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Abstract. The behaviour of classical solutions of the relativistic Vlasov-Maxwell
system under small perturbations of the initial data is investigated. First it is shown
that the solutions depend continuously on the initial data with respect to various
norms. The main result is on global solutions: A global solution whose electro-
magnetic field decays in a certain way for large times is shown to remain global
under small perturbations of the initial data and to retain the decay behaviour of
the field. Therefore, such global solutions are generic. This result implies the
existence of global solutions for nearly symmetric initial data.

1. Introduction

Consider a collisionless plasma with N different species of particles, where a particle
of species α has rest mass mα and charge ea. Each species is described by a particle
density fa(t,x,v), where ί ^ 0 denotes time, xeΊR3 position, and velR3 momentum.
The particles may move at relativistic speeds and are assumed to interact only by
the electromagnetic forces they create themselves so that the density functions
(fa)a=i = / together with the selfconsistent electromagnetic fields Ef and Bf evolve
according to the relativistic Vlasov-Maxwell system (RVM):

dtfa + K'dxfa + ea(Ef + ϋa x Bf)'dofa = 0, Uα^iV,

dtEf — curl Bf=— 4πjf9 div Ef = 4πpf,

δtBf + curl Ef = 0, div Bf = 0.

Here
N

Pf(t,x):= Σ e<xjfa(t,x9υ)dυ
α = l

and
N

jf(t,x):= Σ ea$ϋafa{t,x,v)dυ
a= 1
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denote the total charge and current densities, and

is the relativistic speed of a particle of species α with momentum v where the speed
of light is assumed to be 1.

We are interested in the corresponding initial value problem; that is, we impose
initial conditions

/, Ef(0) = Ef, Bf(0) = Bf9

where the data have to satisfy the compatibility conditions

di\Ef = 4πβf, divBf = 0.

Throughout this paper solutions are always classical solutions; that is, /, Ef, and
Bf are C1 with respect to all variables and satisfy the equations in the classical sense.

The purpose of this paper is to investigate the behaviour of classical solutions
of RVM under small perturbations of the initial data. First we consider local
solutions, obtaining results on continuous dependence on the initial data in various
norms. Then we consider a class of global solutions exhibiting a certain asymptotic
behaviour of the fields for large times. It is shown that the asymptotic behaviour
of these solutions is stable under small perturbations of the initial data; that is,
the perturbed solution remains global and retains its asymptotic behaviour.
This general result applies to spherically symmetric solutions implying global
existence for nearly symmetric data and extending Schaeffer's results from the
case of the Vlasov-Poisson system to the relativistic Vlasov-Maxwell system,
cf. [14].

Before going into more detail a brief survey of the known results on RVM may
be useful. Glassey and Strauss [6] showed that a local solution is actually global,
if the momenta remain bounded on its interval of existence. By establishing the
required bound on the momenta, Glassey, Schaeffer, and Strauss proved global
existence for small data [8] and for nearly neutral data [5]. For further results on
RVM and related problems see the references.

If Bf = 0 and Maxwell's equations are replaced by Poisson's equation for the
potential of Ef, the resulting system is known as the relativistic Vlasov-Poisson
system RVP; by further replacing va by v one obtains the Vlasov-Poisson system
VP. For results on VP and RVP see the references. Schaeffer [15] proved that
as the speed of light tends to infinity, the corresponding solutions of RVM tend
to solutions of VP.

With some minor modifications the results of the present paper also hold for
VP and RVP, while the proofs are greatly simplified by the fact that Poisson's
equation is elliptic and much easier to analyse than the hyperbolic Maxwell system.

The paper is organized as follows: In the next section we state and briefly
discuss the main results. For easier reference we collect a few known results on
RVM in the third section. In the fourth section local perturbation is investigated,
while the fifth section is devoted to global perturbation.
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2. Main Results

For easier reference, we now state and briefly discuss our main results, postponing
the proofs to later sections. To this end we need some notation. For an interval
/ c= ]R define

C+(I):= {C:/->]0, oo[|C continuous and increasing},

C"(/):= {C:/->[0, oo[|C continuous and decreasing}.

For a solution (f,Ef,Bf) define Kf:= (Ef,Bf). Initial data will be taken from the
following class:

9 = 9(Ro, U0,K0):= {(/9K{)eC*(R6

9tL
N) x C 2 ( R 3 , R 6 ) | / ^ 0,

supp / c BRo(0) x BUo(0), div Ef = 4πβf9 div Bf = 0,

where Ro > 0, Uo > 0, and Ko > 0, and B r(z):= {yeJR3 \\y-z\<r}.

It follows from [6] that for each (f,Kf)e9 there exists a unique, classical
solution (/, Kf) of the corresponding initial value problem on a maximal interval
of existence which we denote by [0, T(f9Kf)\_.

Consider (g,Kg)e@. In order to study the behaviour of the solution (g,Kg)
corresponding to these initial data under perturbation of the data, define

for (f9Kf)e£&. Here and in the following || ||fcf00 denotes the infinity norm of the
derivatives of the argument up to the order k.

Theorem 1. There exist a constant sx > 0, a function σ1 eC~(]0, εx [) with lim σγ(β) =
β-+0

T(g,Kg)9 and afunction C I G C + ( [ 0 , T{g,Kg)[) such that for all initial data (fKf)e@
with dί<s1 the corresponding solution (/, Kf) satisfies

T(fKf)>σ1(d1)

and

II/W-0(0II00 + IIX/W-^WIL
In order to prove the global perturbation result we need continuous dependence
also with respect to the first derivatives in x and v. To this end define

for (f,Kf)e@ and consider the following regularity assumption on the solution
(g,κg):

[The mapping [0,T(g,Kg)lBt\->g{t)eCf(R.6)
CR)

[is well defined and continuous with respect to |H|2,QO.

Theorem 2. Assume that (g, Kg) satisfies condition (R). Then there exist a constant
ε2e]0,ε1], afunction σ2eC~(]0,ε2[) with limσ2(β) = T(g,Kg), and afunction

ζ2eC+([09T(g,Kg)[) such that for all initial data (fKf)e@ with d2<ε2 the
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corresponding solution (/, Kf) satisfies

T(fKf)>σί(dί)^σ2(d2)

and

\\f(t)-g(t)IILOO + \\κf(t)-κg(t)\\U(X)^ζ2(t)d29 tc[0,σ2(d2)l

It follows from [16] that condition (R) is satisfied if the initial data (g,Kg) are
smooth enough. Note that, if the unperturbed solution (g,Kg) is global, the
perturbed solution (/, Kf) exists for arbitrarily long times by the above theorems
whenever dί or d2 are small enough. However, these theorems do not imply that
the perturbed solution is global, too. The perturbation of global solutions is
investigated under the assumption that the field Kg satisfies the following decay
condition:

T(g,Kg) = oo, and there are constants Kx ^ 0 and αx > 1/2, α2 ^ 0
with ax + oc2 > 1 such that

ϊov t ^ 0 and |x | ^ Ro +1.

The following theorem is the main result of the present paper.

Theorem 3. Assume that (g, Kg) satisfies conditions (R) ando (D). Then there exist
constants ε3 > 0 and C > 0 such that for all initial data (fKf)e@ with d2 < ε3 the
corresponding solution (/, Kf) is global and satisfies

for t^Oand \x\^R0 + t.

Note that the perturbed, global solution (f,Kf) obtained in Theorem 3 satisfies
condition (D) with αx = 1 and α2 = 3/4, which may be a stronger estimate than the
initial assumption on the unperturbed solution (g,Kg). Horst [10] suggested the
estimate

^ I I W O I I o o ^ 4 ( 0 , t ^ o

with

](tq(t) + p{t))dt< co

instead of condition (D). While this might be sufficient for global existence of the
perturbed solution, the perturbed solution will in general not exhibit the same sort
of decay, as may be seen by perturbing off the trivial solution g = Kg = 0 with
/ = 0 and observing that a solution of the homogeneous Maxwell system in general
decays only like ί"1 with respect to the infinity norm on KA It is the key idea of
the proof of Theorem 3 that the term (1 + Ro + t — |x |)~α 2 introduces an additional
decay of the fields, but only well inside the light cone; that is, for |x | ^ Ro + Ct
with 0 < C < 1. For these reasons condition (D) seems to be more natural than
Horst's suggestion.
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Having proved Theorem 3 we will also establish a global estimate for the
deviation of (/, Kf) from (#, Kg) at the end of Sect. 5.

Finally, it remains to be seen that there exist nontrivial solutions (g,Kg)
satisfying conditions (R) and (D). As an example consider spherically symmetric
solutions. For (x,υ)eJR.6 with x / 0 define

X' v
r : = | χ | , w:=——, F:=x2v2 — {x v)2 = \x x v\2

\x\

and call g spherically symmetric if

g{x,υ) = §(r,w9F) for xφO.

If all particles have charges of the same sign, the forces are repulsive, the plasma
disperses and the fields decay. In the other case this may be achieved by assuming
that initially all particles move outward fast enough to escape to infinity:

( There is a constant δ > 0 such that w > δ +1

\e \M / F

(E){ f

ml+^ + δ
δr yj r2

. for (x, y)esupp ga with x Φ 0,1 ^ α ^ AT,

where
JV

M'= Σ \ea\^ga(x,v)dvdx.
α = l

Theorem 4. Assume that 0^geC2(JR.6) is spherically symmetric and satisfies
condition (E) if there are particles with charges of different signs. Define

and choose Ro >0,U0> 0, and Ko>0 such that (#, Kg)e@{R0iUo0, Ko). Then there
exist constants ε > 0 and C > 0 such that for all initial data (fKf)e@ with d2<£
the corresponding solution (/, Kf) is global and satisfies

\dxKf(t9x)\ S C(l + Ro + t + | x | ) - 1 ( l + î o + t ~ l^l)~ 7 / 4

/or ί ^ O and \x\^R0 + t.

This result is analogous to the one obtained in [14] for VP and extends the class
of globally solvable initial data for RVM to not necessarily small or nearly neutral
data. In order to prove Theorem 4, conditions (R) and (D) have to be verified.
Since in the spherically symmetric case RVM reduces to RVP, this belongs to the
investigation of RVP rather than RVM. Thus, the proofs are not included here, and
the reader is referred to [10] and [12].

Remark. Besides greater generality our reason for considering N different particle
species lies in the fact that it may well make a difference whether there are particles
with charges of different signs or not when checking condition (D), cf. Theorem 4.
However, in the proofs of the other theorems it only makes the notation
cumbersome to assume more than one particle species, but poses no additional
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difficulties. Thus, from now on we assume N = l9 m1 = eί = l and drop the
subscript in ϋl9fί etc.

3. Preliminary Results on RVM

The following lemma is a reformulation of results due to Glassey and Strauss and
an immediate consequence of [6], Proposition 8.

Lemma 3.1. Given (/, Kf)e@ there exists a unique, classical solution (/, Kf) of RVM

with initial data (fKf) on a maximal interval of existence [0, T(fKf)[. If

sup{M |(x,ι;)esupp/(ί),0^ t < T(fKf)} < oo,

then the solution is global; that is, T(f,Kf) = oo.

Next we recall some well known properties of the characteristics of RVM.

Lemma 3.2. The characteristic system

x = v9

v = Ef(t,x) + ϋxBf(t,x)

has a unique solution (Xf(-9t9x9v), Vf(-9t9x9v)) on the interval [0, T(f,Kf)[ with

Xf(t919 x9 v) = x9 Vf(t919 x9 v) = v9

where £e[0, T{f9Kf)[_ and (x9v)eΈL6. For s,ίe[0, T{f9Kf)\_ the mapping

R63(x, v)\-+(Xf(s9 ί, x9 v)9 Vf(s9 ί, x9 y))eR6

is a measure preserving C1-dijfeomorphίsm. Furthermore,

jsf(s,Xf(s,t,x,v),Vf(s9t,x9v)) = O, s,telO,T(f,Kf)l, (X,V)EΊ^6,

and supp/(ί) c= BRo+t(0) x R 3 is compact for te[0, T{f,Kf)\_.

The following integral representation of the electromagnetic fields, due to Glassey
and Strauss, is a key ingredient in our arguments.

Lemma 3.3. There exist functions

kτ,kseC({ωeΈL3\ \ω\ = 1} x R 3 )

with

\kτ{ω9v)\9\ks{ω,v)\^Cj\+v2, \ω\ = \, ί eR3,

such that for each solution (fKf) with initial data (f9Kf)e<3> the following
representation holds:

Ef = Ef D + EfT + EfS9

where

fAt>xY'=Ί-: ί ouή Bf(y)dSy
T-71C IJC — y j = f
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+ Ί L . ί. (Ef(y) + dxEf(yy{y-χ))dSy

EftT(t,x):= j Skτ(ω9Ό)f{t-\x-y\,y,Ό)dΌ
\\* \

/ i S (ί,x):= f J/cs(ω,ί X / L ^ ί - |x - y|,y, v)dv
\x-y\'

and

y — x
ω:— - -, Lf(t, x, v):= Ef(t, x) + ύ x JS^ί, x).

The representation for Bf is completely analogous with kernels having the same
properties as the ones for Ef.

Proof These formulas are given in [6], Theorem 3 with

1-ϋ2

/cΓ(ω, v):= - ~2 (ω + ϋ\ ks(ω, v): = — dv

For the estimates of the kernels cf. [7], p. 48 f., the explicit form of the data term
which is not given in [6] may be verified by going through the proof. •

We will also need a representation for the derivatives of the fields, which is again
due to Glassey and Strauss, cf. [6], Theorem 4.

Lemma 3.4. There exist functions

kττ,kτs,ksseC({\ω\ = l} x R 3 )

with

\kττ(ω,v)\9\kτs(ω9v)Ukss(ω,v)l\dvkss(ω,v)\^C(l

and

f kττ(ω9v)dSω = 09

|ω| = l

such that for each solution {f,Kf) with initial data (fKf)e<2> and k= 1,2,3, the
following representation holds:

dXk

Ef — Ef,DD + Efττ + Efτs + EfSS + EfR,

where

EftDD(t9x):=dXkEftD(t9x)

1 ωk(ω + ΰ
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Ef,ττ(t>x) = § $kττ(ω,v)f(t-\x-y\,y,v)dv- ^ - j ,
\\* \χ — y\

,τs(t, x):= f j kτs(ω, v)(fLf)(t -\x-y\,y, v)dv-—
\ \ ύ \χ — y

f,ss(t,x)' = f ίksS(ω9Ό)S(fLf)(t -\x- y\9y9v)dΌΓ^—9
\χ-y\^t \χ — y\

Here

:=lim
t ε ~ ) > 0

denotes the Cauchy principal value of the integral and

S:=dt + ύ'dx.

The derivatives ofBf can be represented in a completely analogous way with kernels
having the same properties as the ones for Ef.

Corollary 3.5. For a maximal solution (fKf) o/RVM with initial data from 3) the
mappings

[0,
and

[0, f f

are well defined and continuous with respect to the norm || | | l t 0 0.

4. Local Results

In order to prove Theorem 1, we have to introduce a few definitions and collect
some auxiliary lemmas first. Throughout this section assume that (fKf)e@ with
d1<ί. Any constant or function CeC+([0, T(g,Kg)[) may depend on the
unperturbed solution (g, Kg), but not on the perturbed solution (/, Kf\ and may
change from line to line. Define

T0(f Kf):= sup {te[0,min{T(f Kf\ T{g9Kg)}[_\

\\Kf(s)-Kβ(s)\\^(\ + s)-2

9se\09t\}

and

£/(ί):= Uo + 1 + } || Kg(s) W^ds, ίe[0, T{g9Kg)l

Note that Lemma 3.5 and the assumption dx < 1 imply T0{f Kf) > 0 and that
UeC+([0,T(g,Kg)[). On the interval [0,To(/,X/)[ we may now estimate the
momenta as follows:

Lemma 4.1. For all initial data (f,Kf)e@ and ίe[0, To(f9Kf)[

sup{M|(x,i;)esupp/(i)} ^ U(t).



Generic Global Solutions of RVM 49

Proof. The proof is immediate, since

supp/(ί) = {(Xf(t,0,x,v% Vf(t909x,v))\(x,Ό)esuppf}

and

ίΓ 2 , tel09To(J9Kf)l D

Using Lemma 3.3 and Lemma 4.1 we obtain an estimate for the difference of the
fields on the interval [0, T0(f,Kf)[:

Lemma 4.2. There exists a function CeC+([0,T(g,Kg)[) such that for all initial
data (f9Kf)e@ with d1 < 1 and £e[0, T0(f9Kf)[ the following estimate holds:

|| Kf(t) - Kg(t) II „ £ Ciήd, + C(ί)t7(ί)4

sup ll/W-ffWIL + Jll^ίτί-X/τίL

Remark. The reason for making the dependence on U explicit in the above estimate
will become apparent in the proof of Theorem 1.

Proof Consider the integral representation for Ef and Eg given in Lemma 3.3.
Obviously

By Lemma 4.1, it suffices to integrate over v with \v\^U(t-\x — y\)^ U(t) in the
formulas for EftT,EftS9EgtT, and EgS. Thus, we may estimate

to obtain

and

Putting

and

ll£/,r ( ί ) -

\kτ(ω,v)\,\ks(ω,v)\

£β,r(ί)IL^C(ί)t/(ί)4

:u{t\x-LtJJJ

-gLg\^\f\\Kf-K,

^ CU(t)

supj\f(τ)-

•L,-βL,\(t-

into the last estimate yields

||EffS(t) - EgJt) | |„ ^ C(t)U(ty( sup^ ||/(τ) - g(τ) \\„ + f || Kf (τ) - Kg(τ) \\^dτ\

Analogous estimates for the difference Bf — Bg complete the proof. •

Proof of Theorem 1. Let (/, Kf)e@ satisfy dx < 1. For 0 ̂  s ̂  t < min {T(/, Kf),
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T{g,Kg)} and (x,t>)εIR6 we have

js{(f - g)(s, Xf(s, ί, x, v), VJs, t, x, v)))

= -(dvg-(Lf -Lg)){s,XJs,t,x,v),VJs,t,x,v)).

Integrating this equation from 0 to t and estimating, we obtain

(/ - g){t, x, v) = (f- g)(Xf(β, t, x, v), VJQ, t, x, v))

- }(dvg (Lf - Lg))is>XΛS' *> x> υ)> V Λ S '

and

||/(ί) - g{t)IL ^ || / - 01|„ + j || dvg(s)||a || Kf{s) - Kg(s)||βds. (4.2)

For ίe[0, T0(f,Kf)[ Lemma 4.2 and the estimate (4.2) imply

|| KJt) - Kg(t) II w =g C{t)U{tf(d, + f II Kf(τ) - Kg(τ) \\ wdτ

Since the functions C and U are increasing, we have for 0 ^ ί ^ ί' < T0(f, Kf),

|| KJt) - Kg{t) II β S C(ί')t/(t')4frfi + ί II KJτ) - Kg(τ)
0

Now apply GronwalΓs lemma, set t' = t, and obtain

| | ^ ( ί ) - ^ ) I I o o ^(1 +t)~2ξ1(t)du te[09To(f9Kf)l9 (4.3)

where ^ G C + ( [ 0 , T(g,Kg)[) is defined by

Obviously ξx is strictly increasing, and lim ξι(t)=oo. If T(g,Kg) = co, this
t-r(0,iί:g)

follows from lim(l + ί)2 = °°> if T(g,Kg)< oo, then Lemma 3.1, applied to the
r-» oo

solution (g,Kg% implies lim U(t) = oo. Define

to obtain

If dί<ε1 then σ1(rf1)>0, and on the interval \0,τcάn{σι(dι\To(f,Kf)}{^ the
estimate (4.3) implies

| |X /(ί)-^(ί)lloo<i(l + 0" 2 . (4.4)

Assume that T(f9Kf) ^ σ^dj. This entails

T0(f,Kf) = min {T(g9 Kg\ T(f9Kf)} = Γ(/, Xr),
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so we may apply Lemma 4.1 on the whole interval [0, T(f,Kf)[, obtaining

sup{M|(x,i>)esup/(ί)} S U(t)£U(T(f,Kf))<<x>

in contradiction to Lemma 3.1. Thus we have shown that T(fKf)>σί(d1), by
(4.4) this yields T0(f,Kf) > σ^dy), and by (4.3) we finally get

||KJt) - Kg(t)||„ £ (1 + t)-%{t)dl9 ίe[0,σ^)].

Observing (4.2) completes the proof. •

In addition to Theorem 1 the above proof also established the following result:

Corollary 4.3. Assume that (f9Kf)e@ with dί<ε1 and te[09σ1(d1)']. Then

iix/o-^wiioo^α + o-2

and

sup{|i>||(x,ι;)esup/(t)}^E/(ί).

We now turn to the proof of Theorem 2. The following lemma gives an estimate
for the differences of the spatial derivatives of the fields similar to Lemma 4.2.

Lemma 4.4. There exists a function CeC+([0, T(g9Kg)[) such that for all initial
data (f,Kf)e@ with dί <εx and te[09σί(dί)'] the following estimate holds:

\\dxKf(ή-dxKg(t)\\aί^C(ήU(tr(d2+ sup(
\

+ ]\\dxKf(τ)-dxKg(τ)\\O0dτ\
o /

Proof First note that it would be possible, but unnecessarily complicated to use
Lemma 3.4 at this point. Instead, we use Lemma 3.3 and differentiate under the
integral sign. Since the proof is then similar to the proof of Lemma 4.2 we only
treat the difference dxEfS — dxEgS. With

dχEf>s(t,x)= ί I kskω,v)dχ{fL){t-\X-yly,υ)dvjbL_
\χ-y\%t\v\zυ<t) \χ — y\

the corresponding expression for dxEβtS and Lemma 4.1 we obtain the estimate

\dxEfJ]t,x)-dxEβtS(t,x)\

£CU(t) I J \dxU Lf)-dx(gLt)\(t-\x-y\,y,v)dυT^—
\χ-y\st\v\su(t) \χ — y\

for te[0,σί(dί)'] and xeR3. Putting

\dJJLf) - dx(gLg)\ ί \dj - dxg\\Kf\ + \dxg\\Kf - Kt\

+ \f\\δxκf-dxκg\ + \f-g\\dxκg\,

|| KJτ) II „ ^ II Kg(τ) || β + || Kf(τ) - Kg(τ)
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and

II /(τ) - g(τ) || oo + II Kf(τ) - Kg(τ) || ω ^ CiM^, τe[0, σ ^ ) ]

into the estimate for dxEfS — dxEg^ we end up with

\\dxEf<s{t)-dxEβ,s{t)\\*

+ sup || dxf(τ) — dxg(τ) \\ ^ •

The remaining estimates are similar and therefore omitted. •

In order to prove Theorem 2 we need to estimate the derivatives of the
characteristics of / with respect to x and v.

Lemma 4.5. For (/, Kf)e@,0^s^t< T(f Kf\ and (x, u)eR6 the following esti-
mates hold:

\dxXf(s,t,x,v)\ + \dxVf{s9t9x9Ό)\£expΠ(3 + 31| Bf(τ

θ + SIIB^IL + llδ^WIIJdτ).

Proof. Differentiating the characteristic system we obtain

Vf{S\
V1

x (dxBf(s,Xf(s)ydXkXf(s))

l + V}(s) (ί + VJ(s))^

Now some straightforward estimates and GronwalΓs lemma yield the desired result.
D

Proof of Theorem 2. Assume that the unperturbed solution (g, Kg) satisfies the
regularity condition (R) and differentiate equation (4.1) to obtain

dxJJ - g)(t, x, v) = djj - g)(Xf(0, t, x, v), Vf(0, t, x, v)) dXkXf(0, t, x, v)

+ djj - g){Xf(0, t, x, v), Vf(0, t, x, v))-δXk Vf(0, t, x, v)

-\(dx(Lf- Lg)-dXkXf(s,t,x,v)

+ 3XkVf(s, t,x,v) x (B, - Bβ))-dvg{s,Xf(s), Vf(s))ds

-\{Lf-Lβ){dxdυg-dXkXf(s,t,x,υ)

+ d2

vg-dXkVf(s,t,x,v))ds. (4.5)



Generic Global Solutions of RVM 53

Foτte[09T(f9Kf)[deGne

Assuming (f,Kf)e^ with di<ε1 and ίe[0, σi(di)], Theorem 1, Eq. (4.5) and
Lemma 4.4 imply

|| dxKf(t) - dxKg{t) II w ^ C(ί)t/(ί)4(l + P ( ί ) ) ^ 2 + {II dxKf(s) - dxKg(s) || ̂  Y

GronwalΓs lemma now gives the following estimate for te[0,σ1(dί)~]:

|| dxKf(t) - dxKg{t) || „, ̂  C(t)U(t)4(l + P(ί))exp(ίC(ί)C/(ί)4(l + P(t)))d2. (4.6)

Thus, the function P9 which depends on (/, Kf\ has to be estimated independently
of (f,Kf). By Lemma 4.5 and Theorem 1,

P(t) S exp Q (3 + 31| B,(5) ||s + 3 ^ ^ ! + || δ ^ s ) || ̂  + || dxKf(s) - δxX,(S) || Jds)

^ exp (j(C(s) + || ̂ X/5) - dxKg(s) || ω ) ώ ^ ίe[0, σ^dj].

Since d2 < £χ ̂  1,

7\(/,X^- sup {ίe[0, σtfM\ \\ dxKf(s) - dxKg(s) \\„ < 1, 0 ̂  s ^ ή > 0,

and

P(ί) ̂  exp Q (C(s) + l)ώ Y ί e[0, T^/, Xr)],

where CeC+([0,T(g,Kg){_). Define

P(ί):= exp

and

ξ2(t):=

and observe that the function ξ2eC+([0,T(g,Kg)[) is strictly increasing with
lim ξ2(t) = oo. For ίe[0, T1(f,Kf)'] the estimate (4.6) implies

t T ( K )

(4.7)

Now

\, σ2(Pi:=imn{σ1(β)9(ξ2r
1(l/β)}9

L S 2 W .

yields

σ2eC-(]0,ε2[), lim σ2(β) = T(g9Kg).
β-0

Assume that T^f.Kj) < σ2(d2) for d2 < ε2. Then the estimate (4.7) implies

|| dxKf{Tx{f, Kf)) - dJC^tf, Kf)) II „ < ξ2(σ2(d2))d2 = 1,
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contradicting the definition on T^f.Kj). Hence

σ2{d2) ^ TU Kf) ^ σ^dj < T(f Kf).

For ίe[0,σ2(d2)] w e have established the estimate

putting this into (4.5) results in a corresponding estimate for \\dxf(ή — δxflf(Olloo
Since σ2(d2) ^ G\{dι\ all the estimates from Theorem 1 remain valid on the interval
[0, σ2(d2)\ so only the difference dvf(t) — dvg(t) remains to be estimated. To this
end note that on the interval [0, σ2(d2)~\ Lemma 4.5 implies

Q(t):=s\xp{\dvXf(s,t,x,v)\ + \dvVf(s,ί,x,ι;)||0^s^ί, (x,ι;)6R6} ^P(ί).

This completes the proof, since the remaining estimate now follows from an

equation for dVk(f — g)(t9 x, v) analogous to (4.5) and the already established

estimates for \\Kf(ή-Kg(ή\\Uo0 and | | /(t)-0(f) l lco. D

5. Global Results

5.1. Global Existence of the Perturbed Solution. Let us briefly describe the idea of
the proof of Theorem 3. The decay condition (D) implies the existence of a time
Tί > 0 such that for larger times the field Kg(t) and its derivative dxKg(t) are so
small that the solution (g,Kg) behaves almost like a free streaming. Theorem 2
implies that for d2 small enough the perturbed solution (/, Kf) also behaves almost
like a free streaming, at least on some interval /, which starts at Tί. On this interval
the volume of the support of the function f(t, x9 ) decays like t ~3 and the momenta
remain bounded. This implies estimates for the field and its derivative such that
the interval / may be extended to infinity and the proof is complete.

For the rest of this section let (g9 Kg) be a solution satisfying the conditions (R)
and (D). Constants such as C,cί,C1,c2, C2 may depend on (g,Kg\ but not on the
perturbed solution (/, Kf); dependence on (/, Kf) is always explicitly noted.

A first consequence of condition (D) is the following estimate for the momenta
of the perturbed solution.

Lemma 5.1. There is a constant cί>0 such that

sup{\v\\(x,v)es\xppf(t)}Sc1

for all initial data {f,Kf)e9 with d2 < s2 and ίe[0,σ2(d2)].

Proof. Take ίe[0,σ(d2)]. Because of σ2(d2) ^ σ^d^ and Corollary 4.3 we have

Together with condition (D) this implies

\Kf{Ux)\ < K,{\ + ί)"α i(l + Ko + t~ M Γ " 2 + (1 + ty\ \x\ ^R0

Without loss of generality we may assume α2 g 1/2. Now observe that

supp f(ή = {(Xf(t,0,x,Ό), Vf(t,0,x,Ό))\(X,i?)εsupp/}
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and define

for (x, y)esupp /. The characteristic system implies

\Xf(sAx,v)\ = \Vf(sΛx,υ)\^ύ(sl

whence

\Xf(S)\^R0 + SU(s),

and

IV/sAx^l^K^l + 5)"αi(l + Ko + s-\Xf(s)\Γ** + (l + 5)"2

S ^ i ( l + 5)"αi(l + 5(1 - ίί(5))Γα2 + (1 + 5)~2.

Integrating this inequality we obtain

u(ή ^ 1 + Uo + K1 }(1 + sΓα i(l + s(l - ύ(s))ya2ds.

A short computation shows that

= = 2 1 + u 2 '

and hence
ί

u(t) ̂  1 + Uo + 2"2K1 J(l + 5)~α(l + u(s)2Y2ds,
o

where α:= αx + α2. Let z:[O,ί m a x [^R + be the maximal solution of

Obviously, u(t) < z(t) for 0 ̂  ί < min {ίmax, σ2(d2)}. Thus, the lemma is established
if we can show that sup z(s) < oo. The assumption α = a1 + α2 > 1 implies

S2<X2Kί J(l+5)~α^5<00.

On the other hand,

ί z(s) z ( ί ) dz

ί(l+z(s)ψdS = i,(l+22)«'
whence

suPί>oz(ί) ^

Jo (i + z

2 r < Q Q

Because of the assumption oc2tί 1/2 this entails supz(ί)< oo, and the proof is
complete. • ί=°
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For the rest of this section assume that {f,Kf)e@ with d2 < ε2 so that Theorem
2 and Lemma 5.1 apply.

The Free Streaming Condition. Let us make precise what we mean by saying
that a solution (/, Kf) behaves almost like a free streaming. To this end choose
βe\ 1/2, min {αl5α/2,3/4}[, where α = αx + α2.

Definition 5.2. Let (/, Kf) be a classical solution o/RVM, 0 g a < b ^ T(/, Kf) and
η>0. The solution (/, Kf) satisfies condition (FS) with respect to the constant η on
the interval [α,&[, if the estimates

hold for te[a,b[ and xeJR3 with \x\ ^R0 + t.

For η small enough we obtain the following estimates for the support of the function
f(t) on the interval [α,b[:

Lemma 5.3. There is a constant ηχ>0 such that if a solution (f,Kf) satisfies
condition (FS) with respect to a constant η^ηx on an interval [α,fc[c [0, T(/,Kf)[
with a ̂  σ2(d2), then

where 0^.= 2cί and 6X:= Cx(l + Cf)"1 / 2.

Proof. Let ŷ > 0 be arbitrary. For ίE[0, σ2(ί/2)] the claim follows from Lemma 5.1
with cγ instead of C1. For (x,t;)esupp/ define

f:=sup{te[a,bU\Vf(s,09x9v)\^Cl9sel0,t]}.

The assumption a ̂  σ2(rf2) implies t > α, and on the interval [α,ί[ we obtain

Now (FS) implies

\Kf(t,Xf(t))\ ^η(l + R0 + t + \XJt)\)-'{l

and hence

l^ίί,0,x,i7)| g l K ^ O , ^ ! ; ) ! + 1,(1-

Choosing f/i := J c ^ l - C^f(2β - 1) we get | Vf(t9 0, x, ι;)| ^ f cx on the interval [α, ί[,
which by definition of t entails t = b and the proof is complete. •

To further exploit condition (FS) we need the following Gronwall lemma for second
order differential inequalities:
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Lemma 5.4. Assume that c 1 ? c 2 e C ~ ( [ α , oo[) with

00

/:= J (σc^σ) + c2(σ))dσ < oo,
a

c3,c4 ^ 0 and xeC2([α, t]) with x(t) = x(t) = 0 and

\x(s)\ ^ c^s^xis)] + (t - s)c3 + c4) + c2(s)(\x(s)\ + c3)

/or 0 ̂  α ̂  5 ̂  t < oo. TΛen

I x{s) \S((t- s)c3 + c4)/e7, a^s^t.

Proof. Obviously
ί ί t

x(s) = — j x(τ)dτ = J j x(σ)dσdτ,
s s τ

whence

|x(s)|^f|x(τ)|dτ=:z(s).
s

Now some straightforward estimates yield

z(s) ̂  J (σC l(σ) + c2(σ))z(σ)dσ + ((ί - s)c3 + c4) J (σC l(σ) + c2(σ))dσ.
s s

If α ̂  s' ̂  s ̂  ί, then

z{s) ^ f (σcxίσ) + c2(σ))z(σ)dσ + ((ί - s')c3 + c4) J (σC l(σ) + c2(σ))dσ,
s s'

and GronwalΓs lemma completes the proof. •

The next lemma will be used to estimate the diameter and thus the volume of the
support of the function /(ί, x, •)•

Lemma 5.5. There are constants η2^Ύ^^r\\] and c2>0 such that if a solution (/, Kf)
satisfies condition (FS) with respect to the constant η2 on an interval [α, b\_ a
[0, T(fKf)l with a ̂  σ2{d2\ then

I Xf(s9 ί, x, Ό) - Xf(s9 ί, x, v')\^c2{t-s)\v-v'\

for (x,ι;),(x,ι;')GSupp/(ί) and a^s^t<b.

Proof For (x,v\ (x,ι/)esupp/(ί) and a^s^t<b define

x(s): = X r (s, ί, x, p), ί (s): = Vf(s, t, x, ι;)

and x'( ), ύ'(-) analogously. One immediately checks that

x(s) = Jf(s,x(s),v(s)l

where

Jr(5,x,v):= J\-v2{Ef{s,x) + v x ^(s,x) - tf-E^s,x)u).

Define

y ( s ) : = x(s) - x'(s) + ( ί - s)(v - ^ ) , a ^ s ^ t < b
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to obtain y(t) = y(t) = 0 and

\y(s)\ = \x(s)-x'(s)\

= \Jf(s9 x(s)9 ΰ(s)) - Jf(s9 x'(s% ff(s))\

^ sup \dxJf(s9τx(s) + (l -τ)x'(s),v(s))\ l ^ ) - ^ ) !

+ sup I dϋJf(s9 x'(s), τύ(s) + (1 - τ)υ'(s)) 11 ύ(s) - ϋ'(s) \.

A short computation proves

\dXkJf(s9x9ϋ)\Z2\dxKf(s9x)\9 \dύkJf(s9x9ϋ)\£ J—\Kf(s9x)\.

Now take ηe^η^. Since (x,ί;)esupp/(ί), and hence (x(s),ϋ(s))GSupp/(s),
Lemma 5.3 implies

for a ̂  s ^ t < b, and analogous estimates hold for x'(s) and v'(s). Hence

Using condition (FS) we obtain the estimates

sup \dxJf(s,τx{s) + (l-τ)x'(s),v(s))\
Oίtil

^ Cη(ί + s)-β(l +R0 + s-R0- C^y"-1 ^ Cη(l + s)" 2 "" 1 ,

sup I dύJf(s, x'(s), τύ(s) + (1 - τ)6'(s)) |

' C i

Thus, the function y satisfies

\y(s)\ g Cη(ί + sΓ 2 "- 1 \x(s) -x'(s)\ + Cη{\ + s ) " 2 " !^) - v'(s)\

+ Cη(l+s)-2l>(\y(s)\ + \ύ-ύ'\),

and Lemma 5.4 implies

\y(s)\ S\ύ- ύ'\ηleηl{t -s), a^s^t<b,

where

/:= J (Cσ(l + σΓ2^1 + C(l + σ)~2β)dσ < oo.

Choose ^ e P ^ i ] s u c h t n a t ΆτW"1 < 1/2 to obtain
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and hence

\Xf(s,t,x,v)-Xf(s,t9x,v')\^(t-s)\v-v'\.

Since

Lemma 5.3 implies

\v — v'\£ sup \dύv\

for (x,ι;),(x,ι/)esupp/(ί), and

\Xf(s9t9x9υ)-Xf(s,t,x,v')\ ^ c2(t-s)\υ-v'\.

This completes the proof. •

Finally, condition (FS) implies the following estimate for the derivative of / with
respect to x, which we will need to estimate dxKf:

Lemma 5.6. There is a constant c 3 > 0 such that if a solution (/, Kf) satisfies condition
(FS) with respect to the constant η2 on an intervall [α,fc[c= [0, T(fKf)[ with
a ^ o2(d2\ then

Proof. The equation

/(ί, x, υ) = f(a9 Xf(a9 ί, x, v)9 Vf(a, ί, x, υ))9 t ̂  a

implies

dxf{t9 x, v) = dxf(a, Xf(a, ί, x, υ)9 Vf(a, t9 x, v))dxXf(a, ί, x, i?)

+ δy/(α, Xχ(α, ί, x, i?), F}(α, ί, x, υ))dx Vf(a9 ί, x, υ)9

and hence

for ίe[α, T(f Kf)[ and (x, I;)G!R6. NOW proceed similarly to the proof of Lemma 5.5
to estimate the derivatives of the characteristics with respect to x. Since

Xf(s9t9x9Ό) = Jf(s9Xf(s)9Vf(s))9

we have

dXkXf(s) = dxJf(s,Xf(s\ Vf(s))dXkXf(s) + dtJf(s9Xf(s\ Vf(s))dXkXf(s).

From the proof of Lemma 5.5 we recall the estimates

\dxJf(s9x9ύ)\£C\dxKf(s9x)\9 \dΰJf(s9x9ϋ)\£-j==\Kf(s9x)\.

For (x, υ)e supp f(t) and 0 ̂  5 ̂  ί < fo Lemma 5.3 implies

\Xf(s,UX9Ό)\ ^RO + ClS, I Vf(s9t9x9Ό)\ S Cx.
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Define

x(s):= dxXf(s, £, x9 v) - idR3

to obtain

\x(s)\ ^ C(ί + syv-WxW + 1) + C(l + sΓ2/Ί*(s)|

and x(t) = x(ή = 0. Thus, for a ^ 5 ̂  t < b and (x, t;)εsupp f(t) Lemma 5.4 implies
\x(s)\ ^ C, and hence

\dxXf(s9t,x9υ)\^C+l.

To estimate 3X Vf observe that

dXkVf(s) = d EfaXfWd^Xsis) + δ^K/s) x B/fe

and thus,

Integrating this estimate and applying GronwalΓs lemma gives the desired estimate
for dxVf(s,t,x,v) and completes the proof. •

Estimates of the Fields. In order to estimate the data terms in Lemma 3.3 and
Lemma 3.4 we need the following two technical lemmas:

Lemma 5.7. Assume that /ΪGC(R 3 ) and /ce{2,3,4} with

Then

J
\x-y\=t

< 4 K J ^ + K o + ί M Γ S incase fc =
0

for ί ̂  0 and XGR 3 with \x\ ̂ R0 + t.

Proof Obviously

-y\=t ' \χ-'y\=t

— V t2 f

It is easily seen that

u(x):= J (1 H- i^0 H-1>

depends on r:= \x\ only. With abuse of notation we have

u(x) = u(r):= J
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where e:= (0,0,1), and for r ^ Ro + t this implies

Ro 2rtcosθΓksinθdθdφ

1 d/ί

using the substitution λ = yjr2 H- ί2 + 2rί cos 0. Straightforward calculations now
complete the proof. •

Lemma 5.8. Assume that /ιeCc(R3) with supp/i c BΛo(0).

for XGR 3 andt^O.

Proof. Let 1B (0) be the characteristic function of

{yelR.3\\x-y\ = t}. Obviously
and St(x):=

ί •=• II * II oo (y)dsyί
\χ-y\=t

^ || h || oo min {vol2 St(x), vol2 5

= 4π||fc||αomin{ί2,Λ§}. D

We are now going to estimate the fields of a solution under the condition that the
momenta remain bounded and the volume of the support of /(£, x, •) decays. In
the proof of Theorem 3 the perturbed solution will satisfy these conditions on
some interval by (FS) and its consequences.

Lemma 5.9. For all constants Cu C2 > 0 there exists a constant C* > 0 having the
following property: If a solution (/, Kf) on an interval [0, £>[ with initial data (/, Kf)s2ι
satisfies

(i)

then

sup{M |(x,i;)esupp/(ί)} g Cl9 ίe[0,6[,

vol(supp/(ί,x, ) )^C 2 ( l + ί)" 3 ,

for ίe[0,fc[ and XGR 3 wiίΛ |x| ^ i^0 + ί.

Proof We use the integral representation

from Lemma 3.3 and estimate these terms under the assumptions (i) and (ii). The
estimates for Bf are completely analogous.
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Estimate for Ef D: Consider t ̂  0 and xeR 3 with \x\^R0 + t. We have

i ^ J Ef(y)dSy
-̂Tcr \x-y\=t

-7 ί ί
t \x-y\=t \v\kuo 1

Since (},Kf)e2, Lemma 5.7 applies to the terms lx,l2,li and gives

On the other hand, |/2 | ^ HEJI^ g C, and hence

l/al^Cα + lϊo + ί + lxlΓHH-Λ
By applying Lemma 5.8 to the term /4 we obtain

U Γ 1 t

Since f(y,•) = 0 for |x| < ί - Ro and \x-y\ = t, and

(l + Ko + ί + lxD-Hi + ̂ o + t - I ^ D '

for t-R0^\x\St + Ro, we get

| / 4 | ^ C ( l + K 0 + ί + |x|Γ1(l + .R0 + ί- |x |

Thus, for ί ̂  0 and xeR3 with |x| ̂  Ro + ί we have

(5.1)

Estimate for EfT: For (/, Kf)e9 with d2 < ε2 < 1 and ίe[0, T{f,Kf)\_ we have

H/(ί)IL = ll/lL^yiL + i (5-2)

Define

ίl, λ^

For te[0,fc[ and xeR 3 with |x| ^ Ro + t the assumptions (i) and (ii) together with
(5.2) imply

|£ / > Γ ( ί ,χ) |^ I J l k τ ^ y
\

\—3Λ./-t i-. ..I i . . i \ yt-\x-y\)-3χ(t-\x-y\,\y\)
\x-y\2'



Generic Global Solutions of RVM 63

since f(τ,y, •) = 0 for \y\ > Ro + τ. Now |y| g Ro +1 — \x — y\ entails

and hence

α dVI Ϊ7 (+ vΛI <" Γ* \ /I I D _ι_ t I v u l _L I -i»l\~ 3 J
\&f,TKhX)\ = C J I 1 + ^ 0 + ί — |X —JΊ + \y\) ] [2\X —

Applying [6], Lemma 7 and defining r:= \x\ yields

C t r+t~τ Xdλ dτ
| £ ( ί ) l j L

1: r

We have

δ , r J ί + τ | (1 + i^0 + τ + A)3 ί ^ τ = 6 |Γ J ί + τ , (1 + Ro + τ 4- ̂ )2 i^

Since

r + ί - τ - |r - 1 + τ| ^ 2(ί - τ),

we may estimate

j r+trτ dλ dτ jj, r dλ dτ <

J | r _ j + t | (1 + jR0 + τ + A)2 ί ^ T =

j (1 + Ro + τ + \r-
(ί-r) +

2:

Since

for 0 ̂  τ ̂  ί - r and λ ^ t + r - τ, we get

j. '• + p t UU dτ

^(t-r)+r+t-τ χdλ dτ j. r + ί " τ λdλ dτ

J ,_)_,(1 + Ro + τ + λf ~t^~τ +

 (ί-l)+ r _ ! + t ( l + Λ 0 + τ + A) 3 ί^7

< 2 ( 7 ) + P dλdτ f
= 1 t _!_ τ (1 + Ro + τ + λ)3 +

 ( ίJ r

(1 + Ro + τ + λ)3 +

 ( ίJ r ) + r_j+τ(1 + Ro + τ + λ)2 t^τ

2 } (1 +f l 0 + τ + r - ί}
(ί-r) +
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Thus

for ίe[0,2?[ and xeΊR3 with |χ| ^ Ro + t.

Estimate for EfS: For ίe[0,fo[ and X G R 3 with |x| ^ ,R0 + ί the assumptions (i)
and (ii) together with (5.2) imply the following estimate:

\EftS(t9x)\£ J f \ks(ω,v)(fLf)(t-\x-yly,v)\dv-^--

Conclusion. Combining the estimates (5.1), (5.3), and (5.4) and the corresponding
estimates for Bf yields

x(t-\χ-y\,\y\)

for ίe[0,b[ and X G R 3 with I x l ^ ^ + ί, and applying [5], Lemma 11 to this
estimate completes the proof. •

Estimates for the Derivatives of the Fields. We are now going to estimate the
derivatives of the fields of a solution under the condition that the momenta remain
bounded, the volume of the support of/(i,x,-) decays, and the derivative of f(ή
with respect to x remains bounded. Again, in the proof of Theorem 3 the perturbed
solution will satisfy these conditions on some interval by (FS) and its conse-
quences.

Lemma 5.10. For all constants Cί9 C2, C3 > 0 there is a constant C** > 0 having
the following property: If(f,Kf) is a solution with initial data (}9Kf)e2 on an
interval [0, fe[ satisfying

(i) s u p l M K x ^ e s u p p / W } ^ , ίe[0,6[,

(ii) vol(supp/(ί,x, ) ) ^ C 2 ( l + ί)" 3 , *eR 3 , ίe[0,6[,

(in) Hδ,/(ί)llco^C3, ίe[0,&[,

then

\dxKf(t,x)\ g C**(l + Ro + t + |JC|)- 1 (1 + Ro + t - |x |)" 7/ 4

for ίe[0,6[ and X G R 3 with \x\ g Ro + t.

Proof. We use the integral representation from Lemma 3.4 and estimate the
different terms under the assumptions (i), (ii), and (iii). We restrict ourselves to the
term dxEf the estimates for dxBf being similar.
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Estimate for EfJ)D\ By Lemma 3.4 we have

Ef,DD{t,x) = -^t j

1

J dXkEf(y)dSy

4πt- \x- y\=t

"ίΊχ-il=«Mi
1

J (^AWVϋ;-*)^

-ϊ,.-i,..,.,Lϊ̂ β (ττ^)(fLΛ(y,v)dυdS,

Consider ίε[0, b[ and x e R 3 with |x| ^ Ko + t. Since (/, Kf)e2>, Lemma 5.7 applies
to the terms J ^ / j , ^ and gives

^ C this impliestogether with \I2\ ^

Applying Lemma 5.8 to the terms I4,IS,I6 we obtain

| / 5 | ^ C r 2min {1, t2} ^ C(l + t ) " 2 ,

Since /(><,•) = 0 for \x\ < t — Ro and \x — y\ = t, and

for ί — i? 0 ^ | x | ίΞ ί + Ro>
 w e n a v e

|£/>ί)D(ί,x)| ^ C(l + Ro + t + \x\r\l + Ro + t- \x\T2 (5.5)

for ίe[0,b[ and x e R 3 with |x| ^ Ro + t.

Extimatefor EfR: For te[0,b[ and x ε R 3 with |x| ^ Ro + t the assumptions (i)
and (ii) together with (5.2) imply

ftR(t,x)\£ J
1

| =

ω + v

(1+ω ύ. 1 ^ 3
ωkdSωf(t,x,v)dv

\ - 3
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and thus,

\EftR(t,x)\^C(l + R0 + t + \x\y\l+R0 + t-\x\Γ2. (5.6)

Estimate for EfTS: Lemma 5.9 together with the assumptions (i) and (ii) implies

\Ef,τs(t,x)\S J f ikrsiω^ifLfXt-lx-yly^dv-^-ϊ
\x-y\Zt\v\ZC! \X — y\

sc j (i + t-\x-y\y*χ(t-\χ-yl\y\)

By the definition of χ we only have to integrate with respect to \y\ ̂  Ro +1 — \x — y\
and since for these y the estimate

holds, we obtain

_ι _ I I n - 4 dy

Now [6], Lemma 7 implies

dτ

C . _ 1 ! r + ! ~τ λdλ dx

The remaining integrals has been estimated by

when we treated the term EfΎ. Altogether this yields

\Ef9TS(t9x)\ S C(l + Ro + t + IxlΓHl + ̂ o + ί - l^l)" 2 (

for te[O,b[ and xelR3 with |x| ̂ R0 + t.

Estimate for EfTT: First we consider ίe[2,b[ and split Efττ into two parts,

Ef,ττ(t>x) = h + 2̂»

where
dy

( ω p ) / ( t | x y l y ^ "/i:=,,-,*,sι,.,L
/ 2 : = j J fcΓr(ω,i>)/(t-|x-y|,3>,g)dp _ 3

The term I2 is estimated as above, using (i), (ii), and [6], Lemma 7; that is,

/ill

I x I — J
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£C ί (l+R0 + t-\x-y\ + \y\r3-^^

λdλ dτ

Adi dτ

Now

/ 2 1 ^ — j - f j
f t o |r-r + τ|

since ί ̂  2. Furthermore,

j

Combining the estimates for I21 and / 2 2 implies

l / . l g c α + Λo + t + ixD-Hi + Λo + ί

for te[2,fc[ and xelR3 with \x\^R0 + t. Since

J fcΓΓ(ω, v)dSω = 0,

the term Ix may be estimated as follows:

\Iu = c y i i dv] a-
\χ-y\*i\v\ίcι \χ-y\ \χ-y\

Now the assumptions (ii) and (iii) yield

>-L±U2C2(l + t-\x-y\)- 3



68 G. Rein

and

\f(t-\χ-y\,y,V)-f(t-\X-y\,χ,v)\^u- ,. ,
\x-y\ =»-χsr •-

which for ί ̂  2 implies

dy

For ίe[0,min{2,f>}[ we get

\EfiTT(t,x)\ίC
,-3 dy

and conclude that for ίe[0,fr[ and xeR 3 with \x\ ̂ R^ + t the following estimate
holds:

f + t-\x\yηi\ (5.8)

Estimate of Efss: The assumption (i) yields

Ef,ss& *) = J ί ^s(ω, υ)S(fLf)(t -\x-y\,y, v)dv-^-

Now Sf= —Lf'dvf entails

S(fLf) = (Sf)Lf + fSL, = - divυ <JLf)Lf + fSLf9

and we therefore split EfSS into two terms obtaining

where

| j c - y | ^ ί | r | ^ C i

h'= J ί kss(ω,v)(fSLf)(t - \x - y|,y,v)dv-
\x-y\Zt\υ\ZCi \X-y\

To treat the term /x integrate by parts with respect to v and by (i), (ii), Lemma 5.9,
and [6], Lemma 7 obtain

l/il^ ί ί \dv(kss(ω,υ)Lf)(fLf)(t-\x-y\,y,υ)\dv-^

0 + t-\x-y\-\y\)-2

\x-y\
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-l*-yl + l>Ίr υ ' " " " \χ-y\
χ(τ,λ)λdλdτ

r i k_ J

t + t | (1 + Ro + τ + λ)5(ί + Ro + τ - λf

+ p χ ( τ , λ ) d λ d τ
'

< j p
= r i |,-ί+.| (1 + Ro + τ + A)4(l + Ro + τ - λ

Taking τ,λ from the domain of integration satisfying χ(τ,λ)^0 and defining
ξ:= τ + λ, σ:= τ — λ we obtain ζe[t — r,t + r] and σe[ — Ro, t — r]. Thus,

T t-r

C 2r(l +R0 + t)

To estimate I2 observe that

SLf — d.Ef + d^Erϋ + ύx dtBf + dJϋ x BΛv

= curl Bf — Aπjf + dxEfΰ — ΰx curl £y 4- djύ x

to obtain

+ C J

By (ii) and (5.2) we may estimate

11.7/(0 II oo ^ C(l + 0~3> ίe[0,&[,

and continuing as above we obtain

dy
\hi\SC j < (l+R0 + t-\x-y\ + \y\r6-

= - J ί τ (1 + -Ro + τ + /l)~6/lίiA<iτ
>" 0 | r - t + τ|
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Now

2(1 + R0 + t)r

yields

Estimating J 2 2 we get

ήt-\χ-y\,\y\) ,> v . , , >, dy

and combining all our estimates for EftSS we have

c f x ( t | χ 3 > l , l 3 Ί ) l ^ / ( t l * - . y l , y ) l dy
J (i + /? + ί l ^ y l + lyl)3 | χ 3 Ί

for te[0,b[ and xeR 3 with |x| ^R0 + t.

Conclusion. Combining the estimates (5.5), (5.6), (5.7), (5.8), and (5.9) and the
corresponding estimates for δxBf yields

\dxKf(t,x)\ ίC(l+R0 + t + WΓHl + Ro + t- \x\rΊI4

c f χ(t-\x-y\,\y\)\dxKf(t-\x-y\,y)\ dy

l--iis. ( l + i ? 0 + ί - | x - j ; | + |);|)3 \x-y\

for te[0,b[ and xeR 3 with | x | ^ i ? 0 + ί, and applying [5], Lemma 11 to this
estimate completes the proof. •

We are now ready to prove Theorem 3.

Proof of Theorem 3. Since β < min {cq^αi + oί2)} there exists 7\ > 0 such that

(5.10)

for t ^ 7\ and xeR 3 with |x| ^ Ro + t.

Choose ε3G]0,ε2] so small that d2 < ε3 implies σ2(d2) > Tx and

Ro

(5.11)
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for xeR 3 with |x| ^Ro + 7\. Combining the estimates (5.10) and (5.11) and using
Theorem 2 and the decay condition (D) gives

for | x |^Λ 0 + 7i Hence

Γ 2(/,*,):= sup {ίeCTi, T(/,*,)[!(/,*/) satisfies (FS)
with respect to η2 on [T1 ?ί]} > 7\.

We now estimate the volume of the support of /(ί,x, ). Observe that for (x,v\
(x,i/)esupp/(ί) and ί6[Γ1,T2(/,K/)[,Lemma 5.5 and Lemma 5.3 yield

and for ίe[0, Γ2(/,X/)[ and (x^J^x^'Jesupp/ίί) Lemma 5.3 implies

\Ό-ύ\^2Cv

Hence

and there exists a constant C2 > 0 such that for all (f,Kf)e@ with d2 < ε 3 the
estimate

vol(supp/(ί,x, )) ύ C2(l + ί)" 3 , ίe[0, T2(f,Kf)l

holds. Furthermore, Lemma 5.3 yields

s u p ί M K x ^ e s u p p / W } ^ , telO9T2(f,Kf)l.

By Lemma 5.6

IÎ */(t)II00 ^ C H/ίΓ!)II!,„, te[TuT2(f,Kf)l,

while Theorem 2 implies

H/(t)lli.α,^llff(ί)lli.. + C2(r1)d2gC> t e [ 0 , T j .

Thus, there exist constants C1 ( C2, C3 > 0 such that for (/, Kf)e2> with rf2 < ε3 and
ίe[0, T2(f,Kf)i the following estimates hold:

supflolKjciOesupp/ίt)}^! (5.12)

vol(supp/(t,x, ))SC 2 (l + ()-3, xeR3, (5.13)

g C 3 . (5.14)

We may therefore apply Lemma 5.9 and Lemma 5.10 to obtain constants C* > 0
and C** > 0 such that for all {J,Kf)eβi with d2 < ε3, te[0, T2(f,Kf)[, and xeR.3

with |x| ^ Ro +1 we have

|X/(t,x)| ^ C (l + Ro +1 + \x\Γ\ί + R0 + t- \x\y\ (5.15)
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|d xK/ί,x)|^C**(l + Λo + ί + |x |Γ 1 ( l + .Ro + ί - M Γ 7 / 4 (5.16)

Since β < 3 / 4 < l there exists T3 > Ίx such that for ί ^ T 3 and xelR3 with
\x\ζR0 + t the following estimates hold:

C**(l

For ε3 small enough Theorem 2 ensures that σ2(d2)> T3 for all (f9Kf)e@ with
d2 < ε3 and

Y (T \/1 <L (\ 4-ί? Λ- T -L I vh~^/Ί 4- J? Λ~ T | γ h ~ j ϊ ~ l
< » 2 \ - £ 3 / u 2 ^ o V 1 ' 1 X O * •*• 3 * ]•*]) v 1 - ^ O ' -* 3 \Λ/ \)

g ^ ( l + R0 + T3 +1x1)^(1+ R0 + 7 13-|x|Γ / ?

for XETR3 with |x| ^ JR0 + T3. For ί ^ T3 and XGR 3 with |χ| ^R0 + t the mono-
tonicity of ζ2 entails

so that for Tι-^f^T2> and xelR3 with \x\^R0 + t the estimate (5.10) and
Theorem 2 imply

whence by definition T2(f,Kf)>T3. For ίe[Γ3,:Γ2(/,!<:,)[ and xelR3 with
\x\^R0 + t the following estimates hold:

^ ^ ( 1 + Ro +1 + |x|)-"(l +R0 + t- Ixl)-'" 1.

By definition of T2{f,Kf) this implies T2(f,Kf)=T(f,Kf), and by (5.12) we infer

sup {11> 11 (x, j;)εsupp /(ί)} ^ Cx, 0£t<T{f, Kf).

Now Lemma 3.1 yields the desired global existence, the desired estimates for the
fields and their derivatives hold by (5.15) and (5.16), and the proof of Theorem 3
is complete. •
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As a corollary we note some additional asymptotic results that we obtained in the
above proof.

Corollary 5.11. There exist constants C1 > 0, C 2 > 0, and C 3 > 0 such that for all
initial data (fKf)e<3> with d2 < ε3 and t ^ 0 the following estimates hold:

supp/(ί) c {(x,z;)eR6| |x| ^ Ro + C ^ M ^ d } ,

vol(supp/(ί,x, ) ) ^ C2(l + ί)~3> xeR3,

5.2. Global Estimates for the Deviation of the Perturbed from the Unperturbed
Solution. Global existence of the perturbed solution being established, the question
arises, whether the deviation of (/, Kf) from (g9 Kg) can be controlled globally in
time. To treat this problem define

^t:= sup |Λ(x)|, ./zeC(R3), t ^ O ,
\x\^Ro + t

and

xeR3

+ sup (1 + Ro + \x\f\δxKf(x) - δxKβ(x)\.
xeR3

foτ(f,Kf)e9.

Proposition 5.12. Assume that (g, Kg) satisfies (R) and (D). Then there exist constants
C > 0 and κ> 0 such that for all initial data (fKf)e<3ι with d2 < ε3 and t ^ 0 the
corresponding solution (/, Kf) satisfies

Equation (4.1) suggests that we will need an estimate for the derivative of g with
respect to υ in order to prove Proposition 5.12.

Lemma 5.13. Let (g,Kg) be a solution satisfying the condition (R) and (D). Then
there is a constant C > 0 such that

Proof Since

g(t, x, v) = g(Xg(09 ί, x, υ\ Vg(0, ί, x, t>))

we have

dvg{U x, !>) = δ^(X,(0, ί, x, ι?), 7,(0, t, x, v))dvXg(0, t, x, ι?)

+ dvg(Xg(0,t,x,vl Vg(09t9x,υ))doVg(0,t9x9Ό)

and obtain

for ί^0and(x,z;)elR 6 .
With arguments similar to the ones used in the proof of Lemma 5.6 we may
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now estimate the derivatives of the characteristics with respect to v. Differentiating

with respect to v, where

Jg(s,x, ύ):= Jl-ύ2(Eg(s9x) + ϋ x Bf(s, x) - ύ Eβ(s,x)ΰ\

estimating as in the proof of 5.5, observing that for (x, ι?)esupp g(t) and 0 ^ s ^ t < oo
Corollary 5.11 implies

\Xg(s,t,x,v)\^R0 + C l 5 , |F,(5,ί,x,ι;)| ^ Cl9

and finally using the assumption (D) we get

|x(s)| ^ C(l + 5)-α-1(|x(s)l + (ί-s)) + (l + s)-α(|x(s)| + 1),

where

x(5):= 3pJff (s, ί, x, i?) + (ί - s)dv(v(v))-

Since x(ί) = x(ί) = 0 and α = at + α2 > 1, Lemma 5.4 implies

|x(5)| ^C(ί-s),

and hence

|5^(5,ί,x,t;)|^C(ί-5).

On the other hand, we have

\dvVg(s)\ ^ \dxKg(s,Xg(s))\ \dvXg(s)\ + \Bg(s,Xg(s))\ \dvVg(s)\

Integrating this inequality, observing \dpVf(t,t,x9v)\ = 1, and applying GronwalΓs
lemma yields

Putting the estimates for the derivatives of the characteristics into the estimate for
dvg completes the proof. •

Proof of Proposition 5.12. We use the integral representation from Lemma 3.3 to
estimate the difference of the fields. For ί ^ 0 and X E R 3 with |x| ^ Ro + t and by
the definition of d we obtain the following estimate for the difference of the data
terms:

\EfJ)(t9x)-EβtD(t,x)\£^- J
H-7U \χ-y\=t

4 ί
\χ-y\=t

Lemma 5.7 and Lemma 5.8 yield

\EAD(t,x) - £,,„(«,"x)f ^ Cd(ί + R0 + t + Ixl)- 1 + CdΓ1 + Cd{ί + ί ) " 1 ,
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and since

- ^ J (l + R0 + \y\y2dSySCd,

we get

II Ef,D(t) - EβtD(t) | |„,, ύ C(ί + ί)~ % t ̂  0. (5.17)

Corollary 5.11 implies that for t ̂ 0 and xeR 3 the following estimates hold:

-£,, Γ ( ί ,x) |gC J (l + ί - | * - J > I Γ 3

= c\(l+τ)-3\\f(τ)-g{τ)\\xdτ (5.18)

and

|£/ > s(ί,x)-£9 > s(ί,x)|

ZC J J {\f\\Kf-Kg\ + \Kg\\f-g\)(t-\x-y\,y,v)dv
\x-y\ίt |e|SCi

=:/ι + /2.

First we estimate the term Ix:

K U t .

ίc\(l + τΓ3\\Kf(τ)- Kβ(τ)\Uττdτ

^ C J (1 + τ)'21| Kf(τ) - Kβ(τ) (| β , Λ

To estimate /2 define

'1,

and by Corollary 5.11 and condition (D) obtain that

χ(t-\χ-y\,\y\)
^c J

dy
0 0 \χ— y l "

For \y\ S Ro + C^ί — |x — y|) we have

(l + R0 + t — \x — y\ — \y\)~a2 ^ (1 + (1 — Cx)(t — |x —



76 G. Rein

and thus,

j
o

Hence for ί ^ 0 and |x| g Ro +1

]\Ef<s{t,x)-Eβ<s{t,x)\Sc]{\+τ)-2\\Kf{τ)-Kβ{τ)\\xJτ

dτ. (5.19)

Combining the estimates (5.17), (5.18), and (5.19) with the corresponding estimates
for Bf — Bg yields

+ C j (1 + τ Γ 2 II Kf(τ) - Kg(τ) || aJτ. (5.20)

Now recall Eq. (4.1):

(/ - g)(t, x, ») = ( / - g)(Xf(0, U x, υ), VJP, t, x,»))

- J (dvg-(L, - Lg))(s, Xf(s, t, x, v), Vf(s, ί, x, v))ds.

If \Xf(s,t,x,v)\>R0 + s then δvg(s,Xf(s), Vf(s)) = 0, and hence

\(dvg (Lf -Lβ))(s,Xf(s, t,x,v), Vf(s, t,x,v))\ ̂  || d.g(s) | |„ ||KJs) - K,(s)||„,,,

for (x, p)εR6. F,or ί ^ 0 this implies

|| f(t) - g(t) |L g || / - 01| β + j || dvg(s) || w || K/s) - X,(s) || ̂ .^s, (5.21)

and applying Lemma 5.13 we obtain

|| Kf(t) - Kβ(t) I„,, ^ C(l + ί)- M + C

C j j (1 + τ)-3(l + σ ) | | X » - Kβ(σ)\\m,σdσdτ

c\(l+τΓ2\\Kf(τ)-Kg(τ)\\00,tdτ

-τ)-2\\Kf(τ)-Kg(τ)\\^τ
0

t t

c

g Cd + K J (
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GronwalΓs lemma now yields

Putting this estimate into (5.21) we obtain

and the proof is complete. •

Remark. The above investigation was of course motivated by the desire to obtain
some sort of stability result for solutions satisfying the conditions (R) and (D).
Note that if one could establish an estimate like

with γ < 1, the same proof as above would yield

which might be interpreted as a stability result for the solution (g, Kg).
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