; r(t,x)| <

Case I: r=23(1+ Ry +1)
We have

rHt-e AdA dt

j‘ r+t—t dl dt
lr~t+1| (1 +R0 +7 +j‘)3 I—1

|r—‘[+r| (1 + RO +1 +}.)2 t‘—T.

[ L

=

Oty =

Since
r+t—t—|r—t+7|=2(t—1),
we may estimate

r+t—t dl d‘C

j | dt
0 |r—t+1| (1+R0+T+).)2t—‘f

1+ Ro+t+[r—t+1[)?

lIA

t
2]

0
@-r t

)+
=2 [ (14+Ro+t+|r—t+t)7%dt+2 [ (1+Ro+t+[r—t+1|) %t
0

€-ns
S2t—r,.(1+Ro+t—1"2—(A+Ro+r—t+29)7 .,
S30+Ry+t—r"r*<H(1+Ry+t+1) A +Ry+t—r)" 1.
Case 2:r<3(1+ Ry +1)
Since
M=) ' S@+r—1t—1) ' L2t—1)(t—1)"1=2

for0<t<t—rand AZt+r—r1, we get

i ”j.‘f AdA dt
dir-t+ 1+ Ro+T+A)>t—1
_(t—r)+ r+t—c AdA dt + j, ’+j_' AdA dt
0 t-r—c(I+Ro+7+ D t—7 (S, r-iec(l+Ro+1+ A t—1
(t—r)+ r+t—z rvi—zt
<2 t-r)+ r+t didz oot dA dt

4
0 t—r—r(1+R0+T+/1)3 (t—j;)+ r-'!.+t(1+R0+T+l)2 t—1

t—n+ t
L2 | 2r(1+Ro+t+t—r—1)"%d1+2 | (1+Ro+t+r—t+1)" %1
0

t—r+

S6r(l+Ry+t—r)"2Z18r(1+Ro+t+r) 1+ Ry+t—r)" L
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Thus
|E; 7(t,x)| S C(1+ Ry +t + Ix)"'1+ Ry +t—|x|)"! (5.3)
for te[0,b[ and xeR? with |x| < R, + 1.

Estimate for E, s: For te[0,b[ and xeR® with |x| < R, + ¢ the assumptions (i)
and (ii) together with (5.2) imply the following estimate:

|Ey,s(t,x)| = | ) [ ks, )(fLy)(E—|x = yl, y,0)ldv

x=y|stlslSC [x —yl

xt—1x—yl,Iyl) dy

= le(t—Ix—yl,y)le__y|

T sl =[x —y))?

At —1x—yhly) dy
<C K (t—|x—y], . (54
=C TR Fi—Tx =yl 4y A=y G4)

Conclusion. Combining the estimates (5.1), (5.3), and (5.4) and the corresponding
estimates for B, yields

K (t,x)| SCA+Ro+t+|x]) "1+ Ro+t—|x|)7!
xt—1x—=yllyl) dy
|K(t—|x—y|,p)|——
eI T R 1 —Tx—yl 4 [y ot = =YD

for te[0,b[ and xeR* with |x| <R, +t, and applying [5], Lemma 11 to this
estimate completes the proof. [

+C

Estimates for the Derivatives of the Fields. We are now going to estimate the
derivatives of the fields of a solution under the condition that the momenta remain
bounded, the volume of the support of f(t, x,-) decays, and the derivative of f(¢)
with respect to x remains bounded. Again, in the proof of Theorem 3 the perturbed
solution will satisfy these conditions on some interval by (FS) and its conse-
quences.

Lemma 5.10. For all constants C,,C,,C3 >0 there is a constant C** >0 having
the following property: If (f,K;) is a solution with initial data (f,K;)eZ on an
interval [0, b[ satisfying

(@) sup {|v||(x,v)esupp f()} =C,, te[0,b[,

(i) vol(supp f(t,x,")) S C,(1 +1)73, xeR3, te[0,b[,
(iii) 0./l =Cs, te[0,b[,
then

[0.K;(t,x)| S C**(1+ Ro +t + |x])"'(1 + Ry + ¢t —|x])~7*
for te[0,b[ and xeR3 with |x| < R, +1t.

Proof. We use the integral representation from Lemma 3.4 and estimate the
different terms under the assumptions (i), (i), and (iii). We restrict ourselves to the
term 0,E, the estimates for 0, B, being similar.
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Estimate for E; pp: By Lemma 3.4 we have

1 1
E; pp(t,x)= Tt s £| (3xkcurle(y)dS +4 . j 6xkE,(y)dS
o (00, E;()(y — %)dS
4mt2|x Y| = e sy =x
1 w+D

ot To g Ou] O, )dvdS,
Lix=Yl=t|o|2Uo 1 + @D xkf(y v)dv

1 (o + 9)
+35 j 2 1
% 1x=y =10 200 (1 + 0})(1 + 00

1 Wy o+70
- ~0 L)(y,v)dvdS,
t|x-—£[=t|v[£U01 +wd <1 +w >(f 7)., o)y

o f (y,v)dvdS,

=:Il +12+13+I4+I5+16

Consider te[0,b[ and xeR? with | x| < R, + t. Since (f, K 1)€Z, Lemma 5.7 applies
to the terms I,,1,,1; and gives

1] S Ko(L+Ro+t+[x])"'(1+Ro+t—[x])?
LIS Kot ™' (1+Ro+t+|x)7 1+ Ro+1t—|x])71,
3] S Ko(1 +Ro+ 1+ |x])7'(1 + Ro +t —|x]) 7%
together with |I,| < || a,j, |l = C this implies
IL|SC(1+Ry+t+|x)" 1+ Ro+t—|x])"2%
Applying Lemma 5.8 to the terms I,,I5,I; we obtain
[I,|£Ct 'min{1,*} < C(1+1)7 1,
[Is|<Ct ?min{1,*} S C(1 +1)7 2,
[Ig|£Ct *min {1,*} <C(1 + 1)~ !
Since f(y,")=0 for |x| <t — R, and |x — y| =t, and
(L+Ro+t+|x) M1+ Ro+t—|x)722C(1 +1)*
for t — Ry, <|x| <t + R,, we have
|E; pp(t,X)| SC(1+ Ro+t+|x])" (1 + Ry +t —|x[) 2 (5.5
for te[0,b[ and xelR3 with |[x| < R, + 1.
Extimate for E; g: For te[0,b[ and xelR3? with |x| < R, + t the assumptions (i)
and (ii) together with (5.2) imply
1 w+D
]Ef’R(t’X)l = UI£C1 1402 lof=1 1+ co-ﬁ)3
SCA+97 | fOl.=CA+0)73

@, dS,, f(t,x,v)dv
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and thus,
|E;g(t,x)| SC(1+ Ro+t+|x])7'(1+Ro+1t—|x[)7% (5.6)
Estimate for E, rs: Lemma 5.9 together with the assumptions (i) and (ii) implies
d
Eras@x)IS [ [ lkrslo,o)(fLE~1x = yl,y o)ldo—"—
lx=ylt]v] 5S¢, Ix—yl

SC | (I+t—|x—=y)xt—1x—ylIyD

lx=yl=t

dy
lx—y*

(L+Ro+t—|x—yl+[y)7*
By the definition of y we only have to integrate with respect to |y| S Ry +t — |x — y|
and since for these y the estimate
A+t—]x—y)P<CA+Re+t—[x—yl+Iy)7°

holds, we obtain

_ d
E; st X)) SC [ (1+Ro+t—|x—y|+|y)) 4 —2—.
|x=y| st |x —y|

Now [6], Lemma 7 implies

CtLr+t=s AdA dt

E, st x)| <=
By, zs( x)l“r£|,_£+t|(1+R0+t+A)4t—t

c Adi dr
<—(14Ry+t—nr""1 .
L Rk 0 Y ey ey

The remaining integrals has been estimated by
Cr(l+Ry+t+r) (1 +Ry+t—r1)"1
when we treated the term E; ;. Altogether this yields
|E; 1s(t, )| S C(1 + Ry + t +|x]) "1 + Ry + ¢ — |x]) ™2 (5.7
for te[0,b[ and xeR3 with |x| < R, +t.
Estimate for E, rr: First we consider te[2,b[ and split E, 1 into two parts,

E; rr(t,x) =1, + 1,

where
Li= § [ ker@o)f@—Ix—yly,o)do—2
= w,v —|X—=YL),0 T .3
Y sz Yby lx—yl*
I,:= kyr(w,0) f(t —|x—y|, y,v)dv .
2 lélx[y|§t|v|£C1 rr(@,v) f(t —| 1, ,0) PR
The term I, is estimated as above, using (i), (i), and [6], Lemma 7; that is,
dy

ILISC | (I+e—=lx=yD) 3 —Ix—ylIy)

1=5|x—y| st |x—y|3
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A

d
(14 Ry 1= lx =yl +1y) 2

1=2|x~y| st —yP?
ri-e AdA dt

= '!+z|(1+Ro+t+l)3(t—r)2

rt-c AdA, dr

0 |- !+t|(1+Ro+t+l)3 (t—1)?

+£‘ Lor+t-z AdA dt

r iz -1+ (L+ Ro+ 7+ 43 (£ —1)2

=1121 +122.

IIA

b‘:) O'.—,I

Cc

e
r

_¢
r

Now
C 4 t/2 r+t—t
Li=—=[ [ (A+Ro+t+A) 2dAde
T L0 |r=t+1|
SCt™ Y1+ Ry +t+x) A+ Ry +t—|x|)7 !
SCA+Ry+t+|x]) M1 +Ro+t—|x|)"?
since t 2 2. Furthermore,
Ct— rt+t—t d‘t

I,, < 1+R 3 —_—
22 = ’ j ( + 0+T) e !+tlldl(t—1)2

— f (1+Ro+7) 321t —17)——
r 42

( )

<C(1+Ry+1t/2)~ 3tjlit—

2 t—7T

=C(1+Ro+1/2)"%Int/2

SC(1+Ry+1/2)" 114

SCA+Ro+t+|x)"'(1 +Ro+1t—|x])~ "4
Combining the estimates for I,, and I,, implies

I, SC(1+Ro+t+]x)" 11+ Ry +1t—|x])~7*

for te[2,b[ and xeR? with |x| £ R, +t. Since

j kTT(w, U)d‘sw = 09

loj=1
the term I, may be estimated as follows:

'f(t_lx_J’l,y,U)_f(t—|x_.V|,x,U)|d dy
Ix-yl=1]0]5C [x—yl |x—yl?

|=C

Now the assumptions (ii) and (iii) yield

f(t—|X—Y|,y,')—f(t—|X—J’|,x,‘)
|x =yl

vol<supp >§2C2(1+t—|x—y|)'3
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and

fE=lx=dbp) = JE=Ix=ybx0l o i 1x i<,

lx—yl
which for ¢ = 2 implies
4 dy _ dy
ILl=C A+t—lx—yh~? sCt™?
' !x—glél ) lx—yl? Ix-yls1lx—y[?

SC(1+Ry+t+|x]) M1+ Ry+t—|x|)"%
For te[0,min {2,b}[ we get

dy
E t,x)|<C 1+t—|x—y|)"3
‘f,TT( ] Ix—";’lét( | vl |x——y|2
<c Y <,
lx-yls2]x — Y|

and conclude that for te[0,b[ and xeR?> with |x| < R, + ¢ the following estimate
holds:

|Ef 77t )| SC(1+ Ro+t+|x|)" (1 + Ry +t —|x])~ 7% (5.8)

Estimate of E s5: The assumption (i) yields

Epssit,x)= [ [ kss(@,0)S(fLs)(t—|x—yl,y,v)dv

[x=Y|stlo|SC [x—yl
Now Sf = —L,0,f entails
S(fLy)=(Sf)L;+ fSL;= —div,(fL;)L, + fSL,,
and we therefore split E; 55 into two terms obtaining

E;ss(t,x) =1, + 1,

where

Lim= [ kw0 @n( L6 x - yhyoldo 2

b
Ix=ylst]v]=Cy ¥l

Li= [ | kss(@0)(fSL)(t—|x~yl,y,v)dv

Ix=yl<tlvlSCy |x—y|

To treat the term I, integrate by parts with respect to v and by (i), (i), Lemma 5.9,
and [6], Lemma 7 obtain

d
|I1| = j ,f Iav(kSS(w’ U)Lf)(fo)(t - |x - J’|, Ys U)|dv 4
lx—ylst|v|=Cy 'x_ I
x(t=1x —yL,1y]) )
=C o L A+ Ry +t—x— yl+1yl) 2
|x—£l§t(1+t—|x—y|)3( 0 yi+1yh

dy

‘I+Ro+t—|x—yl—|y)~2
[x =yl
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x(t—1x—yl 1yl _, dy
=C A+Ry+t—|x—y|—|y])2
gL Rot—Tn—yl 4yl F Ro X =y =D
_C j rHtoe 1(t, A)AdAdz
T r -+ (1+ Ro+ 7+ A1 + Ry + 7 — A)?

<Ej rtt=e x(t, A)dAdz
Zrop-t+q(1+Ro+ 1+ A*(1+ Ry + 17— A%

Taking 7,4 from the domain of integration satisfying x(t,1) #0 and defining
ti=1+4+ A, 0:=7— 1 we obtain ¢e[t —r,t +r] and oe[ — Ry, ¢t —r]. Thus,

t+rt—r

Ihlé%j | 1+ R+ *1+Ry+0) *dodé

t—r —Ro

t+r

C
§7 [ 14+ Ry +m)~3dé
t—r
C 2r(1 + Ry + 1)
T r(14+Ro+t+r)?*(1+Ro+t—1)?
SCA+Ry+t+|x) M1+ Ry+t—|x])"2

To estimate I, observe that

SL;=0,E;+0,E;6+0 x 0,B; + 0.0 x B,)b

=curl By —4nj, + 0,E;0 — 0 x curl E; + 0,(6 X By)0
to obtain

ILISC [ [ Iflligle—1x=yl,y,v)dv

Ix=yl<t|o] 2C [x—yl

+C [ [ IfN0Kfl(E —|x —yly,v)dv

Ix=yISto]2Cy [x —yl

= 12 1 + 122 .
By (ii) and (5.2) we may estimate

lis@lle = CL+073  te[0,bl,

and continuing as above we obtain

dy
[I,,|£C QI+Ry+t—|x—y|+|y) ¢ ——
21 |x—£|§: 0 lx—yl+1yl) =7l
Ct rtt—t
=—[ [ (I+Ro+7t+A) %Adidc

Fo|r=t+e

r+t—t

t
ggga +Ry+17)7% [ (1+Ry+rt+A) *didr.

lr—t+z|
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Now
rtt-c _ 11+ Ry+t+r)?>—(1+Ry+t—7)
1+R N3dALz 0 0
|r—'!'+r|( T RotT ) -2 (1+Ro+t+r)2(1+Ro+t—r)2
_  21+Ro+)r
T(1+Ro+t+r*(1+Ry+t—1)
S2r(l+ Ry +t+|x])"* A+ Ry +t—x]) 73
yields

I,;SCA+Ry+t+|x|)"'1+ Ry +1t—|x|)"2%
Estimating I,, we get

x(t—[x—yl,y])

I,,<C
2= sl +Ro+t =[x =yl +1]yl

dy
0K (t—|x—yl, ,
)3I sE—=1x =yl i

|x
and combining all our estimates for E; 55 we have
|Eyss(t,x)| S C(L+ Ro +t+|x)7*(1 + Ro + 1 —[x])™*
X —1x =yl |yDIK (e —|x—yl,y)| dy
lx-yise L+ Ro+t—Ix—yl+Iy])*  [x—yl
for te[0,b[ and xeR? with |x| < R, +¢t.

Conclusion. Combining the estimates (5.5), (5.6), (5.7), (5.8), and (5.9) and the
corresponding estimates for 0, B/ yields

|0 K (t,x)| SC(1+Ro+t+|x)" 1+ Ry +1t—|x|)~"*
xt—Ix—yl,Iy)I0K(t—1x—yl,y) dy
Jx=Y] st (1+Ro+t—|x—y|+yl)? jx —yl

for te[0,b[ and xeR3 with |x| < R, +t, and applying [5], Lemma 11 to this
estimate completes the proof. []

+C

(5.9)

+C

We are now ready to prove Theorem 3.

Proof of Theorem 3. Since B < min {a;,3(¢; + «,)} there exists T; > 0 such that
K1(1+t)‘“1(1+Ro+t—|x|)‘“2g%i(l+R0+t+|x|)‘f’(1+R0+t—|x|)‘”,
K1+t (1 +Ry+t—|x|)" =1 §1’33(1+R0+t+|x|)_"(1+R0+t—lx|)”"1,

(5.10)

for t 2 T, and xeR3 with |x| < R, +t.

Choose &5€]0,¢,] so small that d, < &5 implies 7,(d,) > T, and

CZ(Tl)dzg%(l +Ro+ Ty +[x) 71 + R+ Ty — |x) 771

g’g—z(1+Ro+Tl+|x|)—ﬁ(1+R0+T1—|x|)-ﬂ (5.11)
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for xeR? with |x| £ Ry + T;. Combining the estimates (5.10) and (5.11) and using
Theorem 2 and the decay condition (D) gives

2 _ _
IKf(Tl,x)l égﬂz(l +Ro+ Ty +1x|) ﬂ(l +Ro+ Ty —|x[) s

2
10K (T3, )| S 312(1+ Ro+ Ty +1x) A1 + Ro + Ty = [x))# 7
4 3

for |x| < Ry + T;. Hence

T,(f,K )= sup {te[ Ty, T(f, K;)[I(f, K,) satisfies (FS)
with respect to n, on [Ty,t]} > T,.

We now estimate the volume of the support of f(t,x,-). Observe that for (x,v),
(x,v")esupp f(t) and te[T,, T,(f,K,)[,Lemma 5.5 and Lemma 5.3 yield

[v—v'| Syt — Ty) X (Ty, t,x,0) — X (T, t,x,0')|
S26(Ro+ G Ty)(e—Ty) ™,
and for te[0, T,(f, K,)[ and (x,v),(x,v")esupp f(¢) Lemma 5.3 implies
lv—?'|<2C;.
Hence
diam (supp f(t,x,")) S C(1 +1)~1,

and there exists a constant C, >0 such that for all (f,K 1)€D with d, <e; the
estimate

vol(supp f(t,x,")) S C,(1+1)73, te[0, Ty, KL xelR3
holds. Furthermore, Lemma 5.3 yields
sup {|v]|(x,v)esupp f(t)} = Cy, te[0, T,(f,K)[.
By Lemma 5.6
10Ol = CIf(T)N1,000  tELTy, To(f, Kf)L,
while Theorem 2 implies
1fOll1,0 19O 1,0 +o(Ty)d, = C, te[0, Ty ].

Thus, there exist constants C,, C,, C5 > 0 such that for (f, K 7)ED with d, < &3 and
te[0, To(f, K,)[ the following estimates hold:

sup {|v||(x, v)esupp f(t)} < C, (5.12)
vol(supp f(t,x,')) S C,(1 +1)73, xeR3, (5.13)
10/ ()l = Cs. (5.14)

We may therefore apply Lemma 5.9 and Lemma 5.10 to obtain constants C* >0
and C** > 0 such that for all (f,K )2 with d, < &,, te[0, T,(f,K,)[, and xeR>
with |x| < R, + ¢t we have

|Kot,x)| SC*1+Ro+t+|x]) 1+ Ry +t—|x|)~ % (5.15)
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10,K (5, )| S C**(1 + R+t + |x|) Y1+ R+t —|x])"™.  (5.16)

Since f<3/4<1 there exists T;>T; such that for =T, and xeR® with
|x] < R, + ¢ the following estimates hold:

C*(1+Ro+t+|x)"*(1+ Ro +t —|x|)7*
énz_z(l +Ro+1t+|x)7H L+ Ro+t—|x])7*,
C**(1+ Ro+t+|x]) 11+ Ry +t—|x|)~ 74
g%ﬂ+&+wuwm+m+hwW“\

For &, small enough Theorem 2 ensures that o,(d,) > T} for all (f,K )ED with
d, <e&; and

(o(T3)dy ST+ Ro + Ty +1x)72(1 + Ro+ Ty — [x)# 7

<214 Ry + Ty 4 xl) (1 + Ry + Ty — [x])

for xeR?® with |x| £ Ry + T;. For t £ T; and xeR? with |x| £ R, + ¢ the mono-
tonicity of {, entails

0200y ST2(1+ Ro + £+ [x[)P(1 + Ro + £ = [x])# 7

é%z(l +Ro+t+Ix)7P(1L+Ro+1—[x))77,

so that for T, £t < T; and xeR3 with |x|<R,+t the estimate (5.10) and
Theorem 2 imply

|Ks(t, %) 5m,(1+ Ro +t+ [x)P(1 + Ro +t —[x[)7*
10K p(t; x)| S3n5(1+ Ro +t +[x) (1 + Ro + £ —[x])77 71,

whence by definition T,(f,K,)> T,. For te[Ts, T,(f,K,)[ and xeR?® with
|x| < R, + ¢ the following estimates hold:

K (t,x)| SC*(1+Ro+t+|x)" "1+ Ro+t—]x])7*

<L (14 Ro+t+[x) (L +Ro+1—[x) 7,

|0, K ,(t,x)| S C**(1 + Ry +t +|x]) (1 + Ro+t —|x|)~7*

g"2—2(1 +Ro+t+x)"P(1+ Ry +1t—|x])~# 1.

By definition of T,(f, K ) this implies T,(f,K;) = T(f,K[), and by (5.12) we infer
sup {|v]|(x,v)esupp f(1)} = Cy, 0=t <T(f,K).

Now Lemma 3.1 yields the desired global existence, the desired estimates for the
fields and their derivatives hold by (5.15) and (5.16), and the proof of Theorem 3
is complete. []
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As a corollary we note some additional asymptotic results that we obtained in the
above proof.

Corollary 5.11. There exist constants C, >0, C, >0, and C3> 0 such that for all
initial data (f,K ;)e2 with d, < &3 and t = 0 the following estimates hold:
supp £ (1) = {(x,0)eR®| [x| S Ro + Cy1,|v| £ Cy},
vol (supp f(t, x,)) < C,(1+1)73  xeR?,
" axf(t) ” © é C3'
5.2. Global Estimates for the Deviation of the Perturbed from the Unperturbed
Solution. Global existence of the perturbed solution being established, the question

arises, whether the deviation of (f, K) from (g, K,) can be controlled globally in
time. To treat this problem define

Ihlloi= sup |h(x)l, heC(R®), t=0,

|x|<Ro+t
and
d=|f-dle +sup (1+Ro + |x1)2 K 1(x) — K ()]
+sup (1+Ro+ |x[)310:K ;(x) — 8K ()]
for (f,K ,)e2.

Proposition 5.12. Assume that (g, K ) satisfies (R) and (D). Then there exist constants
C>0 and x>0 such that for all initial data (f, K )eD with d, <e; and t =0 the
corresponding solution (f, K ;) satisfies

1K 4(8) = Ky(0) | o,e = C(1 + 1),
1@ —g(®)l < CA+1)<*2d.

Equation (4.1) suggests that we will need an estimate for the derivative of g with
respect to v in order to prove Proposition 5.12.

Lemma 5.13. Let (g,K,) be a solution satisfying the condition (R) and (D). Then
there is a constant C >0 such that

10,9l =C(A1+1), t20.
Proof. Since
g(t, x,v) = (X (0,1, x,0), V,(0, ¢, x,v))
we have

0,9(t, x,v) = 0,4(X (0,1, x,0), (0,1, x,1))9,X (0, £, X, v)
+ 0,4(X4(0,1,x,0), V4(0, 2, x,1))0,V,(0, £, X, v)

and obtain
[0,9(t, %, 0)| = |G 1l1,00(10,X 40, £, x,0)| + |0, V,(0, 2, x,v) )

for t =0 and (x,v)eIR®.
With arguments similar to the ones used in the proof of Lemma 5.6 we may
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now estimate the derivatives of the characteristics with respect to v. Differentiating
X ,(5,8,%,0) = J (5, X ;(5), V(s))
with respect to v, where

Jo(5,%, 8):= /T= 87 (Ey(5,%) +  x B,(5,x) — 0 E{s, x)6),
estimating as in the proof of 5.5, observing that for (x, v)esupp g(f)and 0 < s <t < ©
Corollary 5.11 implies
1 X,(5,t,%,0)| SRo+ Cys, |V,(s,8,%,0)| £ Cy,
and finally using the assumption (D) we get
1%(s)| = C(1 + )77 (|x(s)] + (¢ — 5)) + (1 + 5)7*(|x(s)| + 1),
where
x(5):= 0,X (s, , x,0) + (t — 5)0,(6(v)).
Since x(t) =x(tf)=0 and a = a; + o, > 1, Lemma 5.4 implies
[x(s)| = C(t —s),
and hence
lang(s, t,x, U)l é C(t - S).
On the other hand, we have
10, V()] < 10K (s, X,())]10,X ()] + | By(5, X ()1 18, 7,(s)]
SCA+5)7 Mt —9)+ C+5)7%0,V,(5)l.
Integrating this inequality, observing |9, V,(t,t, x,v)| = 1, and applying Gronwall’s
lemma yields
10,V,(5:1,3,0) < C(1 +1).
Putting the estimates for the derivatives of the characteristics into the estimate for
0,9 completes the proof. [J

Proof of Proposition 5.12. We use the integral representation from Lemma 3.3 to
estimate the difference of the fields. For t >0 and xeR?® with |x| < R, + ¢ and by
the definition of d we obtain the following estimate for the difference of the data
terms:

d

|Ey,p(t,x) — E; p(t, %) < _[ (1+Ro+,}’|)_3dsy
4nt|x—y|=[

d -
ti2 lx_&:t(l + R, +|yl)~%ds,
d
+ C? lx—£l=t IBR"(O)dsy.
Lemma 5.7 and Lemma 5.8 yield

|E;p(t,x)— E, p(t, x)| S Cd(1 + Ro+t +|x|)" '+ Cdt™' + Cd(1 +1)7*,
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and since

d
— 1+R ~2ds, < Cd,
an? 3, (L Ro+ 1y 7248, <

we get

IE;p(®) — Egp® o S C(L+1)7"d, t20. (5.17)

Corollary 5.11 implies that for ¢t >0 and xeR? the following estimates hold:
|Ey,r(t,X) — Eg r(t, X)| = CI I[S A+t—Ix—y)~3
x—y|st
dy

-Ilf(t—Ix—yl)—g(t—lx—yl)llwpc—_ﬁ

=CJ+97*1f6) - g0l ot (5.19)

and

|E; s(t, x) — E, 5(t, x)|
d
<C | ) (lfl|Kf—Kg|+|Kg|If_gl)(t_lx—ylay’v)dv|x_yy|

Ix=yl=st |v|=Cy

=:Il+12'

First we estimate the term I:
dy

[x—yl|

xE—1x—yllyl)
I,£C =~ |K,— K, |(t—|x—y]|,
1= lx—ylét(l'l’t—lx—yl)sl f gl( | y| y)

<c (;) (1473 K 0) — K, @) | s 7d
< cia + 072N K (1) = Ko1)o .

To estimate I, define
. [1, A<Ry+Cyt
1 A= {0, A>Ry+Cyt

and by Corollary 5.11 and condition (D) obtain that

7t —1x—yL1y))
I,C
2 |x-jyu§:(1 +t—|x—yPrH(1+Ro+t—|x—y|—|y))*
d
NFE=1x—y)— gt —1x — Y]l —2—.
[x—yl

For |y| £ Ry + C,(t —|x — y|) we have
(I+Ro+t—|x—yl—[y) 21 +1-C)t—[x—yl)™*
SCA+t—|x—y|)"%,
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and thus, J
ly— yy=3-« ey — v — Al — I — Y
LEC [ (o t=lx=y) fe=lx—y) =g~ x =Dl 2
=C§(1+T)‘3‘“||f(f)—g(r)llwfdr
< Cj)a +9731 £ () — g(0) | .
Hence for t 20 and |x| <R, +1¢
|Ej 5(t:x) — Ey(t, )| < C I (L + 92 K@) — K@) [ ot
+ cj A+D73 /@ —g@lodr. (519

Combining the estimates (5.17), (5.18), and (5.19) with the corresponding estimates
for B; — B, yields '

1Ky (t) = Ko@)l = CL+1)"1d+ Ci(l +9)7 /() — g(@) | o d7
+C i (14772 K 4(2) = Ky(0) [ 2. (5.20)

Now recall Eq. (4.1):
(f — )t x,0) = (f — §)(X (0,1, x,0), V;(0,, %, )

— i (0,9 (Ly — L,))(s, X (s, L, x,0), V(s, £, x,v) ) ds.

If | X (s, £, x,v)| > Ry + s then 0,g(s, X ;(5), V((s)) = 0, and hence
I(avg(Lf - Lg))(s9 Xf(sa t9 X, U)s Vf(sa t’ X, U))l é “ 6,,g(s) ” 0 ” Kf(s) - Kg(s) ” 0,8
for (x,v)eR®. Eor t =0 this implies

If@&— 9@ o= 1f—dllo+ :f) 10:9(S) llo | K (5) — Kg($)ll o 55, (5.21)

and applying Lemma 5.13 we obtain
1K (&) = KOl < CA+1)"1d + Ci(l +0)73de | f gl
+ ci g (149731 + 0) | K (0) — K,(0) | s dodT
+ cbi(l 4 1) 2K (1) — K (1) | adr
<cd+ C(j:(l 1) 2 K@) = K1) ot
+C i‘ i(l + 972K (0) — K,(0) | odrdo

<Cd+x [(1+1) K1) — K (1) od.
0
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Gronwall’s lemma now yields
t
| Ky(t) — Ky(t)lop,, < Cexp (K fa+ 1)‘1dr)d =C(l+8d, t=0.
0
Putting this estimate into (5.21) we obtain

N t
1f@)—gOle=1f—dlo+ Cg(l +5)(1 + s)*dsd
SCA+10)+t2d, t=0,
and the proof is complete. []

Remark. The above investigation was of course motivated by the desire to obtain
some sort of stability result for solutions satisfying the conditions (R) and (D).
Note that if one could establish an estimate like

10,90l <CA+1), t20
with y < 1, the same proof as above would yield
1K) — K0, <Cd, 120,
which might be interpreted as a stability result for the solution (g, K,).
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