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Abstract. We construct all the periodic irreducible representations of W(SU(3))q for

q a m-root of unity. Their dimensions are k(2m)2 for k = 1,..., in I only k = 1,..., —
\ \ 2

for even m 1. Their interest is that they could be a tool to generalize the chiral

Potts model. By truncation of these representations, we construct "flat repre-
sentations" of %(SU(3))q9 in which all the multiplicities of the weights are set to 1.

I. Introduction

In [1], M. Rosso classified the finite dimensional irreducible representations of
the quantum analogue <%(&)q of the enveloping algebra of a complex simple Lie
algebra when the parameter of deformation q is not a root of unity. He proved
that they were deformations of the finite dimensional irreducible representations
of the classical (̂̂ ). They are in particular characterized by a highest weight λ
corresponding to a classical representation of $/(&) and by ωe{l, — l, ΐ , — i]
characterizing the average (the center value) of the eigenvalues of the generators
hi of the Cartan torus.

In [2], the finite dimensional irreducible representations of <%(SU(2))q for q a
root of unity are classified. The new fact is that the dimensions of these representa-
tions is bounded by w, if qm = 1. The d<m representations are called regular
and correspond to unitary representations of the WZW theory based on affine
SU(2) level m — 2. Furthermore, the m-dimensional irreducible representations can
be periodic, in the sense that the generators J+ and J~ are not nilpotent and act
as Zm. Continuous parameters also enter in their definition. In [3], the composition
of regular representations is studied. It leads to a sum of irreducible and indecom-
posable representations, an explicit truncation being possible to recover the sum
over regular representations provided by the WZW theory. This result is
generalized in [4] to all the quantum analogues of simple Lie algebra.
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The periodic representations of <%(SU(2))q are used in [5] and [6] for a
connection to the chiral Potts model.

In this paper, we classify the periodic irreducible representations of ^ί(SU(3))q

for q a mth root of unity and prove that their dimensions are fc(2m)2 with k = 1, . . . , w*,

I where m* = m if m is odd and m* = — if m is even j. These representations may

play a role in a generalization of the chiral Potts model, with a method inspired
by that of [5,6].

In Sect. II, we derive an auxiliary algebra jf whose finite dimensional irreducible
representations are the fundamental tool to construct the periodic irreducible
representations of %(SU(3))q. In Sect. Ill, we classify the irreducible representations
of s0. In Sect. IV, we perform a truncation of the (2m)2 -dimensional periodic
representation of <%(SU(3))q and obtain a new type of highest weight representations,
which we call "flat" since all their weights have multiplicity 1. In Sect. V, we study
a subtlety that appeared in II when m is a multiple of 3, and prove that this is
indeed not a particular case.

We conclude the introduction with the following remark: each simple link of
the Dynkin diagram of a simply laced algebra provides a constraint, via the Serre
relations, corresponding to the constraint of a single Sί/(3). So it seems that the
knowledge of periodic representations of <%(SU(3))q will be the basic tool for the
construction of the periodic representations of the quantum analogues of a simply
laced algebra. The generalization of this work to the quantum analogue of simply
laced algebras will be the subject of a further publication. Note however that the
results of Sect. IV on flat representations are immediately generalizable to the
W(SU(N))q case.

II. Derivation of the Auxiliary Algebra stf

The quantum group <%(SU(3))q is defined by the generators q±hil2,eiji (i= 1,2)
and the following relations:

(S)

where (ay)£ j=1 2 is the Cartan matrix of SC/(3), i.e.

-. V
We shall not use the coalgebra structure in the following. The representations we
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will construct will be representations of the algebra structure only. The coalgebra
structure is then the tool to construct the analogue of the tensor products of
representations corresponding to the composition of cinetic momenta.

We shall suppose in the following that m is the smallest integer such that qm=l.

Lemma. As a consequence of the commutation relations, ( Î )
2m, (fι)2m and (qhί/2)2m

are in the center of the algebra.
Note that this is true for <%(SU(N))q for general N. But for N = 2, the mth

power is enough [2] since in that case the Cartan matrix contains no odd integers.

Lemma. Let M be a finite dimensional simple module over <C. Then qhί/2 and qh2/2

are simultaneously diagonalizable and

M= M - +

where Mλ l > λ 2 is the common eigenspace ofqhl'2 and qh212 associated to the eigenvalues
qλl and qλ\

There is a subtlety here if m is a multiple of 3, since in this case the sum is not
a direct sum. For reasons which will be explained in the last section, it is nevertheless
possible not to distinguish this case in the following.

Proof of the Lemma. Since qhl/2 and qh2/2 commute, let v be an eigenvector of both
of them, associated to qμι'2 and q*21'2. Then M = <%(SU(3))q v since M is simple.
Because of the commutation relations, every A v, where A is a word made of
£i's,/'s and ghl/2's, is an eigenvector of qhίl2 and qh2/2 associated to the eigenvalues
qμι/2-pι+P2/2 and qμ2/2-P2+pi/29 where p. ig fa number (modulo 2w) of /i's minus

the number of ef's in A.
We now make the assumption that /\ and e2 act injectively on M, i.e., since

f\m and e2

2

m are in the center and since M is a simple module

2m 2melm-v = (x,2'V

with o^eC* and α2eC*.
Let Mμιl2 ,μ2/2 be a common eigenspace of qhl/2 and qh2'2 associated to qμι/2

and q*2'2. Then/! (respectively e2) defines an isomorphism (of vector spaces) from
M

μι/2,μ2/2 to Mμ,/2- ι,μ2/2 + ι/2 (respectively Mμ ι / 2_1 / 2 § μ 2 / 2 + 1) which consequently
has the same dimension. Since fl and e2 commute, any basis of Mμι/2>μ2/2 can be
carried to every Mμ,/2>//2/2. With such correlated bases,/! and e2 can be defined to
act as a multiple of identity, i.e.

where Vpltp2 denotes a vector in

and ypί + l>p2 a vector in

^Ai

with the same coordinates.
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Action of e^ and f2. The commutation relations [ei9f{\ = (hi)q imply

= -(
Lαι

H —(
L<*2

(2)

where /?P2 (respectively ypl) is an operator that does not depend on pί (respectively
p2). This solves the constraints given by the two <%(SU(2))q subalgebras generated

Lemma. The dependence of βp2 and yfl on p2 and p^ respectively is given by

Proof. This is a direct consequence of two of the Serre relations (S) applied to Vfltf2:

e1e
2

2) Vpl_p2 =0=*βp2-(q + q~ί)βp^ί + βp2_2 =0

(Note that (a + 1), - (q + q'l)(a)q + (a - 1), = 0 Vα.)
The two other Serre relations now provide the following constraints on the

operators β, β', y and /:

1
(E) q-n-tβ /

1

<*ι "

v+
α2 α2

All the relations of definition of

(F) -

are now satisfied on the module
but [>ι,/2] = 0. This leads to the following four relations

1 .. 1
, + -

+ -

rrr9M2j8 + ̂ 7] = 0,

1 1

— έj"μ2β' + ΓΛvΊ = 0- ι \ ^ ^ L^'' J '
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1 1

1
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(*2(q-q l )

where the equation (ειε2)ε, = ±ι is the coefficient of g
βlpl+β2(p2 + 1) in

Let us now define the algebra j/ by the generators

and the relations provided by (E), (F), ( + , ±)

(E) ^"-<ΓW=1 (F)

q-q 1

quv — q~1υu

q-q~l

(+-) I/-M + ί-r

qvv —q vv

qυ'u' — q 1u'v'

— i

= 1

(_+) v-u'- ^T[w,t/]=0.

Note the similar form of (E), (F), consequence of the Serre relations (S) and
(++),(--), due to [el5/2]=0.

(—h) is not independent and can be derived for example from (E), (-f- —) and

Since/! and e2 provide an identification of all the common eigenspaces of qhί/2

and qh2/2, the classification of all the irreducible representations of <%(SU(3))q with
oq =£ 0 and α2 Φ 0 reduces to the classification of the irreducible representations of
the algebra $0 generated by U,U',Ό and υ'. The first ones will then have a dimension
(2m)2 times bigger than the second.

The expressions of the quadratic and cubic Casimirs of <%(SU(3))q are given
by [3] C2>3 =(C+ ± C-)l(q±q~l\ where

c.-̂ -L ,2+(4hι+2h2)/3
1 1

z)/3f /> j_ r,-l-(2hι

-2-(2Λι+4Λ 2 )/3 _|_ -2(Λι-Λ 2 )/3 _ 3)

C_ =idem with q<-*q ~l (Cas.)
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In terms of elements of j / 9 they write

(Q. ~ Q ~1 )2 C + = qu + q ~1 v' + vu' - 3,

(q - q~l)2C. = qv + q~lu' + v'u - 3.

III. Classification of the Irreducible Representations of the Algebra si

Lemma. um, ι/", v'm and u'm are in the center of si. If m is even, um/2, ι;m/2, t/(m/2) and
tfoe center

This is a consequence of the relations of definition of si.

Since — will often occur instead of m when m is even, let us define

m if mis odd

m .
— if mis even

.2

Let M be a simple module on si. Let us first suppose that one of these operators,
say u, is such that um* = λm* ̂  Q On M. The operator u is then invertible and dia-
gonalizable on Jί (since its minimal polynomial has only simple roots) and its
eigenvalues can be X λq2,λq*~ λq2(m*~1\

Theorem 1. // um* Φ 0, then dim M ^ m*.

Proo/. Let us decompose u9u',υ and ι/ in blocks:

(Assume that x^ = 0 if ̂  or ̂  is empty.)
Then let

From (E) and (++):

and
(u' — u~ 1)ίj = 0 unless j = i — 1 (modulo m*),

(υ — M~ 1)/J. = 0 unless j = i -f 1 (modulo m*).

Let us define

υ+ =V-u~l

in order to write the algebra si in terms of w,u'_,v+ and relations.

Obviously,
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Inserting the expression of vf given by (H—) into (F) and ( ) leads to the
following relations:

qv2

+u'_ — (q + q~'1)v + u'_v+ + q~lu'_v2

+ = — (q — q'l)2(2}qv+\_q~lu — q2u~2~\ (F')

and

qv+u'2—(q + q~l)u'_v+u'_ -\-q~lu'2v+ = — (q — q~i)2(2)qu'_[cιu — q~2u~2^ ( ')•

Combining these two relations leads to

They also allow to check that

(u'_)m*ecenter of jtf,

(ϋ+)m*e center of si.

Let now x be a common eigenvector of u,u'_v+ and v+u'_, associated to the
eigenvalues λq2\ a+ and α _ .

Then

(v + x) is then a common eigenvector of u, u'_v+ and v + u'_. Similarly,

u'_v+ '(u'_x) = β_(w'_x).

(u'_x) is also a common eigenvector of u, u'_v+ and v+u'_.
We are now ready to prove our Theorem 1: let us consider two cases:

• If u'_ is not injective, let x be a common eigenvector of u, u'_v+ and v + u'_ with
α_ = 0. Then Vect{ι/;x}fc=0> ...fm*.1 is stable since u'_v\x is proportional to t^"1*
and since t?**x is proportional to x. So Vect{v^x}k=s0tmmmtt^_l is a submudule of
M, so is equal to M since M is simple. Hence dim Jί ^ m*.

-If u'_ is injective, let x be a common eigenvector of u9u'_v+ and v + u'_. Then
Vect{M'*x}k = 0 t ...,m*_ι is stable and hence equal to M. So dim^ = w*.

We check then that the relations (F') and ( -- ') are compatible.
Theorem 1 is then proved. A representation M of dimension k ̂  m* of stf is

then characterized by

• its dimension k
• the eigenvalues λ ^0, α+ and α_ of u,u!_v+ and D + M'_ on one of the commn
eigenvectors. These values are related to the quadratic and cubic Casimirs (Cas) by
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q-q

• the value of (w'_)m* and (ι;+)m* on M.

Let Jί be a simple module on Λ/, and let us now suppose that wm* = 0, t;m* = 0,

u'
m* = 0 and ι/m* = 0 on M. We shall now prove the

Theorem 2. There is no finite dimensional representation of <$# on which all the
generators u, v, u' and v' are nilpotent, but for m = 4 (w* = 2), in which case there
are four two-dimensional irreducible representations of stf.

Proof, u is not yet diagonalizable. (Unless if u = 0 which contradicts (E) and (++).)
We shall first prove the

Lemma. There is a basis of M on which u is written as a m* x m* matrix of blocks
of size N x N.

/ f } 0 •" 0 O λ

Id 0 ... 0 0

u = 0 Id ... 0 0

\ 0 0 Id 0

(Id and 0 are N x N matrices.)

Proof of the Lemma. We first choose a basis of Ji such that u takes a Jordan
form, i.e. a matrix with zeroes everywhere but just under the diagonal where there
can be either 0 or 1. Denote this basis

It satisfies

and

,.γ(0 _ γ(ί)uxk -χk+

such that Jί = @Jfh where Jtt = Vect{x^°}k=0 m i_ 1 is stable under the action
ofw. ί=1

Then decompose t?, u' and v' in blocks, i.e.

Now (++) applied on Jίj and projected on Jίi implies

• mt Φ 1
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v,, =

/*
*

*

V *

l-q2

*

*

*

0

ι-<?4

*

*

... o

... o

... *
*

0

0

l-q«"
*

\

i- l)

/

and = 0

and hence mί = m*.

/* 0 0 -

* * 0 -

* * * .

\* * *

• 0 0 \

- 0 0

- * 0

.. * * /

for i

So w, = w* Vie{l , . . . ,JV}, and the lemma is proved after an inversion of the
indexes k and i of our original basis

"

Now uυ is a triangular matrix with (1 - q2(i~ * j)Id in the diagonal, and is hence
diagonalizable. Furthermore, all the eigenspaces have the same dimension N. We
eventually choose the basis where

where Id is the N x N identity matrix.

Since j

(1 — uv)u = q2u(l — uυ)

u and v in this basis are such that

Uy = 0 unless j = i - 1 (modulo m*),

vtj = 0 unless 7* = i + 1 (modulo m*),

and ttί.i-iUί-^-ίl -^2(ί~υ)Id, so that we can write

\

u =

V =

υ υ

Id 0 •••

0 Id •••

\Q 0 .-.

/O (l-q2))

0 0

0 0

V O 0

υ υ '

0 0

0 0

Id O/

,

Id 0 ••• 0 0 \

(l-^4)Id ••• 0 0

0 ••• 0 (l-q^'-^ld

0 -•• 0 0 /
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(E) implies < u|v = 0 for ;>i

=«~ 2« for ^1'

i \ * r ' --• - for

( ) implies

_

but (H—) also allows to compute t/, and in particular υ'i+ί r If m ̂ 4 (m* ^2),
the two expressions of ι/ ί + l ί are incompatible. In this case, there is no finite
dimensional representation of jtf with M, t;, ι/ and M' nilpotent. Theorem 2 is then
almost proved.

Finally, if m = 4 (q = i)

_ f ° QN\ _Y° 2Id\ / _ / X ι 2Id \ / _ / X ι " 1 2 ^
Vld O/' " V O Of M ~ W 2 ι -KM/ ^ V l d -ι/22/'

"M 2 1 = —u'ii/2 since

with

MI x is then the only non-trivial operator. If x is an eigenvector of u\ 1 with eigenvalue
λ, then Vect{x}0Vect{x} <^J^ = J^l@J^2 is stable. We hence obtain a two
dimensional representation of s/. Note that λ satisfies A4 = %iλ since v'2 = 0, which
allows four distinct values for A.

So our Theorem 2 is proved and we summarize this section with

Theorem. The finite dimensional irreducible representations of stf have their

dimension between 1 and m ( respectively —for m even I.

Hence, back to «(Sl/(3))β:

Theorem. The finite dimensional irreducible representations of <%(SU(3))q, where all

the generators are injectίve are of dimension k(2m)2 with k = 1,..., m I respectively

\ v

— jor even m 1.

Note that fl and e2 injective is actually the only hypothesis we have made.
Note also that the non-trivial generators e^ and /2 (2) are 2m-idempotent on

irreducible representations, which is equivalent to the fact that w, v9 vf and u' are
m*-idempotent on irreducible representations of s/.

IV. Truncation and Flat Representations of

In this section, we perform a truncation of the representation defined above, in
which the operators /J, /?', γ and / (or M, v, u' and v1) are chosen to be scalars (i.e.
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in their one dimensional representation). This (2m)2 dimensional representation

M is described by (vpίtp2)pltp2 = o,....2m-ι>

,

ι ' ϋPi,P2 = — (Pi - x\(Vi - * - Pi + P2 + !)« [Vpi - ι,p2>Lαι J

2't fp i ,p2 = — (P2+l-3>)«0*2-) '-P2 + Pl)« Γ*W+1>
Lα2 J

where
ί7 _ /ϊu — if

and
l since wι;=l.

The truncation is obtained by choosing particular values of X 9 y 9 μ 1 and μ2,
and forgetting the constraint that fl and e2 should be idempotent.

Let us first fix x and y to be integers, say 0. (Hence μ1 + μ2 -f 1 = 0.) Then

= 0 and 1̂̂  = 0

2 - 0 f°Γ

/2^ l f (w/2)-ι=0 and /2^ l f (3m/2)-ι=0 for even m.

M still remains a module when we perform the following change on fl ana e2:

α! and α2 can then be set equal to 1 by a change of basis since there is no periodicity
left.

But now M is no longer irreducible and M0 = Vect{ϋplfp2}pl >P2 = 0, ...fW*-ι is a
submodule of M. The periodicity of the set of weights is lost, so there is no
invariance under the action of the Weyl group. But the sets of weights provided
by the action of the Weyl group correspond to another truncation, obtained by
setting for example μ^—x and μ2 — y to be integers instead of xl and x2

We finally choose integer values for μx (and hence μ2) so that

G*ι - x - Pi + P2 + 1)« = - 0*2 ~ y ~ P2 + Pι)«

appearing in the expressions of el and/2 can also vanish. M0 is no longer irreducible
(but indecomposable). The upper-left part of M0 (see fig.) is a submodule of M0.

This submodule enters in the category of ordinary irreducible representations
of 4f(Sl/(3))β. Its highest weight λ is in the authorized sector (i.e. the part of the
first Weyl chamber in which (/ί, θ)<m*— ί, where θ is the highest root of SU(3).
This sector is painted in the case m = 5 on the figure representing the d = 19
representation.) Note nevertheless that the values of qhί/2 and qh2/2 on this
submodule are not necessarily centered at 1, but at (ω^ω2\ where ωf = 1 [1,2].
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ordinary rep

d=m 2 =2 d=18 (flat)

(i e. no multiplicity)

d= 15 (ordinary) d=18 (flat)

(λ,θ)=m-1

d=19 (flat) d=15 (ordinary)

Figures for m=5

All the multiplicities of its weights are 1 (its Young tableau is ΓΓΠ Π with
strictly less than m* — 1 Π's and corresponds to the completely symmetric case).

Quotienting M0 by this upper-left submodule leads to another indecomposable
module, whose upper-left part is again a submodule we call Mj. Quotienting by
M! leads to an irreducible representation of Φ(Sl/(3))β, this time corresponding
to the Young Tableau -|-|- P with stricly less than m* -1 columns. All its

weights have multiplicity 1 and it also corresponds to a pair (ωl9 ω2) not necessarily
equal to (1,1).

Back to M!, the most interesting part of M0. This module corresponds to a
highest weight λ on the line just after the edge of the authorized zone of the first
Weyl chamber, i.e. (λ,θ) = m* — l. It does not correspond for example to an
integrable representation in a WZW theory. Its particular feature is that it has
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exactly the shape of an ordinary representation of SU(3) or ^ί(SU(3))q with generic
q, but all the multiplicities of its weights are 1 by construction unlike the ordinary
case, so that we call it a "flat representation." This means that the representations
of <%(SU(3))q with highest weight λ such that (A, θ) = m* - 1 do not remain
irreducible when qm = 1 (unless they are triangular ones). If m = 3 for example,
there exists a d = 1 irreducible representation of Φ(Sl/(3))β, arising from the
decomposition of the ordinary d = 8 representation. This is another new fact when
comparing to the <V(SU(2)\ case [2].

The sets of weights of the representations satisfying (A, θ) = m* - 1 are drawn
on the figure in the case m = 5.

The whole content of this section is immediately generalizable to Φ(Sl/(JV))β:
there exist (2m)N-1 -dimensional irreducible periodic representations which can be
truncated (or partially truncated) to flat representations. This is nevertheless not
true for the quantum analogue of the other simply laced algebras D or E. This
remark and further investigations on W(SU(N)\ will be the subject of a different
publication.

V. Subtlety for m Multiple of 3

When m is a multiple of 3, we have

[0*1/2 j2m/3e2m/3] = [^2/2 j2m/3^2m/3-j =Q

The sum (1) cannot consequently be a direct sum, since (pl9p2\ { Pi + — , P2 + — ),

. / 2m 4m \
and ( pί + — , p2 + — 1 correspond to the same common eigenspace of qhί'2 and

\ 3 j /
qh2/2 ^Q tken kave to restrjct the sum (I) to

A f = @ ^μι/2-pι+p 2/2,μ 2/2-j>2 + J » ι / 2 » (3)
pι=0,...,2m-l

/72 = 0,...,2m/3- 1

and e2 has to be redefined on the boundary p2 = 0 of this domain by

e2:Mμί/2-pi,μ2/2 +pί/2 ~* ^μιf2-(pι -ί-4m/3) + (m/3 - l/2),μ2/2 +(pι +4m/3)/2 -(2m/3 - 1)>

^pι,0l~^α2^pι ^pi +4m/3,2m/3- 1

The operator^lpl cannot be chosen to be proportional to the identity (i.e. preserving
the choice of basis) since /2»/3β2m/3 is not in the center of the algebra.

Since [/x , <^m/3] = 0, we have API = Apί + l so API = A does not depend on p t .
Since e\m = α^Id, we have A3 = Id.
The relations [^,/J = (ht)q and two of the Serre relations still allow the

derivation of the expressions of ei and /2 and the definition of β,β',γ and y' (or
M, M', v and i/). But another consequence of [>2, /2] = (h2)q on the boundary of the/ o \
domain I p2 = 0 or -- 1 j is

' = q2ml3υ'A,
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whereas the Serre relation (e^e^ — ••• = 0) implies

Au = q2m/3uA,

Au' = q4ml3u'A. (AU)

u, v, u' and υ' still have to satisfy the relations of definition of ja/, which are
compatible with (Au) and (Av).

Since at least one of the operators M, υ, u' and t/ is invertible, (Au) and (Av)
associated with A3 = Id imply that the three eigenspaces of A have the same
dimension N. So A can be written as a permutation of three N-dimensional vector
spaces

Each common eigenspace of qhί/2 and qh2/2 splits then in three parts of dimension
N and we write

l +2m/3,p2 + 4ro/3

so that

The general strategy can then be followed, and the periodic irreducible representa-
tions of W(SU(3))q with m multiple of 3 will also have the dimensions k(2m)2

with k = 1, . . . , m*. In particular, no further reducibility dividing the dimension by
3 will occur as suggested by (3).

VI. Conclusion

The eventually known irreducible representations of <%(SU(3))q for q a root of
unity are the following:

- the highest weight representations characterized by a highest weight λ such that

-the periodic representations, of dimensions k(2m)2 with /c=l, . . . ,w*, also
characterized by continuous parameters. This paper exhausts this type of repre-
sentatations.

- the flat representations, characterized by a highest weight λ such that (λ, θ) =
m* - 1. All the weights of these representations have multiplicity one.

We might think that this gives a complete classification of the irreducible
finite dimensional representations
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