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Abstract. We apply a modified Yang—Mills—Higgs functional to unitary bundles
over closed Kahler manifolds and study the equations which govern the global
minima. The solutions represent vortices in holomorphic bundles and are direct
analogs of the vortices over R2. We obtain a complete description of the moduli
space of these new vortices where the bundle is of rank one. The description is in
terms of a class of divisors in the base manifold. There is also a dependence on a
real valued parameter which can be attributed to the compactness of the base
manifold.

Introduction

Many interesting equations in gauge theory arise as minimizing conditions for
gauge invariant functionals. The self- and anti-self dual Yang—Mills equations, the
Hermitian—Einstein equation, the Bogomoln’yi monopole equations and the vortex
equations are all equations of this sort (cf. [A—-H-S],[F-U],[J-T]). Much of the
interest in such equations lies in the conditions for existence of solutions and
in the moduli space of gauge equivalence classes of solutions (cf. [A-H-D-M],
[D1],[D2],[Hi],[H-M],[T]). In this paper we describe a new addition to this
collection of “minimizing equations” and address the question concerning the
moduli space of its solutions.

In the case of the self- and anti-self dual equations, the functional being
minimized is the Yang—Mills functional over R*. The solutions to these equations
form a special class of connections on principal bundles over R*. All such solutions
have associated to them an integer valued “quantum number” known as the
instanton number. Both the existence of the special equations for the extrema and
the explanation of the instanton numbers can be attributed to the same thing; the
key point is that in four dimensions the Yang—Mills functional can be split as a
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sum of a non-negative term and a term which is essentially topological (it is in
fact related to the topology of a bundle over §*). The vanishing of the non-negative
term leads to the equations for the minima and the instanton number is related
to the topological term. The mechanism used to achieve this is the splitting, via
the Hodge star operator, of 2-forms on R* into its self-dual and anti-self-dual
components.

A similar splitting of the Yang—Mills functional is possible if one replaces R*
by a closed Kidhler manifold and considers unitary connections on a complex
bundle. In this case however it is the Kédhler geometry which enables one to rewrite
the functional. The topological part of the functional is clearly seen to be determined
by the first and second Chern classes of the bundle and the equations for the
minima are now the Hermitian—Einstein equations. In this setting these equations
can be interpreted as a constraint on the curvature of a metric connection on a
holomorphic bundle. It is an important theorem of Uhlenbeck and Yau [U-Y]
that the conditions for the existence of solutions to these equations can be related
to the stability (in the sense of Mumford) of the holomorphic bundle.

Taking a slightly different approach, one can view the Yang—Mills functional
as a special case of the more general Yang—Mills—Higgs functional. Such a
functional is defined whenever one has a vector bundle with compact Lie group
as structure group over R% If E is a vector bundle with structure group G over
RY, o/ the space of G-connections on E, and Q°(RY E) the space of sections of E,
then the Yang—Mills—Higgs functional

YMH: o x 2°(R% E)—R
is defined by

A
YMH (D, ¢) = | Fpllf: + [ D¢ £ +ZRL(|¢|2 —1)*dvol.

Here 4 = 0 is a constant, F, is the curvature of D and D¢ is the covariant derivative
[J-T]. Of course all vector bundles over R? are trivializable. One can thus treat
the variables as connection 1-forms and functions on R“. The 1-forms take values
in the Lie algebra of the bundle structure group and the functions take their values
in a vector space on which the structure group acts as a transformation group.
This is the description frequently used in physics. The connection 1-form is
known as a gauge potential, the vector valued function is called a Higgs field and
the vector space in which it takes its values represents a space of internal symmetries
for some physical particle (cf. [P], [B1]).

There are certain special cases, other than that of the pure Yang—M ills functional
over R*, in which the absolute minima can be described separately from the other
critical points. When d =3 and A =0 one obtains the Bogomoln’yi monopole
equations. In dimension two the case where A =1 and the vector bundle is a
complex line bundle is the special case. This is the so-called Abelian Yang—Mills—
Higgs model and the corresponding functional is the Abelian Yang—Mills—Higgs
functional. Historically, a functional of this type appeared in the theory of
superconductivity [G-L]. There D is taken to represent an electromagnetic
potential and ¢ to represent a quantum mechanical wave function of an ensemble
of Cooper pairs of electrons. YMH (D, ¢) measures the thermodynamic free energy
and the physical configurations are those which minimize the functional.

The global minima of the abelian Yang—Mills—Higgs functional are described
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by two coupled first order equations for the pair (D, ¢). The first equation says
that ¢ is holomorphic with respect to the holomorphic structure on the line bundle.
The second equation is called the vortex equation and its solutions are called
vortices. Existence of such vortices was demonstrated by Taubes [T]. The basic
result is that solutions always exist and are characterized by the zero set of the
section ¢ and an integer called the vortex number. The vortex number does have
a topological origin, however since the manifold on which the functional is defined
is R?, this fact is somewhat obscured.

In the description of these vortices, the base is thought of as € rather than as
R2. It is therefore reasonable to ask whether one could replace R? by a closed
Kéhler manifold and then utilize the Kéhler structure as was done in the case of
the pure Yang-Mills functional over R*.

In this paper we investigate a generalized Yang—Mills—Higgs functional of this
sort. In fact we go one step further and modify the Abelian Yang—Mills—Higgs
functional so that it is defined for holomorphic vector bundles of any rank over
closed Kdhler manifolds of arbitrary dimension. The resulting functional still has
connections D and sections ¢ as its arguments. More importantly, it retains the
feature that it is bounded below by topological invariants of the bundle (specifically,
a combination of the first Chern class and the second Chern character). One
noteworthy difference between our new functional and the one for vortices over
R? is the presence of an extra real parameter 1. The need for this parameter can
be attributed to the compactness of the base manifold and the fact that it has finite
volume.

It is not hard to identify the conditions for a pair (D, ¢) to minimize our
functional. These consist of an integrability condition on the connection, a
holomorphicity constraint on the section and an equation which is a direct
generalization of the vortex equation. We have attempted to answer two basic
questions concerning these equations:

(A) When do solutions exist?

(B) What can one say about the set of all solutions?

The answers to both questions turn out to be interesting.

Based on the results for the Hermitian—Einstein equation one might expect to
find a relation between solutions to our vortex equation and some type of stability
for holomorphic bundles. In [Br1] and [Br2] we studied question (A) and gave
the necessary and sufficient conditions for existence of solutions. We showed there
that these can indeed be linked to a stability property of a holomorphic bundle
with a prescribed holomorphic section. Given such a pair (E, ¢), the appropriate
notion of stability (which we call ¢-stability) can be expressed in terms of the slopes
of subsheaves of E. The standard notion of stability involves a comparison of
slopes of subsheaves with the slope of E. In the presence of a holomorphic section
the correct notion of stability turns out to involve a comparison of slopes of
subsheaves with slopes of quotients of E by subsheaves which contain the section.
The results of [Br1] show that when the bundle (E, ¢) is ¢-stable there is a range
for the parameter T within which the Yang—Mills—Higgs functional can attain its
absolute minimum, i.e. within which the vortex equation has a solution. Conversely,
when the vortex equation has a solution, the bundle must split as a direct sum of
a ¢-stable component plus a sum of stable components.

In this paper we provide an answer to the second question in the case where
the bundle is a line bundle. Our main result shows that the moduli space of global
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minima depends on the value of the parameter 7 in the functional. There is a critical
value determined by the first Chern class of the bundle and the volume of the base
manifold. For 7 below the critical value the moduli space is empty. For t above
the critical value it is in 1-1 correspondence with a certain subset of the set of
effective divisors on the base manifold. When < is at the critical value the moduli
space is 1-1 correspondence with a certain subset of the set of linear equivalence
classes of all divisors on the base. In the case where the base is a compact Riemann
surface these results complement rather well the picture of classical vortices over R2.

1. Definition of the Functional

Let X be a closed Kihler manifold of complex dimension n. Fix a Kdhler metric
on X and let w be the associated Kéhler form. Let E be a rank R complex vector
bundle over X. We will usually consider the vector bundle E to be endowed with
a fixed hermitian metric H. Let 2°(X, E) denote the smooth sections of E and let
o/(H) denote connections on E that are unitary with respect to H. We will also
need to consider the spaces 274X, E) and 274(X,End E), i.e. the spaces of forms
of holomorphic type (p,q) with values in E and in the endomorphism bundle of
E respectively. These spaces all carry hermitian metrics induced by the Kéhler
metric on X and the metric on E. Using the metric on E we get identifications
E=~E* and also EQ E*~EndE.

Definition 1.1. We define the Yang—Mills—Higgs functional
YMH,: o(H) x 2°(X, E)>R
by
YMH,(D,¢) = | Fpli:+ | DS} + il ¢ ® o* — 11| . (1.1)
Here F,eQ?(X,End E) is the curvature of the connection D, D¢peQ*(X, E) is the

covariant derivative, [eQ2°(X, End E) ~ 2°(X, E® E*) is the identity section and
7 is a real parameter. The adjoint of ¢ is taken with respect to H.

Remarks.

1. This functional should be compared to the classical Yang—Mills—Higgs func-
tional over d-dimensional Euclidean space (cf. [J-T]). The major difference in the
form of the functional is the presence of the real parameter t. We need to introduce
this extra parameter because, unlike R? our base space X is compact. This is
explained more fully later, in Sect. 5. We shall see that varying t corresponds to
scaling the volume of X.

2. The functional YMH, (D, ¢) is invariant under the standard action of the unitary
gauge group ¢ on «/(H) x 2°(X, E). The functional can thus be thought of as
being defined on & = («/(H) x 2°(X, E))/%.

2. A Lower Bound on YMH, and the Vortex Equation

Using the Kahler structure on X we can rewrite YMH_ in a form that gives explicit
information about its global minima. Recall (cf. [W]) that on a Kdhler manifold
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with Kéhler form o we can define a map
L:Q>(X,C)—» Q7+ 14+ (X )
by
La)=o A .
The [2-adjoint of this map is denoted by A. In general
A:QP(X,C)—» 27~ 11X, ).
On (1,1) forms A is given by
Ao = (o, 0),,.

Here (,),, denotes the pointwise inner product induced on (1, 1) forms by the Kahler
metric on X. If d =0+ 0 is the splitting of the exterior derivative according to
holomorphic type, then the operators 4, d, their L? adjoints and A are related by
the Kéhler identities. These extend to unitary connections on complex bundles
over X so that if D = D%! 4+ D' is such a connection, then

J —1[A,D%'] = (D*)*, (2.1a)

-/ —1[A,D"°] =(D%1)*. (2.1b)

The splitting of D into D%!+ D'° corresponds to the splitting Q'(X,E)=
Q%Y X,E)® 2"°(X, E) coming from the complex structure on X. The adjoints
are now with respect to the L? inner product on £279(X, E) induced by the bundle
metric and the Kéhler metric on X.

Proposition 2.1. The functional

YMH,:/(H) x 2°(X,E)-»R
can be written as

YMH, (D, ¢)=4|Fp?|{. + 2| D> $ll7: +

2
L2

{\/—IAFD+%¢®¢*—§I

+1{/=1Tr(Fp) A" U4 [Tr(Fp A Fp) A" 2L (22)
X X

Here o™ = (C:W and F2? is the component of Fy, of type (0,2).
Proof. This follows from the identities
(J—1AFp,¢®¢*>=—[ID* ¢l f.+ D0 |-, 23)
and
|Fpl20™ = |AFp 2™ + Tr Fy A Fp A 0"~ 2 4 2(F 2 + [F2).  (2.4)

To get the first identity write

(V—1AFp, ¢ ®*) =/ —1AFp$,0)
=(/=1AD*D**¢ + . /—1AD*°D*'$, >,
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and then apply the Kihler identities (2.1). The inner products here are the L? inner
products induced on 27%X,End E) and 279X, E) respectively by the bundle
metric on E and the Kdhler metric on X. The second identity is well known and
can be obtained by straightforward calculation in suitable local coordinates (cf.
for example [U]). In the case where D is a unitary connection we have
|F22|2 = |F2°|? so the last term in (2.4) is 4| F92|2.

One can now expand

1 2
“\/ —1AFp +56®¢* —%I =/ =1A4Fp |} + </ —1AFp, ¢ ® ¢*)
L2

1
—1(/=1AFp,I) +716®¢* — I,

and use the identities (2.3) and (2.4) to show that the expression in (2.2) is indeed
equivalent to the one in (1.1). Notice that by definition

(V—1AFpI) =“§;—1£TT(FD,(D)@(D["] = )j;\/—-lTr(FD) Aol

The last two terms in (2.2) do not depend on the connection D. In fact
Chern—Weil formulae show that they are determined by the first Chern class and
second Chern character of E respectively:

Lemma 2.2. Let c,(E)eH*(X,R) and ch,(E)e H*X,R) be the first Chern class and
second Chern character of E respectively. Then
J -1
CiE,w)=[ci(E) A" N=Y—[Tr(Fp) A 0"}, (2.5a)
X 2n %
and

Chy(E,w) = [ chy(E) A 0"~ = — %2— [Tr(Fp A Fp) A "2, (2.5b)
X X

Proof. See for example [G].

Note. C,(E,w) is also known as deg(E, w).
An immediate corollary is the following:

Corollary 2.3. The functional YMH, is bounded below by
2ntC,(E, w) — 8n2Ch,(E, w).
This (topological) lower bound is attained at (D, ¢)es/(H) x 2°X, E) if and only if

F9 =0, (2.6a)
DO =0, (2.6b)
,/—IAFD+%¢®¢*=%I. (2.60)

Remarks. The first equation is an integrability condition on D®!, By results of
Newlander—Nirenberg on integrable almost complex structures, this condition
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ensures that D% ! determines a holomorphic structure on E (cf. [Ko]). The second
equation then says that ¢ is holomorphic with respect to this holomorphic structure.
The third equation generalises the Hermitian—Yang—Mills equation (which is
recovered by taking ¢ = 0) and is the analog of the classical Vortex Equation over
R2. For these reasons we refer to (2.6c) as either the Hermitian—Yang—Mills—Higgs
or the Vortex equation.

3. Statement of Problem from Two Equivalent Points of View

In order to find the absolute minima characterized by Egs. (2.6a), (2.6b) and (2.6c¢),
one may proceed as follows. Firstly, we consider only integrable unitary connec-
tions, i.e. those which belong to «/!'}(H), where

o/ NH) = {Ded(H)FS? =0} G.1)
We then look for minimizing pairs (D, ¢) in & < o/ '1(H) x 2°(X, E), where
& = {(D, $)es " (H) x Q°(X, E)/D* ¢ = 0. (.2)

The problem to be solved thus becomes:

Statement of Problem. Given a complex bundle E with fixed Hermitian metric H,
find all pairs (D, )€ such that the Vortex equation (2.6¢) is satisfied for a given
value of 1.

These pairs, which are the minima of the functional YMH, on &/(H) x 29X, E),
will be called t-Vortex pairs. We can define the set of all such pairs as follows:

Definition 3.1. Let E be a complex line bundle over X. Let H be a fixed Hermitian
metric on E. Let YMH, be given by (1.1). Define the space of t-Vortex pairs on
(E,H) by

U (H) = {(D, p)e L (H) x 2°(X, L))YMH,(D, ¢) = 2n1C,(E, ») — 8n2Ch,(E, w)}.
(3.3)

We have already noted that the Yang—Mills—Higgs functional is invariant
under the action of the unitary gauge group %. This means that % (H) is a
%-invariant set and that t-vortices can be defined by equivalence classes in
B =(A(H) x Q(X,E))/%.

Definition 3.2. We define the space of (unitary) gauge equivalence classes of t-Vortex
pairs by
V(H)={[D, ¢1e%/YMH,(D, $) = 2n1C,(E, ) — 8n’Chy(E,w)}. ~ (3.4)

The problem as stated above is thus to understand ¥"(H). We do not however
attempt to solve the problem in this form. Our strategy is to make use of some
standard complex differential geometry in order to reformulate the problem in a
more tractable from. The basic fact that we use is that given a holomorphic structure
and a hermitian metric on a complex bundle, there is a unique complex connection
compatible with both. This means, on the one hand, that, given De/!'}(H), D is
the unique metric connection compatible with the metric H and the holomorphic
structure determined by D°''. On the other hand, it allows us to treat Egs. (2.6a),
(2.6b) and (2.6¢) as conditions on
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(i) a holomorphic structure on E given by a d-operator
5E:QO(X, E)_)'Qo,l(XaE)9

(i) a hermitian bundle metric H,
(iii) a section ¢peQ°(X, E).
In terms of the triple (0g, ¢, H), the equations can be expressed as

3p¢ =0, (3.52)
J—1AF;, +16®¢*H — i =0. (3.5b)

Here F; is the curvature of the metric connection compatible with d; and H. The
notation ¢*¥ emphasizes that the adjoint is taken with respect to the metric H. Let

T, = {(3g, ¢, H)/Egs. (3.5a) and (3.5b) are satisfied}. (3.6)

One way we can look for solutions to these equations is by picking a pair (95, ¢)
which satisfies (3.5a) and then trying to solve (3.5b) for the metric H. We will call
such metrics t-Hermitian—Yang—Mills—Higgs metrics. The problem to be solved
then becomes:

Restatement of Problem. Given (E, 0, ¢), i.e. a holomorphic bundle E with a prescribed
holomorphic section ¢, determine whether the bundle supports t-Hermitian—Yang—
Mills—Higgs metrics.

This is the approach taken in [Brl] and is the method we will use in Sect. 4
to study the set T, for a line bundle. What we have thus done is to transform the
problem of minimizing the functional YMH(D, ¢) defined on (E, H), a complex
bundle with fixed metric, into the problem of finding a special metric on (E, , ¢),
i.e. on a holomorphic bundle with a prescribed holomorphic section.

In fact these two problems are equivalent. However before we can see the
corespondence between them we must take into account an invariance in T, which
becomes from the action of the complex gauge group %.

It is well known that any two metrics H and K are related by K = Hh, where
heQ°(X,End E) is positive and self adjoint with respect to H. Furthermore h can
be decomposed as h = g*g, where ge%. Up to unitary gauge transformations this
splitting in unique (cf. [Ko], [D3]). The gauge transformation g is nothing more
than the change of basis from a unitary frame for H to a unitary frame for K.
Now consider the action of ¥ on 2°(X, E) and on %, the space of integrable
O-operators on E. The complex gauge group acts on both these spaces by
“pushforward,” i.e.

9(0)=g°d°g~", (3.7a)

g(9)=9g¢. (3.7b)

Proposition 3.3. Let (05, ¢, H)ET,. Then for every ge%e, (9~ *(05), 9~ ‘¢, Hg*g) is
also in T,.

Before proving the proposition we first prove a lemma about the action of % on
s/, the space of connections. Of course ¥ has a simple pushforward action on
. However it has a second action on & defined by

g(D)=goD%og™! +(g¥)"1e D Oog*, (3.8)
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This action has the advantage of being compatible with the construction of metric
connections.

Lemma 3.4. Let D;,_, denote the metric connection compatible with 0y and H. Let
G act on € and « by (3.7) and (3.8) respectively. Let ge.@,B and let h = g*g. Then
(i) Dg(@,;) H= g(Da i) i-e. the set of metric connections is 9 invariant with respect
to the action of %¢ gwen by (3.8),
(i) g(Da w=g° Da Hh° Y -
(iii) Fg(a)H ge Fa HhYd -t
Proof. (i) Splitting D;_y into its (0, 1) and (1, 0) parts we can write D;_, = 0 + Dy,

where by the Kéahler 1dent1t1es Dy =./—1[A,05]. Hence
9Dz, ) =g°0g°g ™" +(g%) "o Dyog*. (3.9
On the other hand
D, n = 9(0g) + Dig g, (3.10)

where ./ — 1[A, g(&E)] (DH g)* Now g(0g) = g°dz°g ~ ! so to prove (i) we need only
show that (g*)~'oDyog* =Dj,.

But
V1A, 901 =g/ —1[A,0gl°g ™", (3.11)

since A and g commute. By the Kihler identities this is a equivalent to what we need.
(i) A calculation (using a local holomorphic frame for E) shows that

Ds yw=Dj p+ h~'Dy(h) = 0g + h™'Dyh. (3.12)

From (3.9) we see that g“og(DEE,H)og =0 +(g*g) '°Dyog*g. Hence if h=g*g
then (ii) follows.
(iii) For any De.s/!'! with curvature F(D) we have

F(geDog™')=g°F(D)eg™". (3.13)
Thus
Fg(a VH = F(9°Da Hhog_l) =g°F5E,Hh°g

Proof of Proposition 3.3. The proposition is equivalent to the statement that the
triple (0g, ¢, Hh) satisfies (3.5a) and (3.5b) if and only if (g(dg), g¢, H) does. Here
h=g*g. Now by Lemma 3.4,

V —1AF 5,1 —3(99) @ (9 ¥ + 3t =g°[\/ — 1AF;, =5 @ p** + $cl]og ™.

Also, g(;)(9¢) = g0g(¢). This proves the proposition.
As an immediate corollary we obtain the correspondence between the two

versions of our problem.

Corollary 3.5. Let h=g*g, where g is an element of the complex gauge group 9.
Then the following are equivalent:

(1) The triple (Og, ¢, Hh) satisfies Eqs (3.5a) and (3.5b).

(2) The pair (Dyz,, 1 g®) is a t-Vortex Pair on (E, H), i.e. gives a minimum for
the functional YMH, &l(H) x 2°X,E)-R.
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Proof. By Proposition (3.3) (0, ¢, Hh)e T, if and only if (9(0z), g¢, H)e T,. But the
latter condition is simply a restatement of (2).

We can rephrase this result in a somewhat more elegant fashion if we make
the following definition.

Definition 3.6. Define an equivalence relation on T, by
(e, ¢, H)~ (9~ (). 9~ ' ¢, Hg*q) (.14

for any ge%¢. Let 7, = T,/ ~ be the set of equivalence classes of solutions to (3.5a)
and (3.5b).

Proposition 3.7. Let E be a complex bundle over the Kdhler manifold X. Fix a
hermitian metric H on E. Then there is a 1-1 correspondence between ¥ (H) and 7.

Proof. The map from ¥ (H) 7, is given by
[D,$]1-[D*,¢,H]. (3.15)

The inverse map from 7, to ¥ (H) is defined as follows: Let [52, ¢,K] be an
element in ,. Say K = Hg*g for some ge%. The (0g, ¢, K) ~ (9(0g), g¢, H) and
we can map

[0r. &, K1 [D(9(9x), H), g¢]. (3.16)

Using Lemma 3.4 it is straightforward to check that these maps are well defined
and are indeed inverse of one another.

4. Special Case of Rank E=1

The problem of finding Hermitian-Yang—Mills—Higgs metrics on holomorphic
bundles with prescribed holomorphic sections has been discussed in general in
[Br1]. It was shown there that the existence of such metrics corresponded to a
stability property for holomorphic bundles. In the special case of holomorphic line
bundles we can be more specific and can give a full description on the moduli
space of solutions to the Vortex (or Hermitian—Yang—Mills—Higgs) equation. In
addition we can analyse the equation in a much more direct fashion than was
necessary for the general case.

Let L be a holomorphic line bundle over X, with the holomorphic structure
being given by

0.:2°%X, L)~ Q%YX, L).

Let ¢peQ°X, L) be a holomorphic section of L. Let H be a given background
hermitian metric on L. We have already noted that any other hermitian metric
on L is related to H by a positive, self-adjoint bundle endomorphism. Since L is
a line bundle, this means that the two metrics are related by a positive real valued
function heC®(X,R). Given a metric K, we may thus write K = He?*, where
ueC*®(X,R). The factor 2 is purely for later convenience.

Lemma 4.1. If K = He?* then the vortex equation (3.5b), as an equation for u, is

Au+3|plEe* +(\/—1AFy —%1)=0. 4.1)



Vortices in Holomorphic Line Bundles 11

Here A is the (positive definite) Laplacian on X.
Proof. If K = Hh then a straightforward calculation shows that

—1AFy=./—1AFy+ ./ —1Ad,(h™ ' Di(h)).
Here F is the curvature of the connection determined by a fixed J-operator 9,
on L and the metric K. Also, Dy is the (1,0) part of the connection induced by
Dy on End L. Since L is a line bundle, End L is a trivial bundle and Dy =d on
End L. Hence if h = e** then

J—1AFy = /= 1AF, + 2./ —1A80(w). 4.2)

The Kéhler identities give

2./ —1A00(u) = 20*0(u) = 24'(u) = A(u). 4.3)
n 2
Here A=(d*d + dd*) which for functions on Euclidean n-space is A(f)=— 3, ?aTJ:
i=1 i

Finally, we note that using H to identify L* with L, we can write ¢ ® ¢** =|¢|}.
Thus with K = He?",

P@* =9Ik =|olHe™ 44

Equation (4.1) is almost in the form of a non-linear PDE analysed by Kazdan and
Warner [K-W] (WARNING: The Laplacian used by Kazdan and Warner is the
negative definite operator, i.e. it differs from the one defined here by a minus sign). Let

c=2] (V/—1AF, —3), 4.5)
and choose veC*(X,R) to be a solution to
—A@) =(/~1AFy — 1) — ic. (4.6)
Define
w=2(u—v). 4.7)
Then u is a solution to (5.3) iff w is a solution to
—Aw) - (31¢|ge*)e” —c=0. (4.8)

This equation is precisely of the form considered in [K—W7. The results of Kazdan
and Warner that we will need are collected together in the next theorem.

Theorem 4.2. [K-W]. Let M be any compact Riemannian manifold. Consider the
equation

—A(u) + he* —c =0, 4.9)

where he C*(M, R) is not identically zero and c is a real constant. Then

(i) if ¢ = 0 a necessary condition for existence of ue C*(M, R) satisfying (4.9) is that
h changes sign on M.

(i) if ¢ > 0 a necessary condition for existence of ue C*(M, R) satisfying (4.9) is that
h is strictly positive somewhere on M.

(iii) if ¢ <0 and h <0 then there is a unique ue C*(M,R) which satisfies (4.9).
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Proof. cf. Theorem 5.3, 7.2, 10.5(a) and Remark 10.2 in [K-W].

Theorem 4.3. Let L be a holomorphic line bundle over an n-dimensional compact
Kdhler manifold X. Let ¢pe£2°(X, L) be a prescribed (non-trivial) holomorphic section
of L. Then there exists a hermitian metric K on L satisfying the vortex equation
(3.5b) if and only if
A"/
7 Vol(X) -
47

Here y(L) = C,(L, w), i.e. u(L) is the slope of L with respect to the Kdhler form w on X.

Proof. Fix a background metric H on L. Let K = He?" and define ceR as in (4.5)
and veC®(X,R) as in (4.6). The vortex equation then becomes

—Aw) + he” —c=0,

w(L). (4.10)

with
h=—Gl${e).
By Theorem 4.2 this has a (unique) solution if and only if ¢ <0, i.e.

[(/=1AFy —17) <0.
X

The result now follows from the Chern—Weil formula for C,(L, ®) (cf. Lemma 2.2).
We can use Theorem 4.3 to get a complete description of the moduli space of
all vortices.

Definition 4.4. Let L be a complex line bundle over X with C,(E,w)= N and with
a fixed Hermitian metric H. Let the functional YMH, be as in Definition 1.1. Define

v ¥(H) = {[D, $]eB/YMH(D, ¢) = 2nNt}. 4.11)

The set ¥'Y is the set of t-Vortex Pairs on the Hermitian Line Bundle (L, H).

The first thing to observe is that each vortex pair [D, ¢] in ¥ ¥(H) determines
an effective divisor of X, namely the zero set of the (holomorphic) section ¢.
Conversely, an effective divisor determines a holomorphic line bundle together
with a holomorphic section (cf. [G-H]). If 2 is the effective divisor, L, the line
bundle, and ¢, the holomorphic section, then the zero set of ¢, is precisely 2.
Furthermore, 2 determines an element of H,, _ ,(X, €) and thus by Poincaré duality
an element n,e H*X,C). The first Chern class ¢,(Lg) is represented by 7,.
It follows that

Cy(Lg @)= [ e1(Lg) A "™ =#(2, [~ 11]), (4.12)
X

where [w!"~ 1] is the 2-cycle dual to w!™~ ' and #(, ) denotes the intersection pairing.
Definition 4.5. Let
Div (X)Y = {effective divisors on (X,w) with #(2, [0 1])=N}. (4.13)

It follows from the above discussion that given 2 in Div(X)Y, one obtains a line
bundle topologically equivalent to L, together with a holomorphic structure and
a holomorphic section. We denote these by (L, 04, ¢5)-
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4nN
By Theorem 4.3, when 1 >%(X) we can solve the vortex equation (3.5b) to

obtain a metric H, on L, such that (L,,d,,®,) satisfy the vortex equation.
What we want though is a vortex pair on our original bundle (L, H). To obtain this
we must make use of the (smooth) bundle isomorphism which relates L, and L.
This allows us to pull back the metric H to a metric H' on L, thereby turning
the bundle equivalence into an isometry between (L,, H') and (L, H). The trans-
formation between the two bundles is thus via an element of the unitary gauge
group 4. Furthermore, if H, and H' are related by the element ge%¢ then (cf.
Proposition 3.3) we can conclude that (D, » 9¢5) is a t-Vortex Pair on (Lg, H').

That is, it represents a (unitary) gauge equivalence class of vortex pairs on (L, H).
We have thus proven:

there is a 1-1 corresponding between ¥ and

N
Theorem 4.6. For every > v 1; x)
N is empty.

4nN
N
Div(X)Y. When 1 is less than ——— Vol (X)’ , VD

.. Cy . 47N )
The only remaining case to consider is when 7 is equal to V_ol—(_)a' In this case,

integrating the vortex equation and using the Chern—Weil formula for C,(L,w)
yields

1
22N + 5 [l =2aN. 4.14)
X

Hence the only solution possible has ¢ =0 and De/!'}(H) a solution to the
Hermitian—Yang—Mills equation.

2nN
‘/_IAF‘FW(S' 4.15)

If we fix a d-operator on L and treat (4.15) as an equation for the metric H' = He",
we get

2N

This elliptic equation has a solution which is unique up to an arbitrary constant.
Furthermore, if u satisfies (4.16) and e* = g*g, then D(g(0),H) satisfies (4.15). Notice
that scaling H' by an arbitrary constant has no effect on D(¢(), H). Hence for each
choice of d-operator on L we get a unique solution in &/“'(H). Changing the
d-operator by the action of an element of %; changes the corresponding
Hermitian-Yang-Mills connection by at most a unitary gauge transformation.
47N
Vol (X) ) We thus have a
correspondence between solutions to (4.15) and % equivalence classes of 6-operators
on L. But these are precisely the equivalence classes of holomorphic line bundles

(This follows from Proposition 3.7 with ¢ =0 and 7=

. . 4nN .
with C,(L,w)= N. We see therefore that when t is equal to %(X) there is a
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1-1correspondence between ¥ Y(H) and the holomorphic line bundles of degree N
over X. In the special case where X is algebraic, all holomorphic line bundles are
of the form L, for some divisor 2 (cf. [G—-H]). Also, two linearly equivalent divisors
yield the same holomorphic line bundle. We have thus proved:

47N
Theorem 4.7. If t=——— then ¥"N(H) is in 1-1 correspondence with the holo-

T

Vol(X)

morphic lines bundles over X satisfying C,(L,w) = N. If X is algebraic and Div (X)¥

denotes the set of all divisors on (X, w) with #(2,[@w"="1]) = N, then there is a 1-1
correspondence between ¥ "N (H) and the linear equivalence classes in Div (X).

Remark. If X is a Riemann surface, then an element of Div(X)Y is given by a
collection of N (not necessarily distinct) points on X. The ordering of the collection

47N ..
is not significant. Hence in this case when t > chlr—(X—)’ ¥ ¥(H)is in 1-1 correspond-

ence with the N-fold symmetric product Sym® (X). This can be compared to the
case of classical abelian vortices over R2. In that case the space of vortices with
vortex number N is in 1-1 correspondence with Sym® (R?).

5 The Parameter t

The results of the previous section show how the behaviour of the functional
changes depending on the value of the parameter . This parameter is, as we
remarked earlier, a feature which has no counterpart in the theory of classical
Abelian vortices over R2. It is natural to try to understand how the parameter
enters into the description of vortices over closed Kahler manifolds.

One can clearly define the Yang—Mills—-Higgs functional with 7 fixed at 1.
Proposition 2.1 and Corollary 2.3 still hold with 7 =1 and in that case the vortex
equation is

J—1AFp+1p®¢* —11=0. (5.1)

There is however an obvious obstruction to solving this equation. This can be
seen by integrating the trace of the equation. X is compact so the first term is

Vol (X
2nC,(E, w) and the last term is ° 2( ). One gets
2nCL(E,w) + 1| ¢ |lZ2: = 1R Vol (X). (5.2)
Thus solutions cannot exist unless
Vol £CE0) 5

This obstruction can be removed by rescaling the metric on X. Suppose we
rescale the metric by a constant factor so that the new Kéhler form is

0, = t*o. (5.4)

The Hodge inner product on 279X, C) gets rescaled by a factor t~2%*9, Hence
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if Vol(X) and C,(E, w,) are calculated with the rescaled metric then

Vol,(X) = t*" Vol (X), (5.5
C\(E, ) =t*""2Cy(E, w). (5.6)
Hence, with large enough 2, the condition
E
Vol,(X) > ‘mcll(!f’“")

can be satisfied. With the parameter 7 in the functional, the corresponding condition
to be satisfied is

4nC(E, w)
—Q®r

This condition is precisely the condition in Theorem 4.3 governing the existence
of t-Hermitian—Yang—Mills—Higgs metrics on line bundles. The point we wish to
make is that the necessity of this condition can be attributed to the compactness
of X. Furthermore this condition can be met either by rescaling the Kéhler metric
or by adjusting the parameter 7. Since we wish to keep the Kéhler metric fixed we
are forced to include the parameter 7 in our functional. The next proposition shows
that there is in fact an exact correspondence between these two options.

Vol (X) > (5.7)

Proposition 5.1. (i) Let E and X be as before. For given Kdihler form w and real
number © let YMH(D, ¢; 1, ) denote the functional defined in Sect. 1. Suppose the
Kdhler metric is rescaled by a constant factor so that the new Kdhler form is o, = t’w.
Then

YMH(D, ¢;7,0) = t*~2" YMH(D,% tlz w,>. (5.8)

(ii) Furthermore {D,¢,t,w} satisfies the vortex equation iff { d) Lz }

does, i.e. t
V—1AF,+ 316 ®@¢* —41I=0
if and only if

J—1AF,+ 14’@"5——111 0.

t 21
Proof. (i) This is an immediate consequence of the way that the Hodge metric on
(p, q) forms rescales under rescaling of the Kéhler metric.

(ii) All we have to show is that

1
A=A, (5.9)

where A, is the adjoint of wedging with ,. Let e 274(X, C) and e 27~ 1~ 1(X, C).
Let (,), denote the Hodge metric with respect to the metric corresponding to w,.
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Then
(A, B), = (0, R ),
=t B A o),
= 27200, A o),
= 1272+ (A, ),
— t2-2(p+q)+2(p+q—2)(Aa, ﬁ)t
=t"*Aa, B),.
If we choose t such that t? =t we get the required correspondence between

YMH(D, ¢; 7, w) and YMH(D,?;
We end by noting that 7 gives an upper bound on |¢|? for those ¢peR°X, E)
which belong to t-vortex pairs:

1,w,>.

Proposition 5.2. Let (D, ¢) be a t-vortex pair on the complex bundle E with Hermitian
metric H. Then.

lplE<1. (5.10)
Proof. Since D is unitary with respect to H and D°%'¢ =0, we have

900|915 =(D*'D*°¢, $)y — (D*°¢, D*°P)y.

But D is also integrable, so F;,=D%'D*° + D*°D%! Tt follows (again using the
holomorphicity of ¢) that

001$1% = (Fpo, §)y — (D*°p, D °P)y. (5.11)
We now use the Kihler identities on X and get

Alplf =2/~ 1A00|$|f = 2/ = 1AF p,$)y — 2,/ —1ADD"°), D" )y

Here A is the positive definite Laplacian. Hence, if the vortex equation is satisfied,
then

Alplg =~ 9Dl — 2/ —1AD"°h, D" )y. (5.12)
This can be written as
(—A—[9l7)x—|dlF) = =2/ —1AD"°¢,D"°¢)y. (5.13)

The right-hand side of (5.13) is less than or equal to zero (as a calculation in local
coordinates will show). We can thus apply the maximum principle to the elliptic
operator (—A — |¢|3). This yields the required result, namely

(t—1ol7) 20
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