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Abstract. The hydrodynamic behaviour of interacting diffusion processes is
investigated by means of entropy (free energy) arguments. The methods of [13] are
simplified and extended to infinite systems including a case of anharmonic
oscillators in a degenerate thermal noise. Following [14,15] and [3-5] we derive a
priori bounds for the rate of entropy production in finite volumes as the size of the
whole system is infinitely extended. The flow of entropy through the boundary is
controlled in much the same way as energy flow in diffusive systems [4].

0. Introduction

In a recent paper Guo-Papanicolau-Varadhan [13] proposed a new, fairly general
approach to the hydrodynamic description of microscopically reversible spin
systems in finite volumes. Using the free energy (relative entropy) of the model as a
Liapunov function, they found that space-time averages of the evolved state
approach a canonical local equilibrium, cf. Holley [14]. Although the parameter of
this canonical state, that is the mean spin, has not been identified yet at this stage, a
beautiful second entropy argument shows that the mean spin happens to be stable
at the macroscopic level, therefore it is controlled by the conservation law. This
means that the evolution equation of this conserved quantity closes up in the
hydrodynamic limit, and a non-linear diffusion equation is obtained. From a
probabilistic point of view, this result is a sophisticated law of large numbers
formulated in a functional space; a more advanced technology yields also the
related theory of large deviations [2]. The main purpose of this paper is to extend
the entropy arguments of [13] to infinite systems, see Fritz [6,7] and Funaki [10]
for some previous results based on a different method. We are interested also in the
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hydrodynamic behaviour of certain anharmonic systems in a degenerate thermal
noise, cf. Fritz-Maes [9]. Our main tool is an a priori bound revealing the diffusive
nature of the flow of free energy, see Holley-Stroock [15] and Fritz [3,5] for some
previous results. Results of this kind are sufficient to derive the law of large
numbers in the hydrodynamic limit for some symmetric, and weakly asymmetric
infinite systems. For the associated large deviation theory [2] one also needs an
additional a priori bound controlling the local entropy of the space-time process,
cf. Lemma 6.1 of [13]. In a preliminary version [8] of this paper we did some
calculations on the basis of the Maruyama-Girsanov formula. Although our
bound seems to be sharp in some cases, it is not sufficient for the study of large
deviations, so we do not discuss this question here.

1. Problems and Main Results

In this section we follow a possibly simple presentation of some ideas and results;
generalizations and technical details will be added later. First we consider
interacting diffusion processes ωk indexed by the set of integers, JΓ, thus the
configurations of the system are real sequences ω = (ωfe)feeir. The evolution law is
given by an infinite system of stochastic differential equations:

dωk=^lVf(ωk + 1)-2Vf(ωk)+V'(ωk.ί)']dtΛ-dwk.ί-dwk, ke&, (1.1)

where F:R->R is a one-body potential, V' = dV/dx, and wfe, ke££ is a family of
independent, standard Wiener processes. Notice that (1.1) is just a conservation
law for the spin ω, it is in fact a Ginzburg-Landau lattice model with (free) energy

) = Σ V(ωk), thus we have a family of reversible states λz9 zeR,

λz(dω)= Π
(1.2)

For convenience we assume that Fhas two continuous derivatives, V" is bounded,

and liminf V"{x)>0. The second condition implies Σ(z)< -f oo for all zeR, while
|x|->oo

the first one yields the existence of unique strong solutions to (1.1) in a
configuration space, Q, defined as

Ω=\ω: lim \ωk\e"m=0 for <5>θΊ, (1.3)

see [6,7] for some further references. Equip Ω with its relative product topology
and the associated Borel structure, of course, λz(Ω) = 1 for all z. The generator of
the diffusion defined by (1.1) in Ω is actually an extension of an elliptic operator, (G:

= ί Σ ί(8k+i-dk)
2φ~(V\ωk+ι)-Vf(ωk))(dk+ιφ-dkφ)-], (1.4)

where dkφ = dφ/dωk, while φ:Ω->ΈL is a smooth cylinder function. Although the
proof is immediate, we shall need such a statement for finite dimensional diffusions
only.

We are interested in the asymptotic behaviour of the rescaled spin field
Sε = S*(φ) as ε->0,

Sε

t(φ) = s Σ φ(εk)ωk(t/ε2), ε > 0, φ e Cg(R), (1.5)
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where <£l(JR) denotes the space of twice continuously differentiable φ :R->R with
compact support. Since Sε is a normalized sum like that we have in the law of large
numbers, a deterministic limit is expected:

lim Sε

t(φ) = f φ{x)mt(x)dx in probability (1.6)
ε->0

with some asymptotic density mt for each t > 0, at least if the very same statement
holds true at t = 0. This means that we are given a family of initial distributions μ£,
ε>0, on Ω, and an initial density ρ:R->]R such that

lim Sε

0(φ) = f φ(x)ρ(x)dx in με for φ e Cg(β). (1.7)
ε->0

A formal derivation of the limiting equation is quite easy. From (1.2) we see that

$V'(ωk)λz(dω) = z and iωkλz(dω) = Σ'(z)/Σ(z) (1.8)

for all k e Jf, thus z = J'(ρ) whenever ρ = J ωkλz(dω), where J denotes the convex
conjugate (Legendre transform) of log Σ9

J(ρ) = sup[zρ-log2;(z)]. (1.9)
z

This means that if the system approaches a local equilibrium as ε->0, that is ω(t/ε2)
is distributed in an asymptotic sense by a measure of type (1.2) with some spatially
inhomogeneous profile zt = zt(x) of the chemical potential, then mt = Σ'(zt)/Σ(zt)
must satisfy a nonlinear diffusion equation, namely

^ ^ = ρ. (1.10)

There are two rigorous methods to derive (1.10) from a microscopic model like
(1.1). If V is strictly convex, then (1.1) behaves as a parabolic equation of divergence
form, thus we have some very effective a priori bounds; in fact, these bounds do not
depend on ε or the actual realization of the process. In this case the initial
distribution is almost arbitrary, besides (1.7) it is sufficient to assume that μ\ ε > 0 is
a tight family with respect to a certain weak topology of Ω, see [6, 7, 9, 10] for a
precise formulation and further results. The challenging problem of a non-convex
V has been solved by Guo-Papanicolau-Varadhan [13], they consider (1.1) with
periodic boundary conditions, i.e. on a circle. In this case it is natural to assume
that the relative entropy of the initial distribution with respect to some equilibrium
state λz is bounded by a multiple of the number of active sites; thus entropy can be
used as a Liapunov function for the evolved measure. They show that this
condition together with (1.6) imply (1.10) as the hydrodynamic limit of (1.1), both
equations should be considered with periodic boundary conditions. Further
developments based on the same method are presented in [2, 11, 16,18]. For an
early application of entropy as a Liapunov function for symmetric diffusion see
Nash [17].

In the case of an infinite system we have to consider local quantities, thus an
additional difficulty appears: boundary effects should also be controlled. Let 0tn

denote the σ-field of Ω generated by the variables ω_M,ω_π+1, ...,ωπ, we define a
reference measure, Qn on 0ln by its Lebesque density qn,

(1.11)
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and Pn^dμJdQn whenever μπ, the restriction of a Borel probability μ to Mn, is
absolutely continuous. Then the (non-equilibrium) free energy of μ in the box
[—n,ri] is defined as

Fn(μ) = ̂ ogpndμ if μn<Qn, Fn{μ) = + oo otherwise. (1.12)

In a smooth case the temporal derivative of Fn(μ) along the evolution (1.1) can be
decomposed as

2ke& Pn

= -Dn(μ) + Bn(μ), (1.13)

where

\ l ί(k+ίpnkPn)Qn, (1.14)
έk=-n Pn

while Bn(μ) is the rest from the second line of (1.13). It is well known that Dn admits a
variational characterization [1], but Bn and Fn may not be defined for arbitrary μ.

Consider first Bn(μ% the boundary term of entropy (free energy) production;
using the variational characterization of entropy, and the Schwarz inequality as in
[3], we obtain two bounds on Bn:

(1.15)

\ (1.16)

where K is a constant depending only on V. Notice that Dn is increasing by
convexity, while the increment of Fn is bounded from below. On the other hand, if
μΐ = μψt denotes the evolved measure, then at least at a formal level we have

Fn(μt) + j Dn(μs)ds ^ Fn(μ0) + j Bn(μs)ds. (1.17)

The above set of inequalities can be solved in various situations; difficulties
concerning the smoothness of μt are postponed to the next section.

In a stationary regime Dn = Bn, and we expect that Dn(μ) = 0 for all n, i.e. μ is a
canonical Gibbs state in the sense that μ and λz have identical conditional
distributions given the total spin inside any box, and the configuration outside of
it. Comparing (1.15) and (1.16) we obtain that

(1.18)

therefore, if Dm>0 for some m, then

(\ 10^

for n ̂  m, which results in a contradiction in two cases.

Theorem 1. // μ is a stationary state such that Fn(μ) < + oo for each n, then any of the
conditions Fn(μ) = o(n2\ or Fn + ί(μ) — Fn(μ) = Θ(ή) implies that μ is a canonical Gibbs
state. •
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The formal part of the proof is immediate from (1.19). If Fn = o(n2), then n — m
<Lδn(Dmy1/2 follows for each δ>0 and n>nδ by the Schwarz inequality, thus
Dm(μ)^δ2. In the second case we get c/n^D'1 —D~+x for n ^ m with some c > 0 ,
and the contradiction follows by summing over n. Technical details of the proof
are to be added in the next section, but let us remark here that there are many other
stationary states. Indeed, if zk = a + bk, z = (zk)ke#, and λz denotes the product
measure defined by (1.2) with this linear profile of the chemical potential z, then
each measure of this type is stationary, and also reversible with respect to (1.1).
Notice that Fn(λz) = Θ{n3) if b * 0 .

In a time dependent situation we use (1.16) and (1.17) to estimate Fn and Dn. It
might be interesting to see that energy flow in parabolic systems is controlled by
the very same set of inequalities. For a simple example, let F:R-*]R be strictly
convex, for ω e Ω define,

n n— 1

un= Σ ωk> vn= X (ωk + 1 - ω k ) [ F r ( ω k + 1 ) - F ' ( ω k ) ] ,
k=-n k=-n

and assume that ω evolves according to the deterministic (drift) part of (1.1).
Differentiating un we obtain immediately that

ύn + vn^ίK(un+1-un)V'2(vn+1-vf'2, (1.20)

which is satisfied also by un = Kn + Fn and vn = Dn. This differential inequality can
be solved by means of a trick of [4], if

Fn(μ0)SCn for n ^ l , (1.21)

then we obtain that t

Fn(μt) + ί Dn(μs)ds ^ CK[n2 + f ] 1 / 2 (122)
o

for all n ̂  1 and t ̂  0, where K is a new constant depending only on K. This a priori
bound allows us to apply the method of [13] to infinite systems with a minor
change. Since we are not able to derive an effective bound for the local space-time
entropy of the infinitely extended system, cf. Lemma 6.1 of [13] and Proposition 4
of [8], we can not refer to tightness of the rescaled distribution on the space of
measure valued trajectories. Nevertheless, we can manage by means of an H ~ 2

topology, thus we do not need any further information on the dynamics. On the
other hand, (1.22) is a microscopic bound, thus we need not introduce space
averages of the evolved measure. The crucial Theorem 4.7 of [13] (two-block
estimate) will also be simplified. In Sect. 4 we prove

Theorem 2. Suppose (1.7) andFn{με)^ Cn for alln^l andε>0. Then (1.6)holds true
for all t > 0, and the limiting density mt is specified as the unique weak solution to
(1.10) such that mo = ρ and

i ί !>?(*) +1 Vmt{x)\2]e ~ Wdx dt < + oo
o

for allT>0; Vmt = dmjdx. •

The dimension of the space, and the concrete form of the interaction is not
relevant for the proof, once we have Theorem 4.2 of [13] (equivalence of
ensembles), we can extend the law of large numbers to infinite volumes, cf.
Rezakhanlou [18].
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Our second question concerns the limits of the free energy (entropy) method, its
basic condition is certainly the reversibility of the microscopic system. Weakly
asymmetric problems can be treated as lower order perturbations of reversible
models, see [2, 9, 16]. In such cases the reversible component dominates the
asymmetric part in such a brutal way that the latter has no influence on the
structure of local equilibrium. Hamiltonian systems in a thermal noise are more
delicate. Indeed, the Hamiltonian part preserves entropy, thus we can weaken the
strength of the noise. Let us consider an anharmonic chain on 2£ with Hamiltonian

H(p,q)= Σ lPΪβ+V(qk + 1-qk)-}, (1-23)

where p = (Pk)ke&> <lk = ((lk)ke&> Pk><lke^ a n < l F^R-^R is a symmetric potential
with the same regularity properties we had before. The equations of motion can be
written as

dpk = ίV'(rk)-V'(rk^y]dt, dqk = pkdt, (1.24)

where rk = qk+1—qk denotes the deformation. This model admits stationary states
in the (p, r) variables, r = (rk)k€#, but they are not reversible in the usual sense. For
the entropy method we need some stochasticity of the evolution, usually the noise
and damping are added to the equations for pk, see [5,9]. However, this kind of
random perturbation is not regular enough, even the weak uniqueness of solutions
to the corresponding limiting equation is problematic. That is why we investigate
the following system:

dp* = [ H r * ) - n r k i ) ] * ,

where α>0, and wk, ke^C is a family of independent standard Wiener processes.
The configuration space of (1.25) is chosen as Ω2 = ΩxΩ, see (1.3), thus ω = (p,r)
= {pk, rk)ke% if ω e Ω2. This law admits two additive integrals: Σpk and £ rfc, and all
canonical Gibbs states with energy H(ω)=£ \_pl/2 + V(rk)~\ at unit temperature are
stationary measures of (1.25) for all α>0.

There is another, a little bit more convincing motivation of (1.25). Let us
consider a Hamiltonian particle system interacting by a symmetric pair potential
V. We have then a stochastic evolution such that both the momentum and the
particle number are conserved, namely

dpk = - dkHdt, dqk = pkdt - | dkHdt + ]/αdwk, (1.26)

where α > 0, H denotes the total energy, dkH = dH/dqk, and wk are independent
Wiener processes, but we do not know any similar, momentum preserving
perturbation to dpk = — dkHdt. Now, if the dimension of the space is just one, and V
has such a big hard core that only neighboring particles can interact, then (1.26)
reduces to (1.25) for pk and the interparticle distance rk = qk+ι — qk; notice that, due
to the hard core of V, (1.26) preserves the order of particles on R.

From the point of view of hydrodynamics, there are two different limiting
procedures for (1.25). The hyperbolic scaling is the most natural one, then the
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conserved fields are rescaled as

n<P)= Σ εψ(εk)pk(t/ε), Wφ)= Σ ^ψi^MΨ), (1.27)

and their limiting densities, π and ρ are to be defined by

lim P\{φ) = J φ(x)πt(x)dx, lim R*t(φ) = J φ(x)ρί(x)dx (1.28)
ε > 0 ε » 0ε->0

in probability for φe(Co(]R). Since (1.25) describes a thermal equilibrium, a
nonlinear wave equation is expected:

dtπ = V J'(ρ), dtρ = Fπ, (1.29)

where dt = d/dt, V = d/dx9 and J is the same as in (1.10). In the case (1.26) of particle
systems a formal calculation yields dtρ+V(ρu) = 0, dt(ρu)+V[ρu2 + p(ρ)]=0 as
limiting equations, where ρ is the density, u is the velocity field, and p denotes the
dynamic pressure; they are the hydrodynamic equations of an isentropic gas.
Unfortunately, the entropy argument yields only a very weak form of local
equilibrium in these cases, we do not have the so-called two-block estimate. The
problem we are able to solve belongs to the weakly asymmetric category.

Suppose that α = α/ε5 and ά > 0 is fixed. This massive noise changes even the
macroscopic equation, we expect

dtπ = VJ'(ρ), dtρ = Vπ + | ΔJ'{ρ) (1.30)

as the hydrodynamic limit of (1.25) with this scaling, where A=d/dx2. The
conditions of this statement are similar to those of Theorem 2. In this case @ln is
defined as the σ-field of Ω2 generated by the variables p _ B + 1 , p _ π + 2 , ...,pπ, r_B,

gn(ω) = exp|~- Σ p2/2- £ V(rA (1.31)
|_ k=-n+l k=-n J

Qn is a finite measure on 3tw and fn = dμJdQn whenever μn is the restriction of a
Borel probability μ to 3tn. We define Fn by Fn(μ) = J log fndμ iϊμn < Qn, and Dn(μ) by
(1.14) with dk = d/drk and fn in the place of pn, at least if/„ is smooth. Our inequality
controlling the flow of free energy now becomes

dtFn(μt) + ocDn(μt) ̂ LK[K + Fn+ 1(μ f) —

whence, if Fn(μ0)<^Cn for n^ 1, we obtain that

Fn(μt) + α ί Dn{μs)ds ^ CK[_t + (n2 + αί) 1 / 2] (1.33)
o

for all Πέiί and ί^O; K is a new constant depending only on V. Although Dn

controls only the distribution of the deformation r, the right-hand side of our
system (1.25) of evolution equations depends in a linear way on the momentum p,
thus we do not need any further information on the distribution of p. In the last
section we prove

Theorem 3. Let oc = α/ε and suppose that με, the initial distribution satisfies Fn(με)
^U and (1.28) for t = 0. Then (1.25) implies (1.28) for allt>0 with limiting
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densities π and ρ specified as a unique weak solution to (1.30), such that

l l +00 for Γ > 0 . Dί ilπ

The proof is based on our a priori bound (1.33). To understand its structure,
notice that the generator of the Markov process defined by (1.25) can be written as
a sum: (G=]L+α(Gr, where

d'k = d/dpk; while <Er is of type (1.4), it is acting only on functions of the r variables.
The Hamiltonian part of the evolution preserves the free energy, the contribution
of IL to the temporal derivative of Fn consists of boundary terms only, namely

\d-φd'_Jn+ιdQn+ί~\d-φd'n+Jn+ιdQn+l- (1-35)
J J

It is a very fortunate situation that B'n can be controlled by means of other
boundary terms of Fπ, thus we get (1.32).

2. A Priori Bound for the Flow of Free Energy in Reversible Systems

The problem admits a fairly general formulation for systems of real valued spins on
a countable, connected graph Sf. The configuration space is defined as

Ω= \ωeΈLy: lim |ωk |έΓa'*' = 0 for <5>0l, (2.1)

| ι*ι J* 00

where \k\ denotes the length of the shortest path connecting k with a distinguished
site θe^. Let Sk denote the set of neighbors of fee$? including fe itself,
An = [fe e Sf: |fe| ^ ri] the graph structure of ίf is characterized by the requirements
that supcardS f e< + 00, and lim card ̂ ίπ+1/cardy4M = l as n-+oo. The Borel field of

ke&>

Ω with respect to its product topology will be denoted by &,$n is the σ-field
generated by the variables ωk such that keA2n, <Db(ρ) is the space of continuous and
bounded φ: ί2-»IR, while CQ(Ω) denotes the space of twice continuously differenti-
able cylinder functions φ:Ω-*]R with bounded second derivatives.

The interaction of the system is given by a family of potentials VBe<£l(Ω),
where Bc£f is finite, and VB may depend on ωk only if fee B. For convenience we
assume that V is finite in the sense that VB+0 implies B C Sk for k e B, VB(ω) ̂  0, and
all second derivatives of any VB are bounded by the very same constant, while
sup\dkVB(ω°)\ < + 00 with ω° = 0 for; e Sf. To ensure the existence of Gibbs states
with energy H(ω) = ΣVB{ω) we need a condition of superstability: we have some
a0 > 0 and ax ^ 0 such that VB{ω) ̂  aoωk — aι whenever B consists of a single site, k.
Let λ denote a Gibbs state with energy H at temperature 1. We consider interacting
diffusion processes in Ω generated by (E,

© = Σ <G6, <Sbφ=Kdb(cbdbφ)-cb(δbH)dbφl, φe<C2

0(Ω), (2.2)

where ^ + CΩ such that | 6 k | ^ l for each keS?9bk*0 implies b ; = 0 ϊoτjφSk, and

dbφ= £ bkdφ/dωk. The coefficients cbe <Cl(Ω) are assumed to be uniformly
k ^
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bounded together with their first and second derivatives, cb(ω) ̂  1 for all ω e Ω
unless it is identically zero, and cb may depend on co,- only if j e Sk for some k e 9*
such that frΛφ0. Let Sk denote the set of be^+ such that bfc + 0; we assume also
that Sk

+ is never empty, and sup card Sk

+ < +αo. The stochastic equations
associated with (G are k e ^

ftΓ-]=0, (2.3)

where wb, be£f+ is a family of independent, standard Wiener processes.
There are two basic examples of such processes. If 5f+ = ίf and db = d/dωb, then

we obtain a class of stochastic gradient systems, see e.g. [3]. Ginzburg-Landau
lattice models with conservation law are defined on an oriented graph 5 ,̂ Sf + is the
set of positively oriented bonds, while db = dj—dk if b is the bond directed from k to
j . If dbcb = 0 for all b, then cb can be interpreted as the conductivity of bond b.

Under the above set of conditions, which will be assumed in this section, it is
easy to solve (2.3) in Ω in a unique way, see [7] for a brief explanation and further
references. In fact, it is possible to construct a strongly continuous Markov
semigroup, IP, in <Cfc(Ω) such that (CQ(Ω) is a core of its generator denoted also by (E.
Finite-dimensional approximations to (2.3) can be obtained by letting cb = 0
outside of a finite subset of Sf.

Consider now the free energy in a finite box and its rate of production. Let Qn

denote a finite measure on $n with Lebesque density gπ(ω) = exp[ — Hn(ωJ]9

Hn(ω)= Σ VB(ω). (2.4)
BcΛ2n

If μ is a Borel probability on Ω, and beΛ*, then

Fn(μ) = sup [J φdμ - log J έ*dQH: φ e (^(OJnΛ J , (2.5)

D&μ) = 4 sup Γ - J i <Gbφdμ: mϊφ >0,φe <R(Ω)n^n J , (2.6)

β»(μ)= Σ D5(μ), Λ+ = [be^ + : ί> f c = 0 unless keΛ2n-1]9 (2.7)

where φe$n indicates that φ is ^-measurable. Since Λ_γ is empty, Do(μ) = 0. In
the smooth case we have Fn(μ) = \\ogpndμ,

Db

n(μ)= ^^(dbPn(ω))2Qn(dω)9 (2.8)

where μn is the restriction of μ to ^ π , and pn = dμn/dQn, see [1]. In view of (2.5) and
(2.6), both Fn and D£ are convex and lower semi-continuous functions of μ with
respect to the weak topology of probability measures, and Dh

n{μ)^.Db

n+1{μ)
whenever beΛ+. Since Qn+1is not an extension of βn, and they are not normed, Fn

is not necessarily an increasing sequence. Nevertheless Fn+ι— Fn, a conditional
free energy, can also be used to estimate expectations in the spirit of (2.5).

Lemma 1. There exists a constant K depending only on S and V such that if
Λd

n = Λ2n + 2\Λ2r» then
2 d D
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Proof. Let 0 < α < a0 and gn(ω) = exp Γ — α £ ωjΠ, by convexity of x logx, and by
L keΛ°n J

the properties of the interaction

Jp n + 1 log [ VtAn

LPn+lQn
g n ] Q n + 1 ^ g ^ g n Q n + ί ύ l

n+l J Qn+l

which completes the proof by a direct calculation. •

The flux of free energy can be handled as follows. Let /„ denote the Lebesgue
density of μπ, and set hb

n = dbpn/pn, then

qn + dbHn + x - 3ftH π,

thus we have

(2 9)
Λ μ H - i Σ Scbh

b

nh
b

n + ίdμ. K' }

Since D ^ D ^ + 1 if beΛ* by convexity of D, we get

)^lXn(μ)lDn

)=4 Σ

On the other hand, integrating by parts we obtain that

= ί ίdbμ(cb I « J - <V6] Λ&iμ + J μ(c, | @R)hb

Rdbfttdω,

where ^(<p|^n)=J(^(ro)/i(ii£o|^n), thus by the Schwarz inequality we obtain a
second bound for Bm namely

Bn(μ)= -Xn(μ) + lXn{μ)Rn{μ)Vl2ύίRn(μ), (2.11)

+ Σ (2.12)

Lemma 2. Suppose that Fn+1(μ)< + co and pn+1e CQ(Ώ) IS positive, then we have the
following bounds for Bn(μ):

if cfc = 0 then the corresponding term vanishes by convention.

Bn(μ) ^ min βRn(μ), [RB(μ) (Dn + ^μ) - Dn(μ))l1/2], (2.13)

and Rn(μ) is controllable if bkφ0 implies dcJdω — 0 whenever \j\>\k\; in such
situations we have a constant K depending only on Sf and V such that

Rn(μ)SKlKcardΛd

n + Fn + 1(μ)-Fn(μK. D (2.14)

Proof. The first statement of (2.13) is just (2.10), but Bn^0 and (2.11) yield Xn^ Rn,
thus (2.11) results in (2.13). In view of Lemma 1, (2.14) reduces to

Σ ωldμ\ (2.15)
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which can easily be verified as dbμ(cb\3tn) = μ(dbcb\$n) by assumption. Indeed, the
first partial derivatives of VB satisfy a uniform bound of type a + b Y \ωk\, while cb,

keS

cardSfc, card S£ are also uniformly bounded, thus (2.15) follows by a direct
calculation.

Remark. The assumption of Lemma 2 concerning the dependence of cb on the
configuration will also be assumed in the rest of the paper. A natural version is
cb(ώ) = ck(ωk) if bj = 0 for j φ k; then cb is a constant unless b is sitting on a single site
of £f. This condition seems to be a very technical one, but I do not see any way to
remove it. •

The second set of inequalities of Lemma 2 can be solved by means of a
sophisticated weight function of [4], the following lemma covers also the case of
anharmonic systems, see (1.32).

Lemma3. Suppose that un + l(t)^un(t)^0 and vn+i(t)^vn(t)^>0, ί^O, n = O,l,...
satisfy un(0) ̂ C card Λ2n, and

dujdt + <xvn ̂  a(un +1-un_1) + α[K(wπ +ί-un.1){vn + 1- vj]ί/2,

where α > 0, a ̂  0, K > 0, u _ x = 0. Then we have a constant M depending only on K
such that for all t^O and n^ 1,

o

°° 1 / m\
Σ -exp - -

m=o r \ r J

cardΛ2m,

where r = aMt + [n + αί] ; . •

Proof Let θn{r)=J θ(x/r)θ{n - x)dx for r > 0, where θ: R^(0,1] is defined by 0(0) = 1
and

I= signx if

i(x-signx) if l ^ | χ | ^ 3 ,
and consider

u(t,r)= Σ (θn-θn+1)un(t), v(t,r)= Σ (θn-θn+1)vn(t).
n=O π=O

We may assume that r ^ l , then θn^ellrθn+1 implies θn — θn+ί^(2/r)θn+1 and
θn — θ«+i^2min[^,^ + 1 ] by an easy calculation, see [4]. On the other hand,

Σ (θn-θn + 1)vn = θovo+ £ Θn+1(vn+ί-vn),
n=0 π=0

whence by means oΐ xy—y2β^x2/2 we obtain that

du a

which can be solved by the method of characteristics. Let r(t) = n and drjds + Aa
= 0 for O^s^ί, then

u(t, n) + - J φ , r(s))ds ̂  u(0, r(0)),
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and dr2/dt + $ar + 6otK = O, consequently

r2(0) ̂  n2 + 6aKt + 8α j φ ) ώ ^ n2 + 6αKί + 8αίr(0),
o

that is r(0)^8α£ + [n2 + 6 α ! α ] 1 / 2 . Since e~nlr^θn{r)SM'e-nl\ the statement
follows from the initial condition. •

Now we are in a position to prove the main tool of this paper.

Proposition 1. Let μt = μSP1 and Fn(μ) ^ C cardΛ2« for aM n> then we have a constant
M depending only on £f and V such that

x °° M / m\
Fn(μt) + ί Dn(μs)ds ^ C Σ — exp - - cardΛ2m

0 m = 0 T \ r)

forn^i and t^0, where r = M[n2 + ί ] 1 / 2 . Π

Proof. Let Mn(i) = F ^ ) + Kcardyl2n, vn(t) = Dn(μt\ and suppose first that cb = 0
outside of a finite set of έ?+, and μ<^/l with a nice density such that Lemma 2 is
applicable, then Lemma 3 implies the statement immediately. Since the infinite
system can be approximated by such a partial dynamics, Proposition 1 extends
also to this case by lower semicontinuity of Fn and Dn. To complete the proof, we
have to find an approximation μδ to the initial state μ in such a way that Lemma 2
applies to each μδΨ\ Fm(μδ)S{C + l)ceirdΛ2m, and lim Fm(μδ) = Fm(μ) for each m,

which is not difficult. Indeed, let gδ

m denote the joint density of some independent
normal variables ωfc, ksΛ2m of mean zero and variance δ, and define μδ by

\φdμδ=\\φ{ω)gδ

m{ω-ώ)μ{dώ) if

Let fi — gδ

m* fm and qδ

m = gδ

m* qm, where/mis the Lebesgue density of μ on 0im, and
g */ denotes the convolution of g and / Notice that fi is just the Lebesque density
of μδ on Mm, thus by Jensen's inequality we obtain that

The last term here can be estimated by means of the quadratic upper bound of Hm,
thus μδ->μ in the above sense. •

The free energy argument yields the following technical result on the stationary
states of reversible diffusion processes.

Proposition 2. Suppose that μ = μP\ then any of the following two sets of conditions
implies Dn(μ) = 0 for each n,
(i) cnrdΛ2n = o(n2)andFn(μ) = o(n2),

(ii) c a r d ^ = 0(n), F0(μ)< + oo, and Fn+ί(μ)-Fn(μ) = &(n). •

Proof We need both inequalities of Lemma 2. In view of the argument outlined in
Sect. 1, the only problem is that of the smoothness of μ. In the frames of Lemma 2
from D / l + 1 = D n + D w + 1 — Dn we obtain by a direct calculation that

Ui-DM112, (2.17)



Entropy Flow in Infinite Systems 343

where the following abbreviations are used: \u\+ =max[0,u],

t

Ci = Fn+1(μ0) + KftC2iτdΛiκjΛUi+Kf^Rn(μs) + Rn+M']ds.

There are two ways to derive a priori bounds for D. Suppose that D^ > 0, in the case
of (ii) we follow [15] and derive

i - 2 ^ \Fk(μ0)-Fu(μt)\2ΛC'kr
1+2(Dt

m)-1, (2.18)
k=m k=m

in the case of (i) we use the Schwarz inequality to conclude

"Σ
k = m

\nΣ
[_k = m

\Fk(μ0)-Fk(μt)\++\Σ CjTVj- 1 ' 2 - (2-19)
[ j

Now we are in a position to exploit the lower semi-continuity of F and D. Let μδ ^μ
as in the previous proof, then Fk(μδ)-^Fk(μ) and Fk(μt) = Fk{μ)SlimmϊFk(μδ), thus
the first sums on the right-hand sides of (2.18) and (2.19) vanish in both cases. On
the other hand, the dynamics depend in a continuous way on initial data, thus Ck

also converge to their values corresponding to the stationary state, consequently
both (i) and (ii) yield bounds for C[. This means that the proof can be completed by
means of our elementary calculations given after Theorem 1. •

If the entropy is not locally finite then a regularization trick of [3] is still
available; the conditions cardΛ^ = O(n) seem to be sufficient to conclude that every
stationary state satisfies Dπ(μ) = 0 for each n, which implies that μ is a reversible
measure of any other evolution specified by such coefficients cb that cb + 0 implies
cb + 0. Further consequences depend on the structure of £f+, if ί ^ φ y + then
reversibility may be a much weaker property of μ than Dn(μ) = 0 for each n. The
variational characterization (2.6) of the Donsker-Varadhan rate function is not
really convenient for concrete calculations, we prefer its following consequence, see
[3].

Lemma 4. Let fe (CQ(Ω) be bounded, beΛ* and cb^.l for each ωeΩ.Ifμ is a Borel
probability, and Fn(μ)< + oo, then

g f djdμ + [jf2dμ] 1 / 2 [/>Ml 1 / 2 D

Proof. Our condition implies that all expectations are finite, and μ has a density pn

with respect to Qn on &n. If pn is smooth then we can integrate by parts, thus

f fdbHdμ = f f(dbH)pndQn = ί dbfdμ + f fdbPndQn >

which implies the statement by the Schwarz inequality. The proof of the general
case is based on Sect. 4 of [1], we may, and do assume that cb — 1 and Dh

n(μ) < + oo.
Observe first that

thus (—<Gb)
1/2 is the closure of db in TL2(Qn). The corresponding stochastic

equations are obtained by letting cb, = 0 in (2.3) whenever V φ b, thus we see that Gb

generates a strongly continuous semigroup of self-adjoint contractions Ψj, in
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ΊL2(Qn). Although IP£ does not admit a transition density in general, following the
proof of Theorem 5 in [1] we obtain that

ί f(ω) ίf(ω) - F J M I Qn(dω) S tDb

n(μ),

where f=]/pn, consequently / belongs to the domain of (—(Gb)
1/2, and the

iΛnorm of (-fljb)
1/2/ is not greater than [Z^(μ)]1/2, which completes the

proof. •

The following consequence of Lemma 4 results in a simplified proof of the
famous two-blocks estimate of [13]. We are going to show that the gradient of
energy varies slowly in space if the production of free energy is small. Let dkH
= dH/dωk and f(ω)= Σ φkSkH, where φ: Sf ->R vanishes outside of a finite set.

kef

We can estimate J f2dμ by means of Lemma 4 as soon as we find some g: Sf+-*IR
such that φfc = ̂ kg, where ^ f c g= Σ bkgh\ then we have an identity

/(ω)= Σ ψAH(ω)= Σ gAH(ω), % = <**g. (2.20)

Let us remark that if ̂ + is the set of positively oriented bonds, then bond variables
like g play the role of vector fields, thus 38 can be interpreted as a discrete version of
div.

Lemma 5. Let f φ, g as in (2.20) and suppose that gb = 0 ifb φ Λ*, cb^l ifb e Λ*. We
have some K depending only on Sf and V in such a way that Fn(μ) < + oo implies

Proof From Lemma 4 we get

ίf2dμ= Σ ifgΛHdμS Σ
b&+ beSr

Σ

Observe now that Σ & A / = Σ Σ Ψkφfiiβfi ιrί y i e w °f (2.20), thus the first sum on
the right-hand side can be estimated by a multiple of Σ ψl On the other hand,
X2 ^ a + bX implies X2 ^ 2a + 2ί>2, which completes the proof. •

There are several ways to use this lemma. For example, choosing φk = 1 or — 1
on two different domains, while φk = 0 otherwise, we obtain a bound for the mean
square deviation of the corresponding averages of dkH. In view of the one-block
estimate, this yields an asymptotic bound of the same kind also for the block spins.
Since Proposition 1 controls only macroscopic space-time averages of ωk(t), it will
be very useful to compare microscopic and macroscopic averages in this way
allowing us to investigate local equilibrium in fixed microscopic domains.

3. Anharmonic Systems in a Thermal Noise

Here we investigate the flow of free energy in systems like (1.26), the following
generalization is immediate. Let ίf and £f* be as in the previous section,
configurations are couples (p,r) such that p = {pk)ke#'EQ r = (rb)be^+ ^Ω+, where

lim \rb\e~m = 0 for δ>0~|, (3.1)
|ί| J
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and |6| denotes the smallest value of \k\, k e if such that bk + 0. Let Sb denote the set
of b'e^+ such that bkbk^O for some ke£f, then sup cardS^ < + oo, thus the

corresponding graph structure of £f+ is essentially the same as that of Sf. Assume
also that bk — bj for all b e Sf + implies; = fc, then Sf can be identified with a subset of
Ω+, thus the relation of ίf and ^ + is symmetric. We consider a Hamiltonian of

= ίΓ(p,r),

H(P,r)= Σ 1PΪ+ Σ W , (3.2)

where VB e <£l(Ω+) depends on rb only iϊbeB; regularity and stability properties of
V are the same as in Sect. 2 with Sf in the place of the present ^ + . In the original
setup we had pk and qk as the canonical coordinates, and the potential energy
happened to be a function of some new variables rb = Σbkqk. Let us introduce the
corresponding differential operators: δk = d/dpk, db = d/drb, db=£ bΛ3fc,
δfc

+ =Σ^A + > ^ e n dH/dqk = dkH, thus the stochastic equations of motion should
be as

yk k (3.3)

bkdk

+Hdt + ]/a

where α > 0 and wk, fc G 5^ is an independent family of standard Wiener processes.
Observe that (1.26) is obtained as a particular case of (3.3) if b = (fc-»/c +1), bt = 1 for
i = fc+l, &;= — 1 for ι = /c, ^ = 0 otherwise, while k runs over £f = 2£. A similar
construction is possible even if if = ̂ d with d> 1, and ^ + is the set of positively
oriented bonds. However, if we insist on the original interpretation, then Σr& = 0
should be postulated for any circle in <2fd, and the constrained equilibrium states
are not really understood.

There is no additional difficulty concerning the Markov semigroup, P* defined
by (3.3), it is strongly continuous in <£b(Ω x Ω+), and (Cl(Ω x Ω+) is a core of its

generator, (E. From the Ito formula we obtain that G=]L + αG + , 1L= £ ΊLk9

<&+= Σ <Gfe

+,and
key

] (3.4)

for φeCo(ΩxΩ + ). Therefore a direct calculation shows that every Gibbs state
with energy H and temperature one is a stationary state of Ψ\ and it is even
reversible with respect to the evolution generated by any of <Gfe

+, keίf.
In order to define the local free energy and its rate of production, let 0tn denote

the σ-field of Ω x Ω + generated by the variables pk,keΛ2n-1 and rb9 beΛ^n, where
A%n is the set of b e £f + such that bk φ 0 for some k e Λ2n. A finite reference measure
β π is defined on each Stn by its Lebesque density gn = e~Hn,

HJ[p9r)= Σ iPΪ+ Σ VJj). (3.5)
keΛ2n-ί

If μ is a Borel probability on Ω x Ω+ then /xπ denotes its restriction to Stw and
FB(μ) = J log fndμ iϊdμn =fndQn, and Fn(μ) = + oo otherwise. A formal differentiation
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results in

) , (3.6)

+)n@n ,ΐ φ μ φ 0 ( ) n , (3.7)

Dn(μ)= Σ &M, Bn(μ) = $lLlogfndμ, (3.8)
keΛ2n-ί

B:{μ)=\ Σ idϊfn + 1^dQn+1. (3.9)
έ J

Of course, if fn+1 is smooth enough, and keΛ2n-1, then

Dk

n{μ)=\\^{dϊfnfdQn, (3.10)

while, again by integrating by parts we obtain that

Bn(μ)= Σ i | [ (3 f c / w + iR+/n-(5fc

+/n + iR/Jde M + 1 . (3.11)
key Jn

We have two further identities, for each k and n

n+1-dkHn\^n], (3.12)

n + 1 - 4 + H π | ^ J . (3.13)

Like in Sect. 2, from (3.13) we obtain

B:(μ)ί -X:(μ) + [X:(μ)K(μ)T12^ \K(μ), (3-14)

x:(μ)=l, Σ lUdttfdQ.,
kφΛ2-1 f" (3 15)

« π

+ ( μ ) = Σ ] [ ( d ΐ H d ΐ H \ M ) V d
kφΛi»

+ Σ
kφΛ2n-

while from (3.9) by monotonicity of Dn and by the Schwarz inequality

B:(μ)ϊ ίX:(μ)(Dn+ M-DM11'2 • (3-16)

The Hamiltonian contribution, Bn(μ) can be treated in a similar manner, but its
structure is different. From (3.12) and (3.13) we see that all terms with keΛ2n-ι
vanish by asymmetry, while dkfn = O otherwise, thus by the Schwarz inequality

(3.17)

Comparing the estimates above, we obtain

Proposition 3. There exists some constant M depending only on S, S+, and V such
that α ^ l and Fn(μ)^Cca,τdΛ2n imply

M ί m\
Ί^exp - - cardΛ2m
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for allnTtl and t^0, where R = Mt + M(n2 + αί)1/2, and μt = μlP' is the time evolved
measure via (3.3). •

Proof. From (3.17) and (3.14) we have

μ)S -αXπ

+(

Bn(μ) + αlC(μ) ̂  [Xπ

+(μ)lC(μ)]1/2 + α[XM

+(μ) (D, + » - DM1

follows from (3.16) and (3.17). If the common left-hand side exceeds [Xπ

+lC]1 / 2,
then Xπ

+(μ)< ĵRπ

+(μ), consequently

Bn(μ) + aB:(μ)SRZ(μ) + alR;(μ)(Dn+ί(μ)-DMy12, (3.18)

while the first inequality yields simply R+ as an upper bound in the opposite case,
which proves (3.18). Now we are in a position to estimate R* by means of the
increment of Fn, cf. Lemma 1, thus we obtain in the smooth case that

where K is a universal constant, thus the final inequality follows by Lemma 3. The
treatment of the general case is the very same as in the proof of Proposition 1. •

Let us remark that if α is small, then we obtain R+/oc as the first term on the
right-hand side of (3.18), thus R would grow as fast as n + ί/α. This means that α
must be bounded away from zero, but an upper bound is not needed. Our
inequalities are sufficient to derive such statements that every stationary measure
is a (canonical) Gibbs state in translation invariant situations only. We are not
going to discuss this problem here, see [5] for a particular case.

4. Passage to the Hydrodynamic Limit

We follow the argument of Guo-Papanicolau-Varadhan [13]. In view of
Proposition 1, the most crucial steps of the proofs remain unchanged, some of
them are even simplified a little bit. Since we do not have effective a priori bounds
for the local free energy of the process in space and time, we can not extend
Proposition 6.1 of [13] to infinite systems, thus some modifications of the original
proof can not be avoided. We prove first Theorem 2.

We start with a proof of the tightness of the family of time averages of the
evolved measures with respect to the relative product topology of R^. In view of
Proposition 1, the time average oϊFn(μt) remains bounded by a multiple of n only if
t = Θ(n2), thus the following averages will be frequently used in this last section. If
v is a real sequence indexed by ^ , then

Σ
j = k-n

(4.1)

and the set of Borel probabilities μ on R^ such that Fn(μ) S Cn for n > 0 will be
denoted by P(C). If μ e P(C) then Proposition 1 yields the following a priori
bounds:

ft
(4.2)
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for all n ^ 1 and t>0, where C ^ 1 by assumption, and M is a constant depending
only on V. The variational formula (2.5) implies that if μeP(C) and C ^ l , then

J Σn(0, ω2)μt(dω) ̂  MC (-^ + ^ ) , f > 0, π £ 1, (4.3)

VjΛ n J
where ω2 = (ω2)ke&, and M depends only on K Since the a priori bound of Dn

vanishes even in macroscopic domains as t goes to infinity, Lemma 5 yields a
microscopic a priori bound.

Lemma 6. // μ e P(C), C > 1, then J ω£ dμ, ^ XC(1 + \k\) with the same constant for all
dk •

Proof Let us apply Lemma 5 with φ:Jf->IR such that φo = l— (1 +2n)~ι,
φk = — (1 -f 2n)~* if \k\ ̂  n but fe φ 0, otherwise φk = 0. Remember that if b = (fe, k +1)
then db = dk+ί — dk, thus g& of Lemma 5 is just the sum of φ} for; ^ fe, consequently
Σg?g 1 + 2n, while ΣΨk^λ whence by (4.2)

where K ^ ί H ω J ^ e ^ . On the other hand, from (4.3)

ί K/0, n]2d ^ +
yt

where n is still free. Choose n as the integer part of j/ί, and compare the inequalities
above; the case of /c = 0 follows by an easy calculation as | ̂ '(x)! ̂  α±|x| — α2 with
some aγ >0. If fc + 0 then it is enough to notice that the free energy of μ in a box
[fc —n,fe + n] is bounded by C(nH-|fe|)^Cn(l + |fc|) if rc^l, which completes the
proof by repeating the same argument. •

Equal blocks can also be compared by means of Lemma 5, we get:

Lemma 7. Let μeP(C), C>1, N ^ M ^ 2 L + 1>1, then

Σ ί LΣL(k V')-ΣL( + , ) \ μ a \ ^ + ̂
k=-N \_L t

where K does not depend on C, JV, L, μ, and t. •

Proo/. We define a function φ for each k:φf = (ί+2L)~1 if | j - fc-M|^L, φ f
= -(1+2L)" 1 if |;-fe|^L, and it is zero otherwise, thus Σ M f c ) ] 2 = (l + 2 L ) 1

The associated g(k) vanishes outside of [fc - L, fe + M + L], and

" 1

+ 2L for each fe. Thus applying Lemma 5 to each term of the left-hand side, and
counting the frequency of each Db

2N on the right-hand side of the inequality, we
obtain the statement. •

In view of Lemma 6 the family [βt\μeP(C\ ί>0] is tight in R^, and (4.2)
implies Dn(μ)=0 for each n and for any limit point μ of a subsequence along which
ί-»oo, consequently μ is a canonical Gibbs state. Moreover, from the results of
Sects. 3 and 6 of [13] we also know that Lemma 6 and (4.2) imply

lim lim sup sup J \ΣL(k, V) - J'{ΣL(k, ω))\μt(dω) = 0 (4.4)
L->oo ί-^oo μeP(C)
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for each k e 2£\ a DeFinetti type extremal decomposition theorem can also be used
to derive such a statement, see [11,12]. Observe now that

\J'(ΣL(k, ω)) - J'(ΣL(k + M, ω))| ̂  \J\ΣL{K ω)) - ΣL(k, V)\

+ \J'(ΣL(k + M, ω)) - ΣL(k + M, V)\ + \ΣL(k, V) - ΣL(k + M, V)\ ,(4.5)

thus combining (4.4), the one-block estimate, and Lemma 7, we obtain the
celebrated two-block estimate of [13].

Proposition4.LetμeP(C), C> 1,0<(5< 1, iV>]/ί, and<5]/ί ^ M ^ 2 L + 1 > 1, then
1 / 2

\ +RL{t,Q,
iv k=-N

where M and R depend only on V9 and lim lim sup jRL(ί, C) = 0. •
L-* co ί-*oo

Proof. The first term on the right-hand side comes from Lemma 7, the second one is
the contribution of (4.4). Since N^]/t, we can use (4.3) to show uniformity of the
convergence of RL. In the present formulation it is relevant that J is strictly convex,
cf. [18]. •

Now we are in a position to turn to the macroscopic picture, the configurations
of the system will be interpreted as step functions on R. Let ε > 0 denote the scaling
parameter, με e P{C) is the initial distribution, and ^βε is the law of the rescaled
process ωε = ωε

t(x) = ω[xlE](t/ε2). We consider ψε as a Borel probability on a
trajectory space Cw([0, oo),H"2) defined as follows: If φ:!R-»]R is locally
integrable then ||<p|| is defined by | |φ | | 2 = Jφ2(x)exp(|x|)^, | |φ|l 2= | |φ | | 2 + | |^ | | 2 ,
||φ|| 1= | |φ | | 2 + Wφ'Wl, and H, H 1 , H 2 denote the associated Hubert spaces. Their
dual spaces with respect to the usual scalar product <<p, σ>=J φ(x)σ(x)dx are H*,
H " 1 , H~ 2, respectively; ||σ||2=Jσ2(x)exp( — \x\)dx and

||σ||f = sup[<φ,σ>: | |φ| | ί ^l], i=l ,2 (4.6)

define the corresponding dual norms. The original configuration space Ω is
embedded into H* for each ε > 0 in a natural way. From the Ito formula we obtain
immediately that if φ e M2 then

O , ωε

t} = <φ, ωε

0> + i J O" ? V'(ω$}ds + Mβ(ί, φ), (4.7)
o

where V'(ωl) = V'(ω%x)\ and Mε is the sum of the martingale part and a remainder
coming from the difference of φ" and its lattice approximation. By means of (4.3) it
follows easily that

$lM(t)-]2d%SKCT\\\\2 (4.8)

where K depends only on V, and the very same argument yields

] l (4.9)

(4.10)

lim supφJsup -sup \(φ,ωε

t+s}-(φ,ωε

t}\>a] =0 (4.11)
(5-+0 ε>0 \_t<T 0<s<δ J

for all T>0, α>0, and ( p e l 2 , provided that K is large enough.
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Consider now <CW = (CW([O, oo),H~2), the space of weakly continuous trajec-
tories in H ~ 2. In view of (4.10), (4.11) and the Arzela-Ascoli theorem the family ^βε,
ε > 0 is tight on C w , let φ denote any of its limit points as ε->0. From (4.9)

T

o ~~

which means that φ is concentrated on a set of locally square integrable
trajectories σ — σt = σt{x\ see Lemma 6.3 of [13]. Therefore we can define a
functional / for each ί^O, φeCj^R) and P-a.e. σe<Cw([0, oo),M~2) by

J(f,φ,σ,K) = , σt} - <φ, σo> (4.13)

where K: H * -*1H* is a uniformly Lipschitz continuous map to be specified later in
several different ways. The main part of the proof is to show that
$I(t,φ,σ,Kj)?β(dσ) = 0 for each ί and φ with Kj(u) = J'(u(-)); then the final
statement follows by the weak uniqueness of the limiting equation. From (4.7) and
(4.8) we know that lim J I(t, φ, σ, Kv)Sβε(dσ) = 0, while

£-•0

J I(t, φ, σ, KjMdσ) ^ lim inf f J(ί, φ, σ, KδjMdσ), (4.14)

f lit, φ, σ, K*j) ̂  lim inf f I(t, φ, σ, Kδj)%(dσ) (4.15)
£-•0

follow by the Fatou lemma and by the lower semi-continuity of /, where Kδj(u)
— J'(gδ*u\ gδ(x) — g(x/δ)/δ> a n < i %e&oQR) i s a probability density vanishing
outside of the interval ( — 1,1).

On the other hand, let

K ? » = AΣdίx/e], uε)), Kψ,L(u)=ΣL(lx/εl V'(u°))

whenever u:IR-»IR is a step function of step size ε, and uε = (u(εk))ke&. The one-
block estimate (4.4) and the a priori bound (4.8) imply that

lim lim sup J | J(t, φ, σ, K<£]L) - /(ί, φ, σ9 K$L)\%(dσ) = 0,

and K ( ^ L is almost the same as K F if L is fixed while ε goes to zero, consequently

lim limsupf/(ί,φ,σ,KS?JPβ(dσ) = 0. (4.16)

The crucial step of the proof is to fill in the gap between the large microscopic
average ΣL, L-+oo and the small macroscopic average gδ*, <5-»0. This is exactly the
task of the two-block estimate Proposition 4. Indeed, as gδ(x + εL) — gδ(x)

(4.17)

which completes the proof by weak uniqueness of (1.10). Like in [13], the two-
block estimate shows that 3̂ is concentrated on weakly differentiable trajectories,
moreover

} (4.18)



Entropy Flow in Infinite Systems 351

which is a sufficient regularity condition of weak uniqueness, see the proof of the
same property of the more general equation (1.30) below.

The proof of Theorem 3 is almost the same as that of Theorem 2, so we discuss
only the differences. Proposition 3 yields a fundamental a priori bound: for
μeP{C), C>\ we have

( 0 (4.19)

which can be used in the same way as (4.2). Of course, here μ is a Borel probability
on Ω x Ω+, and Dn does not control the distribution of momenta, but this is even
not necessary. Indeed, the weak form of the microscopic evolution law can be
written as

<φ,Pt> = O , Po> - ί <Ψ\ V\φds + 7β(ί, φ),

, r*> = (φ, rε

0> - J <φ',pl}ds + ~\ (φ\ V\φds + Mε(ί, φ),
o IJ
o

where Pί(x) = P[X/ε](ί/ε), φ ) = rWε](ί/ε) are the rescaled trajectories, ά = εα, and Y
and M vanish as ε->0. Since the right-hand side of (4.20) depends only in a linear
way on pε, its distribution is really irrelevant. In the same way as before, we obtain
that any limit distribution of the rescaled process is concentrated on weak
solutions satisfying the regularity condition of Theorem 3. Suppose now that (p, r)
and (p,r) are weak solutions, and define (u,υ) by dtu = J'(rt) — Jf(rt\ uo = 0; dtv = pt

-Pt+ VJf(rt) - yj'(rt), v0 = 0. Let X(t) = J θ(x) (uf + vf)dx, where θ is the same as in
the proof of Lemma 3. Integrating by parts, using the Schwarz inequality and
J " ^ 2 α > 0 we obtain that

dtX = 2 f θφt + J'(rt) - J\rt))dx + α f θvt( VJ\rt) - VJ\rt))dx

^KX{t)-a\θ{x)[rt{x)-rt{x)Vdx. (4.21)

Since Z(0) = 0, the Grόnwall lemma yields rt = rt a.s., whence pt = pt a.s., which
completes the proof of Theorem 3.

The problem of isentropic gas dynamics is to be discussed in a forthcoming
paper.
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