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Abstract. Explicit formulae are obtained, giving the number of independent
matrices which commute with the matrices S and T describing the modular
transformations of the SU(N) affine characters.

I. Introduction

In the context of rational conformal field theories, the construction and the
classification of modular invariants remains one of the major problems. In a
statistical mechanics language, this corresponds to the classification of all fixed-
points of the renormalization group in two dimensions.

As the Wess-Zumino-Witten models are thought to be the building blocks in the
construction of RCFT's, much attention has been focused on their modular
invariants. But although many such invariants are known [1], there is so far no
exhaustive list, except in the cases SU(2) [2] and SU(N) at level 1 [3].

Affine modular invariants are sesquilinear forms in the affine characters

where the coefficients Nλλ, are subject to appropriate conditions to make Z(τ, τ*) a
partition function [2].

For the affine SU(N) algebras, a systematic approach has been initiated by
Bauer and Itzykson [4]. They have given a description of the commutant of the
(extended) modular transformations carried by the characters. Indeed the modular
invariance of Z(τ, τ*) requires that the matrix Nλλ, belongs to this commutant.

Within the strategy adopted in [2] which led to the ADE classification for the
517(2) invariants, finding the commutant is the first step in the classification
program. An interesting alternative is the study of SU(N) lattice integrable models
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[5]. The authors of [4] succeeded in finding a basis of the commutant, abstractly
written in terms of finite quantum mechanics operators. The description they gave
allowed them to compute the dimension of the commutant only in the SU(2) and
5*7(3) cases.

It is the purpose of this article to provide explicit formulae for the dimension of
the commutant for any SU(N), at any level. The method relies on the main result of
[4], which states, among other things, that the dimension of the commutant is given
by the number of orbits of SX(2, Έ) acting on the set GnxGn=[Z"~2x ZnN]2 (there
is a minor change in case N is even and n = N+k), and on the extensive use of a
theorem in group theory, relating the number of orbits to the mean number of fixed-
points of SL(2, Έ) in GnxGn.

The results are too long to be written down here, but most of them are
summarized in Eqs. (3.3), (3.14), and (4.4). Only for SU(2) and SU(3) are the
answers simple. The general feature is that the dimension of the commutant for
SU(N) is a function which grows very rapidly as n2N~5, for large N and n. Section 2
consists of a summary of the main features of the SU(N) characters, includes those
results of [4] that are needed here and explains how a solution can be obtained.
Sections 3 and 4 establish the final result for the dimension of the commutant.

II. SU(N) Affine Characters

The SU(N) affine algebras at level k have a finite number of unitary integrable
representations [λj labelled by highest weights of representations of the finite
underlying SU(N) algebra [6]. The admissible λ's are those for which the condition
φ - λ S k is fulfilled, where φ is the highest root. From this constraint, one finds that

the number of affine representations is equal to ( I = ( I. (For what

follows it is easier to define the height n = N+k = dual Coxeter number -f level.)
Each affine representation contains an infinite number of states, which are

(partially) organized according to their Lo eigenvalue. The low-lying states
transform in the (finite) representation specified by the weight λ and they have an Lo

eigenvalue equal to hλ = C2(λ)/2n, with C2(λ) the quadratic Casimir in the
representation λ. For q = exp(2iπτ) = e(τ), I m τ > 0 , the restricted affine characters
are [7]

-fowl1-*2 Σ f n ( g ( A + g + l t f ) ) ) g ^ + ^ , . (2Λ)
teM \α>0 WQ) J

In Eq. (2.1), α runs over all the positive roots of SU(N), ρ is half the sum of the
positive roots (ρ = (1,. . . , 1) in Dynkin components), M is the root lattice of SU(N)
and η(τ) = q1/24 Π (1 — <f) is the Dedekind eta-function. All scalar products are

performed with the weight space metric. As is suggested by Eq. (2.1), the characters
are more easily described in terms ofp = ρ + λ; also the characters will be noted χp,
defined by Eq. (2.1) with ρ + λ replaced by p.
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The modular transformations of the characters (2.1) can be calculated with the
help of the Poisson summation formula,

XP(- l/τ) = Σ Spp Xp'W i Xp(τ +1) = Σ TPP'ZP'W '

In Eqs. (2.2-3), the sum on/?' runs over the fundamental domain Bn = {peM*:
Pi^l and p-ψ^n-ί}. W=SN is the Weyl group of SU(N). Since the two
transformations 5(τ)= —l/τ and 77(τ) = τ + l, satisfying S2 = (ST)3 = l, generate
the whole modular group, Eqs. (2.2-3) define a unitary representation of
PSL(2, Έ). As a function on the weight space M*, χp has the periodicity property
XP+nt = XP f° r anY r o o t * i n t n e r o o t lattice M. Moreover when/? is subjected to a Weyl
transformation w, one verifies the transformation χw(p) = (det w)χp, already used to
derive Eq. (2.2). /«-Γ

As a result of these properties, instead of considering the I J linearly

independent characters χp with/? in Bn9 one may look at a larger set of characters,
namely those χps for p in M*/nM. With this extended definition, there are now
Nn"'1 characters which are no longer linearly independent. Some of these are
identically zero, due to the antisymmetry under the Weyl group. For instance,

Zp-o(t) = 0.
Under modular transformations, this set of characters transform in an extended

unitary representation of dimension Nn1*'1 specified by the two matrices [it is now a
unitary representation of SL(2, Έ)]

\ L ) ( 2 4 )

1 N2-\

i 24

for p and p' in M*/nM. The matrix in Eq. (2.4) is just the matrix of the Fourier
transform on the additive group M*/nM.

To compute the commutant of the extended representation carried by the
characters amounts to look for all the matrices which commute with the matrices S
and T of Eq. (2.4-5). Its dimension is the number of matrices which are linearly
independent (over Q) and which commute with S and T. Of course the problem
originates in the fact that they must commute with S and T. It is instructive to give
estimates of the dimensions of the commutant of S and Γ, considered separately.
This is much simpler since the dimension of the commutant of a diagonalizable
matrix is equal to the sum of the squared degeneracies of its eigenvalues. For
simplicity, let us take N and n two different odd primes. Since S in Eq. (2.4) is a
Fourier transform, it has ± 1 , ±i as eigenvalues. By computing TrS (it is a
quadratic Gauss' sum) and TrS 2 , one finds that the degeneracies of the four
eigenvalues are approximately equal [8].
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Therefore a rough estimate is

dimension of the commutant of S~N2n2N~2 . (2.6)

The eigenvalues of T are explicit in Eq. (2.5), but counting their multiplicity requires
knowing the number of />'s in M*/nM that give Np -p the same value moά2nN.
(Due to the metric,/? -p is not an integer but a multiple of 1 /Ninstead.) This can be
solved by using first the equivalence of any quadratic form with a diagonalized one,
a theorem valid on finite fields of characteristic different from 2 [9], and then using
standard number theoretic techniques to evaluate how many times such a diagonal
quadratic form takes the same value in the congruence ring [10]. The outcome is the
following asymptotic behaviour

dimension of the commutant of T~Nn2N~3 , (2.7)

so that the commutation with T is a more stringent constraint than the
commutation with S.

Let Z^ e v e n ) denote the additive group of (even) residues modm. Concerning the
dimension of the commutant (of S and T), the authors of [4] have obtained the
following result: for SU(N) at height n, the dimension of the commutant is equal to
the number of orbits of SX(2, Έ) acting on Gn x Gn, where Gn = Z%~2 x ZnN in case N
is odd, while Gn = Z"~2x Z ^ v e n ) in case TV is even. If x and x' belong to Gn and if

\ is in SL(2, Έ), the action of SX(2, Έ) is
c a)

c d

and the multiplication of x, x' by the integers a, b, c,d is componentwise, (x and x'
are to be thought of as vectors with N— 1 components.)

Using the prime decomposition of n and N, the action of SL(2,Έ) can be
accordingly factorized.

Let us suppose that N= γ\pa{p) and n = T\py(p). Let us also define a parameter
P P

ε(p), equal to 1 if N is even and ifp is 2, and equal to 0 otherwise. The group Gn

factorizes as
Gn = H {Zjjta2 x Zpτw+«<rt-.<i>} , (2.8)

P

so that one can write the following formula for the dimension of the commutant of
SU(N) at heights:

dimN(rc) = Π { # orbits of SL(2, Έ) on [Z^ώ2 x Z/,r<Λ+«(#ι-.w]2} . (2.9)
p

The number of orbits appearing in (2.9) is of the general form

M(α, γ,k)=Φ orbits of SL(2, Έ) on \Zk

f x Zp^f (2.10)

for some prime number p.
The full determination of Λf (α, y, k) is possible by the following theorem, that

relates the number of orbits of a group acting on some set to the existence and to the
number of fixed-points the group has in the set [11].

Let G be a finite group acting on a set X. Denote by X9 the subset of X consisting
of elements of X which are left invariant under a fixed g in G: X9 = {x e X: g (x) = x}.
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Then

# orbits of G on X=—X—- Y cardX* . (2.11)
cardG g%

Because of the congruence modpa+y in (2.10), the group SL(2, Έ) is only effective
mod/?α+y, so that the invariant subgroup ΓQ?α+y) = {geSL(2,Z): g = ί
(mod/?α+y)} acts trivially. As a result, the group G in (2.11) is identified with
SL(2,Z)/Γ(pa+γ) = SL(2,Zp*+y) = SL(2,(x + γ), whose order is equal to
/? 3 ( α + y )- 2(/? 2-l) [12].

One can prove [11] that the cardinal of X9 and Xh are equal if g and h are con-
jugate, so that one can reformulate Eq. (2.11) in

# orbits of G on X= — Y card (class) card (X9) .CardG t
Therefore one could look at the problem by first finding the classes of SL(2, α + γ)
and then calculating the number of fixed-points of a representative g for each class.
But actually, this is more information than needed since different classes with the
same number of fixed-points need not be distinguished. The method adopted below
avoids the determination of the classes.

For the sequel, the following simple remark will prove very useful. The set
X= [ZpvxZp*+y]2 on which *SZ(2, α + y) acts is itself an (additive) group. Since the
sum of two fixed-points is a fixed-point, the subset X9 is a subgroup of [Zfr x Z^+y]2,
whose order is necessarily a power of/?, between 1 andp2ia+y+ky\ From this remark
one can compute the dimension of the commutant, for N and n two different (odd)
primes, in an extremely simple way, and then obtain a rough estimate of the
asymptotic behaviour.

From the above discussion, OL(N) and y(n) are equal to 1, so that dimN(«)
= M(0,1,0) M(0, UN-2). In case SL(2, ZN) acts on ZN x ZN9 there can be N2, N
or 1 fixed-points. That an element g in SL(2, ZN) has only one fixed-point implies
that the equation (x, x') (g — H) = 0 has the only solution (x, xr) = (0,0) in ZNxZN.
This implies that det(# — H) =4=0 (modiV). The number of such #'s is equal to
N(N2—N— 1). Since the matrixg = 11 is the only one which has N2 fixed-points, the
number of #'s that have Nfixed-points is equal to N(N2 — 1) — 1 —N(N2—N— 1)
= N2 — \. Therefore one gets

1

1 ) [N2HN2-1)N+N(N2-N-1)] = 2 . (2.12)

When SL(2, Zn) acts on Z"'1 x Z ^ " 1 = [Zn x Zn]
N~\ it is clear that the number of

fixed-points of a given g in SX(2, Zπ) is a (N— l)-th power of n, since the group acts
"diagonally" on the (N— 1) copies of Zn x Zn. The possible numbers of fixed-points
are thus «2(iV~1), n^'1 or 1, and the same reasoning as above leads to

Af(0,l,iV-2)= I [«2 ( N-1 ) + ( « 2 - l ) « j y - 1 + « ( « 2 - « - l ) ] . (2.13)

Equations (2.12-13) already give the dimension of the commutant of SU(N) at
height n, when TV and n are two different odd primes. Note the asymptotic behaviour

N(n) = M(0,l,0) M(0,l,N-2)~n2N-5 . (2.14)

This result should be compared with Eqs. (2.6-7).
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III. Counting the Orbits

This section and the next one are mainly devoted to the computation of M(α, y, k),
the number of orbits of SL(2, <x + y) = SL(2,p«+y) acting on X= [ Z ) x Z / + r ] 2 .

By the theorem stated in Eq. (2.11), one is led to calculate the number of fixed-
points in X of each matrix g in *SX(2, α + y). To a large extent, this is a problem of
linear algebra on finite congruence rings.

Let g be a matrix of SL(2, α + y) and x = (xa\..., xik\ y) an element of Zky x Z^+v,
i.e. x(ί) is taken modpγ, while y is taken mod/?α+y. The fixed-points of g are the
solutions (X xr) of

-ί) = 0 (mod/?y)

η . (3.1)

If g has z?-7' fixed-points (y,yf) in Z£+τ and /?' fixed-points (x{i\xf{ί)) in Zjy (0^7
^ 2 α + 2y and 0^/^2y), it is clear that g has pj+kl fixed-points in X.

Therefore the problem is twofold: (i) to count the #'s in SL(2, α + y) which have
pj fixed-points in Z^*+y and (ii) among these, to count how many have/?* fixed-points
when they are reduced to SX(2,y)?

Let us denote by F{^y){j, I) the number of matrices in SL(2, α + y) with/?7 fixed-
points in Zp*+y and pι fixed-points in Zfr.

Then by Eq. (2.11)

Af (α, γ,k)=Φ orbits of SL(2, Έ) on X= \Zk

f x Zf^f

\ 2α+2y 2γ

and from Eq. (2.9), one gets the dimension of the commutant by

-2) . (3.3)
P

In order to explicitly determine F^y)(j, /), we collect some preliminary results, first
dealing with the case α = 0.

To fix the notations, let p be any fixed prime number. An element x in Z ŷ,
the set of integers mod/?y, can be represented as a power series
x = xo + x1 •/? + ... + x y _ 1 -py~ι, where the "digits" xt are taken mod/?. Ẑ y is an
additive group with py elements. Those x's such that x + O (mod/?), i.e. x o φ 0
(mod/?), are invertible mod/?y and form the multiplicative group Zjfy with
Pγl(p — 1) elements. The notation ordp x = k (k is called the ordinal of x) means
that pk divides x but pk+1 does not. We will also frequently use the following
expansion of geSL(2,y) in power series of p\g = \ + # o + 0 i ' / 7 + +6fy-i 'Pyl>
where the g/s are two-by-two matrices whose entries are taken mod/?. Finally [x] is
the largest integer smaller or equal to x, for x real.

Lemma 1. For O^j^y — l,the number ofg's in SL(2, y) which have exactlypjfixed-
points in Z2

py is equal to F$(jj') = card{geSL(2,g): ord p det(g-H)=/}

The case 7 = 0 is clear because if g has only one fixed-point, the equation
(x, x'){g — H) = 0 should admit as the only solution the trivial one, (x, x') = (0,0).
Therefore g-ί is invertible, which implies that det(#-H)Φ0 (mod/?).
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Let 0 - 1 =( ). From det(g-1) = ad-be = 0 (modpj) and det g=\+a+d
\c d)\ )

+ad-bc=\ (mod/?7), one finds that Ύr(g-ί) = a + d=0 (modpJ). The character-
istic equation of g — 1 is

Therefore, if b or c is invertible, the matrix g — 1 is equivalent to the Jordan form

The ordinal of det (g — D) equal toy implies c' Φ 0 (mod/?). The fixed-points of g are
the solutions of (x, x')(g — 1ι) = 0, i.e.

a'psx + c'psx' = 0 (modp*) , (3.5a)

. (3.5b)

Equation (3.5b) gives x in terms of x' and Eq. (3.5a) implies the following condition
on x'\(a'd'pj — c')x' = 0 (modpγ~j) or xf = 0 (modpγ~j). There are pj solutions
x' = Xy_j-py~J-\-... -\-x'γ_ί 'p7'1, and therefore pj fixed-points (x,x') for 0.

If neither b nor c is invertible (i.e. they are divisible by/?), the condition on the
determinant of g — 1 implies ad = 0 (mod/?2) fory ^ 2. The only possibility consistent
with the condition on the trace is a = d= 0 (mod/?). Hence 0 — 1 = 0 (mod/?) and one
may set 0 - 1 = / ? ( 0 - 1 ) , d e t ( 0 - 1 ) = O (mod/?J"2) and T r ( 0 - 1 ) = O (mod/?-7'"1).
One repeats the above argument for g —11, by taking into account that the number of
fixed-points of g in Z*y is that of g in Z^-i times p2.

The first lemma allows an explicit calculation of the number of elements in
SL(2, y) which have at most/?7" * fixed-points in Z2v. In dealing with matrices g with
more fixed-points, the following result proves extremely useful.

Lemma 2. Ifg = ί (mod/?) and j^y + 1, g = ^+g1'P+g2'P
2 + ••> has exactly pj

Z2y 2

J~2

( / ) j y g g1Pg2P
fixed-points in Z2y if and only if g = ί +gχ-\-g2 'P+θs %p2 + ... belonging to
SL(2,γ-ί) haspJ~2 fixed-points in Z2

f-κ Moreover det(#-H) = O (modpy+1).

Let g = U -\-gί •/? + g2 -p2 + . . . = H -+• (g - ί)p be a matrix in SL(2, y) with at least
pγ+x fixed-points in Z2y. By the first lemma, det (g - H) = det ((g - ί)/?) = 0 (modpy)
or det(<7 —1) = 0 (mod/?y"2). Moreover let us assume that det(^ —H) = 0 (mod/?7"1),
a fact that will be proved here below. That g belongs to SL(2,y) implies that

1 2

= l(modpy). This makes of g an element of SL(2,y-l) :det^ = det(H + ^ - D )
= 1 + T r ( ^ — U) + det(^ — U) = l (mod/?7"1). The number of fixed-points of g in
Z2y, i.e. the solutions (x,x') of

(x,x')(g-ί) = (x,x')[p(g-ϊ)] = (px,px')(g-ϊ) = 0(modpy) (3.6)

is thus the number of fixed-points of g in Z2v-i times/?2, because in Eq. (3.6) the digits
xγ-ί and x'y-i are unconstrained.

One concludes that for g to have/?-7 fixed-points, g must have/?*7"2 fixed-points in
Z^y-i and conversely. It remains to prove that if # = U +p{g — V) has at least py + 1

fixed-points, then d e t ( ^ - 1 ) = 0 (mod/?7"1) or det(0-1) = 0 (mod/?v + 1 ) . By the
first lemma, it is equivalent to prove that if g = 1 (mod/?) and ordp det (g — 1) = γ, g
has exactly py fixed-points.
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Let g = ί +p - ( 1. The matrix h — ( I is taken m o d / ? 7 " 1 . As in Eq. (3.6),
\c d) \c d)

the number of fixed-points of g is p times the number of fixed-points of h.
That g belongs to SL(2,y) implies Ύτh = a-\-d=0 (mod/?7"1) and by hypothesis
oτdp(ad—bc) = y — 2. The characteristic equation of h is λ2 = 0 (mod/?7"2). Apply-
ing the same methods as in Lemma 1, one finds that h has/?7"2 fixed-points. This
concludes the proof of the lemma.

We are now able to characterize the matrices of SL(2, y) which have/?7 or more
fixed-points, thus extending the result of Lemma 1.

Lemma 3. For 1^/^y, if g in SL(2,y) has at leastpy+j fixed-points in Z2?, then
g = ί (mod/?-7). Moreover the number of matrices in SL(2,y) which have exactly
py fixed-points is equal to F$(γ, y) = card {g e SL(2, y): ordp det (g — H) = γ}9 and

^( K k F[l]{Kk)f\k

Lemma 3 is a direct consequence of Lemma 2 and of the following weaker
statement that if g has at least/?7 + 1 fixed-points, then g = Ί (mod/?). One rather
proves the converse: if gή=ί (mod/?), the number of fixed-points of g is at most/?7.
Clearly this is true for γ = 1, because the only element in SL(2,1) with p2 fixed-
points in Z 2 is the identity g = ί. Let (x,x') = (xo +... +xyp

y,xύ +...+x'yp
y) an

element of Zj»+i. (x,xf) is a fixed-point of g in SL(2,γ + l) if (x,xf) (mod/?7) is a
fixed-point of g (mod/?7) and if the following equation is satisfied:

(xγ,x'γ)go=-(xy-ί,Xy-ί)g1-(xγ-2,Xy-2)g2- -(χo>Xo)βy (mod/?) . (3.7)

Going from y to y + 1 , one thus adds the two equations (3.7) for the two new digits xγ

and x'y, each taking/? values. In the process, the number of fixed-points can be
multiplied by 1, /? or/?2. The last possibility only occurs when the Eqs. (3.7) do not
put any constraint on xy and x'y, i. e. when g0 = 0 or g = ί (mod/?). By recurrence, the
number of fixed-points of g + ί (mod/?) in SL(2,y) is at most/?7.

Assume now that g in SL(2,γ) has at least py+2 fixed-points and let g = ί
+p(g — ̂ ). By Lemma 2, the matrixg in SL(2, y — 1) has at least/?7 fixed-points, and
this implies that g = ί (mod/?) by the result just above. Therefore g = ί (mod/?2).
Iterating the argument proves the first part of the lemma.

The matrices of SL(2, y) which have at least py fixed-points are such that
det(#-1l) = 0 (mod/?7) by the first lemma. Those which have at least py+ί fixed-
points are such that det(# —1) = 0 (mod/?7+1), by the second lemma. Therefore
those with ordp det (g — \) = y have exactly py fixed-points. Finally the last formula
follows from Lemma 2: if g has/?7 + k fixed-points, g = ί (mod/?) and it states that

Lemmas 1-3 completely characterize the elements of SL(2, y) with a prescribed
number of fixed-points in Z2v: a matrix g has pj fixed-points if and only if the
ordinal of det (g — 1) is equal to j , for anyy between 0 and 2y. Wheny' is greater or
equal to y and since g is taken mod/?7, the precise meaning of this statement is the
following: for g to have/?-7 fixed-points, g must belong to the set {g e SL(2, y): g = H
(modpj-7) and det (g - H) = 0 (mod/?7)} but not to {g e SL(2, y): g = 11 (moάpj+1"7)
and det(# — U) = 0 (modpj+ί)}. The computation of the cardinality of these sets
enables us to give the explicit form of the coefficients F$ (jJ) and eventually the
expression of M(α, y, k) in case α = 0. For reasons that will be clear in Sect. 4, one
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considers instead the more constrained set

S%] = {geSL(2,γ):g = l (modp1) and det(flf-1) = O (modp2l+k)} , (3.8)

for 0^/^y and O^k^γ-L We separate the cases 1=0 and /^ l .

1) /=0: Sj& = {geSL(29γ): det(flr —1) = 0 (mod/)}.

Let g = (a \ in £$,, so that ad-bc = \ (mod/?y) and a + d=2 (mod/). The

entry b is an integer taken modpy. Let us assume that its ordinal is equal to
m^γ-1 :b = 0 (modpm) but Z>#=0 (modpm+1).

The two equations to be solved are

ad-bc = l (modpy)=>ad= 1 (mod/?w), (3.9a)

a+d=2(modpk) . (3.9b)

Ifk^m, Eqs. (3.9) imply ad= 1 (mod/?m) and a+d=2 (mod/?m), hence ( α - 1 ) 2 = 0
(mod/?m), the solution of which is a = \ (mod/? [ ( m + 1 ) / 2 ]). Since b and αrf—1 are
divisible by pm, Eq. (3.9a) is equivalent to p~mbc=p~m(ad-l) (modpy~m) or
c = (p~mb)~1 'p~m(ad-l) (modpy~m). Therefore the conditions dictated by the
Eqs. (3.9) are: a belongs to Zpy but is equal to 1 m o d / ( m + 1 ) / 2 ] , p~mb belongs to
Z*y-m, c belongs to Z«? but is fixed modpy~m by α, b and d, and finally d belongs to
Zpy but is fixed m o d / by a (Eq. (3.9b)). As a result a, b, c and afcan take/? y - [ ( m + 1 ) / 2 ] ,
p7'™'1 '(p — l),pm and/? y" f c different values respectively. The number of solutions
to Eqs. (3.9) is t h u s / ? 3 y - f e - [ ( m + 1 ) / 2 ] - 1 -(/?-l) .

If k ̂ m , ad= 1 ( m o d / ) and α + c/= 2 ( m o d / ) : d is fixed m o d / by a through
d^a'1 ( m o d / ) and a= 1 ( m o d / ( k + 1 ) / 2 ] ) . As before, c is determined mod/?y~m by

c = (p-mbyi .p-m(ad-\) {modpy-m). The number of solutions to Eqs. (3.9) is
equal t o / > 3 y - j n " [ ( * + 1 ) / 2 ] " 1 •(/? —1).

Finally, if b = 0 (mod/?y), then α d = 1 (mod/?y) and a + d=2 ( m o d / ) . Therefore
d=a~1 (mod^ y ), a=\ (mod/? [ ( k + 1 ) / 2 ]) and c is unconstrained. In this case the
number of solutions i s / v ~ [ ( f c + 1 ) / 2 ] .

Summing up the different contributions yields

(3.10)

2) / ̂  1. Let g = H + / ί ) in Si7], so that the entries a, b, c and d, which are taken
V<? d)

modpy , are constrained by the two equations

(3.11a)

(3.11b)

Equation (3.11b) completely fixes a in terms of the other entries: a = (l +dpι)~ι

-(bcpι — d) (mod/?7""*). Plugging this value of a in Eq. (3.11a) leads to bc= —d2

(mod/). Proceeding as in the first part 1), one finds that this equation has

p3y-sι-k-[(m+ί)/2)-i (p-1) solutions if the ordinal of b is equal to rn^k-1 and
p3y-3i-k-[(k+i)i2] s oi utiOns if b = 0 (mod/). Summing up the number of solutions
for the various values of ordp b yields

/) . (3.12)
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F r o m Eqs. (3.10, 3.12), one gets the number of matrices in SL(2,γ) which havep*
fixed-points in Z ^ ,

p3->-2(p1-p-i) , (3.13a)

JJ) = card 5 $ - card Sj$! ; 0

=^r-J-2(/^_1+/,-[ϋ+l)/2]_/,-[O-2)/21) ( l ^ ^ y _ l ) , (3.13b)

f $ (JJ)=card Sl;)_ ,, j_ y - card S#_ }_ UJ+1_y

(3.13c)

F<#(2γ,2y) = l . (3.13d)

By using Eq. (3.2) with α = 0, namely

\ Σ
j=o

one has the following

P \P ~

Proposition 1. The number of orbits of SL(29 Έ) acting on Z*y+1 x Zk/X is equal to

{p2-\){pk-i-\)(p2k-ί-\) F (P

k

^^T-T-Λ^T (3-14)

In relation to our original problem, formula (3.14) is all what is needed in order

to compute the dimension of the commutant for SU{N), at height«, provided that N

and n are coprime integers. (See Eq. (3.3) and use M(a(p)—ε(p),0,N—2)

= M(0, a(p) — ε(p), 0).) It is useful and illustrative to list the expression of M(0, γ, k)

for some small values of A\ The cases k = 0 and k = 1 (relevant for SU(2) and SU(3)

respectively) are somewhat particular since the expression (3.14) has apparent

singularities. These two cases are the only ones in which the answer is simple. One

gets for k up to 3

M(0,γ,O) = y + 1 M(O,γ,l) = (y + l)py-\-ypγ x , (3.15a,b)

1 ' α " ^ " - " " - (3.15c)

(3.15d)
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IV. The Case (ΛT,Λ) + 1

Section 3 gave criteria to decide how many fixed-points a given matrix in SL(2, y)
has in Z2,?. Here one considers the question of how the number of fixed-points of a
matrix g varies when g is reduced from SL(2, α + y) down to SL(2, γ).

We want to establish a kind of branching rule for the number of fixed-points that a
matrix of SL(2,Z) may have, and thereby calculate the coefficients F[**y)(jJ),
i. e. the number of matrices which have/?-7 fixed-points in Z2y+« and/?* fixed-points in
Z2?. Clearly, the important step is to solve the case α = l .

We first describe in which limits the number of fixed-points may vary. As
mentioned in the proof of Lemma 3, when going from SL(2, γ +1) to 51,(2, γ), the
number of fixed-points can be divided by 1,/? or/?2. If the matrix g in SL(2, y +1) has
/?J^/?y fixed-points, the ordinal of det (0 — 1) is equal toy, by Sect. 3. When g is
reduced to SL(2, γ), it is modified to the yth order in/?, but this truncation process can
certainly not decrease the ordinal of det(# — H). On the other hand, the ordinal of
det(# — H) cannot increase, because that would mean that the number of fixed-
points increases too. Therefore, as a matrix of SL(2, γ), g still has/?-7 fixed-points. If g
has/?y + 1 fixed-points, the ordinal of det (g — U) is equal to y + 1 . By modifying g to
the pyth order, the ordinal of det (g — 1) may change to γ9 but not to y — 1. Thus the
number of fixed-points of g cannot be divided by/?2. When g has between py+2 and
p2y + ί fixed-points, one uses one more time the recurrence property of Lemma 2 to
prove that in these cases too, the number of fixed-points cannot be divided by/?2.
For instance, if the number of fixed-points of g = H +/? (g — U) in SL(29 y +1) was to
change from py+2 to py, then by Lemma 2, the number of fixed-points of g in
SL(2,γ) would change from py to /?v~2, a branching forbidden by the above
argument. The only case where the number of fixed-points is divided by/?2 is when
the matrix g is the identity in SL(2,γ + l).

To summarize, when g in SL(2,γ + l) has pj fixed-points and is reduced to
SL(2,y), the following branchings are possible: for O^y'rgy, the number of fixed-
points is unchanged for γ + 1 ^j £Ξ 2 y + 1 , it is divided by 1 or /? and for j=2 y + 2, it
is divided by/?2. Not only are these branchings possible, in fact they all occur as the
following result proves.

Lemma 4. For g a matrix in SL(29γ + l) and0^j^y — l,the numbers offixed-points
of g in Z2y+i and in Z2? are equal to py + 1+j if and only ifg = ί (mod/? j + 1).

Let us first consider the casey'=0 and g an element of SL(2,γ + l) with/? v + 1

fixed-points in Z2?+i. If g Φ11 (mod/?), then obviously the number offixed-points of g
in Z2y must equal py, for if it was equal to py+ί, Lemma 3 would imply that g = H
(mod/?). Conversely, if g = H (mod/?), let us show that the number offixed-points is
not altered in the reduction process.

Letgf = 11 +h-p, with det (g-ί)=p2- det h = 0 (mod /?y + 1), since #has/? y + 1 fixed-
points (Lemma 1). Therefore det h = 0 (mod/?7"1). When g is reduced from
SL(2,γ + l) to SL(2, y), h is taken moάp7'1 instead of mod/?7 and as a consequence,
its determinant is still zero mod/?7"1, and deg(# —1) = 0 (mod/?y + 1) with g con-
sidered as an element of SL(2, y). By the results of Sect. 3, g has a least py + 1 fixed-
points in Z2v, hence exactly py+1 fixed-points.

For the casey"=l, one uses the recurrence of Lemma 2: if g has/?7 + 1 + J fixed-
points in Zpv, g can be written g = H +pj(g — 1) by Lemma 3, where the matrix g
belongs to SL(2,γ + l —j) and has/? y + 1 " J fixed-points.
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The results obtained so far for the branching rules are graphically summarized
in Fig. 1.

y+1

y + 1

y+2

g±=0
I

p y + 2

2y+2

g =

Fig. 1. Branching rules for the number of fixed-points of g = 11 +go+gιp+... when going from
SL(2,γ + l)toSL(29γ)

To solve the branching problem for any α ^ l , one just superposes several
diagrams like that of Fig. 1, the upper line for SL(2, y+ α) and the lower one for
SL(2, γ). One chooses a point on each of these two lines and one reads on the picture
which are the possible paths connecting these two points. To each path is associated
a set of conditions on g which are non-contradictory for only one path. For
instance, in the case α = 3, the picture one gets is that of Fig. 2.

l .... py
y+1 y + 2 y + 3

00*0 00 = 0 0iΦθ 0i=O

y+5

1 .... p> SL(2,

SL(2,γ)

Fig. 2. Branching rules from SL(2,γ+3) to SL(2,γ)

The conditions under which the number of fixed-points of g changes from/?1"1"4

topy+2 when g is reduced from SL(2, γ+3) to 5L(2, y) can be read off from Fig. 2:
they are go=g1=0 and ^ 2 + 0 in the expansion of g = ί+go+g1p+g2p

2 +...
+9y+*-iPy+*-1 Therefore ^ + 3 »

d d (
y ^ )

ordpdet(0-1l)=y+4, g = Λ (mod^2) but gι + 11 (mod/?3)}.
More generally, one gets the following results for the coefficients (α^

oτdpdct(g-ί)=j}= ) , (4.1a)

and
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= ί (modp1), gΦί (modpι+1) if max(0,j-α)^/<min(j,γ)}

= 1 (mod/*1) if /=min(/,y)} ' l * '

and g = ί (modpy+j)}

(4.1c)

The other coefficients are equal to zero. The expressions for the coefficients in Eqs.
(4.1) are easily calculated with the help of Eqs. (3.10) and (3.12). For 0 £j£γ + α - 1 ,
they are

2-2l;l + l

(4.2a)

for 0^/<min(/,y) if/<α and forj—α</<min(/,y) ify^α,

ify^α, and

'α)(y +Λ 7 + /) = card Sfrj-21,1 ~ c a r d s ί V/+i -2/;/ ( 4 2c)

for /=min(/, y)
Having provided explicit formulae for all the coefficients, the summation

involved in
4 2(α+y) 2y

^( g »y.*)^cπ 7)-2 (^_1 ) .Σ Σ o ^ + α ) α / ) y + w (4.3)

can be carried out completely, but the final result for arbitrary values of α, γ and k is
cumbersome and not particularly enlightening. We prefer to restrict ourselves to the
special case α = 1.

Proposition 2. The number of orbits of SL(2, Έ) acting on [Z^x Z^v+i]2 is equal to

'V>*)-P (/,2

P

For small values of &, Eq. (4.4) yields

+ l,0) = y + 2; M(ί,γ, l) = 2pγ(y + l) , (4.5a,b)

1

p-\
(4.5c)

-1) J '
(4.5d)
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Propositions 1 and 2, Eqs. (3.14) and (4.4), allow an explicit determination of the
dimension of the commutant for SU(N), for TV (TV/2) squarefree if TV is odd (even), at
any height n, although the general problem for any TV and any n has been solved,
with Eqs. (3.2), (3.3), (3.13), and (4.2).

For SU(2\ at height n = k + 2 = Π p γ ( p \ one recovers the formula found in [2],

σ0(«) , (4.6)
P P

where σo(n) is the number of divisors of n.

For SU(3)9 at height n = k + 3 = UPyip\ the formula obtained in [4] by
P

completely different methods is also recovered,

= 2/1(1+y(3)) Π (l+y(p) + 7(p)IP). (4.7)
pΦ3

The dimensions for the next few SU(N)9s, at height n = k + N=Y[pγip) are
P

dim 4 («) = Γ 4 . 2 3 ' ( 2 > - 1 22><2> - i " |

ΓpSyiP)+2+p2y<P)-1{pyW_ί)(p2+p + ί)_n

p2-ι J '
Γ 5 5
[2343 93 2421l

π

(4.10)

We close this section by displaying the numerical values of the dimension of the
commutant for small values of TV and n. As discussed in Sect. 2, it grows very fast
with both TV and n and, like many arithmetical functions, it is very erratic, i.e. it
strongly depends on the prime decomposition of the numbers involved.
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Table 1. Dimension of the commutant for SU(N) at height n. (Large numbers are not tabulated)

n =

N= 2

3

4

5

6

7

8

9

10

1

1

2

2

2

2

2

3

3

2

2

2

10

25

102

374

1430

6955

33153

87894

3

2

12

80

602

4783

44774

600060

3987363

32298164

4

3

32

229

3422

48486

734582

5

2

22

312

6606

164012

4075262

6

4

60

2000

30702

1788842

7

2

30

800

35002

1686204

8

4

88

1941

110622

9

3

54

2342

147842

10

4

110

7800

673812

-3.10
7

-3.10
9

-1.10
12

-4.10
13

-5.10
15

For any N, the dimension of the commutant is a multiplicative function in the
sense that (the argument of σ0 is respectively for N odd and for N even)

Γoτ N/2)'dimN(n-nf) (4.11)

for n and n' two coprime numbers.

V. Conclusion

In this paper we have shown how to compute the dimension of the commutant of the
extended representation of the modular group carried by the affine characters of the
untwisted SU(N) Kac-Moody algebras.

The starting point of our analysis is the characterization of the commutant
obtained by Bauer and Itzykson through finite quantum mechanics constructions,
already used in the case of SU(2) by Capelli, Itzykson and Zuber. Following their
results, the problem of the dimension of the commutant is related to the number of
orbits of SX(2, Έ) acting on the sets [Zn

N~2 x ZnN]2, where n = k + Nis the height of
the KM algebra. Using group-theoretic techniques, we have obtained general and
explicit formulae, thereby generalizing the known results for SU{2) and SU(3) to
any SU(N). The relevance of these expressions to the classification of the affine
modular invariants is obvious if one adopts the strategy initiated in [2].
Unfortunately, a fact that one cannot hide is the complexity of the expressions
giving the dimensions of the commutant, except in the cases SU{2) and SU(3) where
they remain simple.
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