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Abstract. A special manifold is an allowed target manifold for the vector multiplets
of D = 4, N = 2 supergravity. These manifolds are of interest for string theory
because the moduli spaces of Calabi-Yau threefolds and c = 9, (2, 2) conformal
field theories are special. Previous work has given a local, coordinate-dependent
characterization of special geometry. A global description of special geometries is
given herein, and their properties are studied. A special manifold Jt of complex
dimension n is characterized by the existence of a holomorphic Sp(2n -f 2, R) ®
GL(1, C) vector bundle over Jί with a nowhere-vanishing holomorphic section Ω.
The Kahler potential on Jί is the logarithm of the Sp(2n + 2, R) invariant norm
ofίλ

I. Introduction

The construction of a supersymmetric field theory proceeds by demanding that
the action is invariant under some chosen group of supersymmetry transformations.
This places constraints on the particle content and couplings of the theory. In
theories with" scalars, by viewing the scalar fields as coordinates on a target manifold
Jί, it is often possible to reinterpret these constraints as constraints on the geometry
of Jt. This reinterpretation is not always straightforward, because the constraints
arising from supersymmetry are expressed locally and in a particular coordinate
system on Jί.

As examples, it is known that local N = 1, supersymmetry in four dimensions
requires that Jί is a Kahler manifold [1] of restricted type1 [2]. Local N = 2
supersymmetry with (0,^) chiral multiplets requires that M is quaternionic [3].

Oddly enough, the allowed geometry of the target space Jί of locally N = 2
supersymmetric (0,^,1) vector multiplets [4]-we shall refer to this as special

1 This means that the Kahler form / is an even element of integral cohomology, or equivalently
that there exist a line bundle with first Chern class equal to [/]
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geometry2 - has not heretofore been understood. It is the purpose of this paper
to fill this gap.

This gap is especially serious because of the relevance of special geometries to
string theory. Compactification of a Πa or lib string theory with a c = 9, (2,2)
conformal field theory leads to an N = 2 supersymmetric four dimensional field
theory with vector multiplets [5]. The massless scalars of these vector multiplets
are coordinates of the conformal field theory moduli space Jί. Therefore, the
geometry of the moduli space of c = 9, (2,2) conformal field theories is special. It
likewise follows that the moduli space geometry of Calabi-Yau threefolds is
special.

Of course, since N = 2 supersymmetry cannot be broken in four dimensions,
such theories cannot describe nature. However, heterotic compactification with a
c = 9, (2,2) conformal field theory leads to phenomenologically interesting theories
with N = 1 supersymmetry in four dimensions. As pointed out by Seiberg [5], the
tree-level metric on Jί which appears in the low energy Lagrangian depends only on
the choice of conformal field theory, and is the same for type II or heterotic
compactification. It was further shown by Dixon, Kaplunovsky and Louis [6],
combined with the results of [4,7,8,9], that in fact all the tree-level parameters in the
low energy Lagrangian of a c — 9, (2,2) heterotic compactification are in this manner
indirectly constrained by N = 2 spacetime supersymmetry.

The net effect is that we can have our cake and eat it too: the low energy
Lagrangian of a heterotic compactification is subject to the powerful constraints
of N = 2 supersymmetry, yet it has the phenomenologically desirable features of
N = 1 supersymmetry. It is thus crucial to understand the nature of the N = 2
constraints.

The local constraints on special geometry implied by N = 2 supersymmetry
were derived in "special" coordinates by deWit, Lauwers and van Proeyen [4].
The entire Lagrangian is locally specified by a holomorphic function #XZ), where
Z is a coordinate on Jί. The metric ^ on Jί is Kahler, and the Kahler potential is
related to J* by

R - ZN) + 2JF + 2#). (1)

All other couplings are determined from J*. For example, the metric gv governing
the kinetic term of the vector field is

9ΌMN = dMdN^. (2)

The geometric significance of (1) and (2) is far from obvious. The expressions do
not even appear to transform covariantly under diffeomorphisms of M.

In this paper we will unravel the meaning of (1) and the geometry of Jί as
follows. N = 1 supersymmetry implies that Ji is a Kahler manifold of restricted
type [2]. This implies the existence of a line bundle L whose first Chern class
equals the Kahler form. Assume the existence of a 2n + 2 dimensional holomorphic
Sp(2n + 2, R) vector bundle Jf over M with a compatible hermitian metric, and a

2 These geometries have previously been referred to as restricted Kahler. However that phrase has
a different and previously established meaning (as in the previous footnote), so we use instead the
word special
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holomorphic section Ω of Jtf ® L whose norm is the exponential of the Kahler
potential on Jί. We will show that this implies the existence of special coordinates
in which the geometry locally takes the form of Eq. (1). Conversely we shall show
that if the geometry is of the form (1) in every patch, the bundle #f and the section
Ω exist globally. Thus special geometry, and in particular the c = 9, (2,2) moduli
space, is geometrically characterized by this section Ω.

It is further shown that Ω and ΘΩ, where 2 is the hermitian connection,
provide, along with_ their complex conjugates, a basis for the bundle
£ = ( L ® ( r * ® L ) ® C r * ® L ) ® L ) , where T* is the holomorphic cotangent
bundle. Properties of this basis then imply the existence of a flat, non-hermitian
connection D on E. The flatness of D can then be used to derive strong constraints
on the geometry of Jt.

For the moduli space of complex structures on Calabi-Yau threefolds, 3tf is
the Hodge bundle with fibers H3(X, C) and the section ί2is simply the cohomology
class defined by the holomorphic (3,0) form. For conformal field theories, J f is
presumably the bundle whose fibres are the chiral cohomology classes (with respect
to G ΐ 1 / 2 ) , and Ω the section defined by the top weight chiral primary field, (or
its dual). (Evidence in favor of this latter conjecture was given in [10].) The flat
connection D is the hermitian connection associated to the Zamolodchikov metric
[11], supplemented by a non-hermitian piece given by the structure constants of
the chiral ring [12,13,14,15]. The flatness of D then gives interesting relationships
among the conformal field theory correlation functions.

The striking feature of special geometry is that all geometric quantities are
derived from holomorphic sections of various bundles. Thus one expects that special
geometries are - unlike Kahler geometries - labelled by a finite number of para-
meters (after specification of boundary data). We hope that this property will be
useful in understanding low energy string theory.

This paper is organized as follows. In Sect. II the section Ω and its properties
are discussed in the context of the Calabi-Yau moduli space. It is shown to imply
the existence of the flat connection ID on the bundle E and various identities relat-
ing the Riemann curvature to holomorphic sections. In Sect. Ill these identities
are shown to imply the local existence of special coordinate systems in which the
geometry takes the canonical supergravity form (1). The notion of "integral"
coordinates, in which some duality symmetries are linearly realized, is also
discussed. In Sect. IV two equivalent definitions of a special manifold are given;
one based on patching data for a cover of M and the other based on the global
existence of certain geometric structures. In Sect. V we discuss how these geometric
structures are identified within a c = 9, (2,2) conformal field theory. In Sect. VI
the generalization of special geometry describing the moduli spaces of conformal
field theories with c> 9 or Calabi-Yau spaces of dimension greater than three is
discussed. We conclude in Sect. VII with discussion of some open problems.

Portions of the analysis in this paper follow arguments which have appeared
previously in different contexts, as referenced in the text. We mention Bryant and
Griffiths [16], Tian [17] and in particular the important work of Candelas [15,18].
Interesting observations on some local aspects of special geometry are made in
an appendix of an article by Cecotti, Ferrara and Girardello [7]. This paper may
be viewed as an exercise in the theory of variations of Hodge structures, which is
discussed for example in [19,20].
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II. Calabi-Yau Moduli Space

In this section we consider the moduli space Jί of complex structures on a three
dimensional Calabi-Yau manifold X [16-18]. Consider the Hodge bundle Jf
[21] over Jί whose fibers are H3(X,C). H3(X,C) is a b3 = 2n + 2 dimensional
complex vector space, where n is the complex dimension of Jί. The intersection
matrix on H3®H3 provides a hermitian metric on Jf:

6xAΛB. (3)

Poincare duality on X implies that H3(X,Z) is self-dual. In addition the
inner product obeys:

(4)

This implies there is a basis of real forms <xA,β
A for H3(X, C) obeying

(5)

where A9B = 09l9...9n. These supply a set of local flat sections in every patch
of a good cover of Jί. Such bases are unique up to Sp(2n + 2, R) transformations,
so j f must be a flat, holomorphic Sp(2n + 2,R) vector bundle.

On every Calabi-Yau threefold, i.e. for every point Z in Jί9 there is a
holomorphic (3,0) form Ω. This defines a section of the projective bundle associated
to Jf which has been shown to be holomorphic [22]. The section is only defined
projectively since Ω is uniquely defined only up to projective transformations which
are constant on X but not on Jί.

Ω±ef(Z)Ω. (6)

The inner product of Ω with its complex conjugate Ω varies under the projective
transformations (6) as

(Ω\Ωy-^efiZ)+fi2)(Ω\Ω}. (7)

Positivity of the inner product (7) follows from the Hodge-Riemann bilinear
relation [23]. We may then define, following [17,18], the quantity

(8)

which transforms under (6) as

tf(Z9 2) U tf{Z, Z) - /(Z) - /(Z). (9)

Identifying the projective transformations as Kahler transformations, we see
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that JΓ defines a Kahler potential on Jί. The associated Kahler metric is

It will be seen momentarily that <§ is positive.
In general the Kahler potential of course cannot be globally defined as a scalar

on Jί. Rather Kahler potentials on adjacent patches U1 and U2 are related on
intersections by Kahler transformations:

ex is then a section of a real line bundle. Since the Kahler form β is an
even element of integral cohomology3 (i.e. the manifold is of restricted type), this
line bundle can be holomorphically decomposed as L" * ® LΓ1. A section V of L on
adjacent patches is related by

V2 = ef2iVί. (12)

From (6) we see that a choice of Ω at every point Z of M gives a section
of J f ® L .

Motion on Jί corresponds to a deformation of the complex structure on X.
Infinitesimally, the holomorphic differentials dωa on X mix linearly with the
antiholomorphic differentials:

dMdωa = μMl

adωι + vMb

adω\ (13)

where μM is in Hι{X, T). Ω provides an isomorphism Hι{X, T)^H21(X, C):

acd. (14)

The (2,1) forms GM are therefore cotangent to Jί.
It follows from (13) that under infinitesimal motion on Jί, a closed (p, q) form will

mix only with closed (p ± 1, q + 1) forms [21]. In particular Ω will mix only with the
(2,1) forms GM:

dMΩ=GM-JΓMΩ. (15)

Xu can be determined from the fact that a (p,q) and (p',*?') form are or thogonal
unless p + p' = q + qf = 3. Orthogonal i ty of Ω and G M gives

= M ( 1 < 5 )

Define a derivative ^ M = dM + 3 M J f which acts covariantly on sections of L. We
may then write

GM = 9MΩ (17)

from which it is evident that GM is a section of Γ * ® Jf (g)L, where T* is the
holomorphic cotangent bundle.

The inner product of GM and G^ gives minus the Kahler metric on T®L~γ.

<GM\Gfj}=-e-*<ZMΰ. (18)

3 This was shown for Calabi-Yau moduli space in [17], and more generally for moduli spaces of
D = 4 supergravity theories in [2]
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The Hodge-Riemann bilinear relations for the intersection matrix on H2Λ®Hia

then implies positively of ̂  [23].
The inner products of the three forms (Ω, GM, G^, Ω) with the 2n + 2

local flat sections (5) defines 2w + 2 basis elements for the bundle
£ = (L©(T*(χ)L)θ(f*(x)L)φL). A flat, metric-compatible, non-hermitian con-
nection D o n £ can be found by requiring that this basis is covariantly constant. In
general such a requirement only gives a connection locally, because the transform-
ations (on the fibers of ̂ f) relating bases on adjacent patches would not leave D
invariant. However, in this case the connection so defined will transform globally as
a connection on E. This is because the transition functions among the basis elements
are constant Sp(2n + 2, R) transformations in each intersection acting on the fibers of
Jf. They thus leave the connection ID invariant.

To construct D explicitly, define

D = ̂  + ̂ , ID = ̂  + ^, (19)

where Sf is the metric-compatible hermitian connection. The connection (1,0)-
form <% is then determined from the requirements

ΊDΩ = ®Ω + V0°Ω + V0

MGM +'<f 0 * G M + ̂ o^ = 0,

JDGM = @GM + V°MΩ+ VN

MGN + <€%Gn + < β = 0,

ΏGΰ = ̂  + V°aΩ + VN

aGN + <4G* + V%Ω = 0, (20)

ΌΩ = ^ i^
where 2 = dZM@M and subscripts 0(6) refer to Ω(Ω). The (0,1) form V is defined by
the complex conjugate of (20).

Equations for the individual connection coefficients can now be obtained by
taking the inner product of (20) with Ω, GM, G^ and Ω. Several useful formulas in
solving for # are

-e-*$Mύ, (21)

[ ® M , ^ ] = 0, (22)

\βM,Sfi\Ω=-ΊfMf,Ω, (23)

\βM,®n-\Ω=<$mΩ. (24)

It is then straightforward to show that the non-vanishing entries of <€ are

«ΌM = - dZM, (25)

" r f " ' N , (26)

(27)
where ^MNP is defined as

*rMNP = <Ω\9M&N®pΩ> (28)

and is a section of sym(Γ*)3(g)L2.4

4 This object is not to be confused with the superpotential on M, which transforms under Kahler
transformations as a section of L. According to [6,24,14] the matter superpotential of a heterotic
compactification is given by CMCNCP^MNP. This would seem to imply that the matter superfϊelds
CM are sections of T®LΓ1/3 and the corresponding topological restriction that Ĉj (L) is integral
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p derivatives of a (3,0) form gives a three form with antiholomorphic rank at
most p. The only nonvanishing term in (28) therefore has three derivatives acting on
Ω. An alternate formula for tFMNP is thus [18]

^MNp = <Ω\dMdNdPΩy (29)

While this formula is not manifestly covariant, differentiating it leads immediately to
the conclusion

8K^MNP = 09 (30)

i.e. ^MNP is a holomorphic section.
Since the connection ID is flat, the associated curvature R must vanish. Further

information about the geometry can be learned from the condition R = 0. For
example

0 = < G F | [ D M , D N ] G Q > = 2S[M^H\PQ' (31)

It follows that locally [6]

®M®N®P#'> (32)

where Sf is not necessarily holomorphic. The proof of this is essentially an iteration
of the Poincare lemma of Dolbeault cohomology. The values of Sf on overlaps of
patches may differ by solutions oΐ^M^N^P^0 = 0, so that £f may not be a global
section of L2.

A formula for ^MNP as the third derivative of a holomorphic section can be
obtained by considering the quantity:

#-(Z,Z') = <fl(Z)|β(Z')>. (33)

^(Z,Zf) is a holomorphic section of the line bundle L®L over M x Jt\ where
Jί1 = Ji. It also obeys

Z). (34)

i s then given by the manifestly covariant formula

J W ( Z ) = 9M9NSPP{Z'9Z)\Z.=Z (35)

or the manifestly holomorphic formula

JW(Z) = dMdNdPnZ\Z)\z,=z. (36)

Another useful equation is

NQS' (37)

where 01 is the Riemann tensor of ̂ . Coordinate dependent versions of this equation
have appeared previously in the supergravity literature [25] and [6]. We see here
that it has a geometric interpretation as expressing the flatness of the connection D
on E.

A formula for the Ricci form of Ji is obtained by tracing (37) with the complex
structure:

lMN- (38)
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The one form y^ is given by

Similar relations may be derived for the complexified moduli space of Kahler
forms on the Calabi-Yau space X. In this case the appropriate bundle J f is the
bundle whose fibers are the sums of the even rank cohomology classes, and the
appropriate Ω is again a section of J^ (x) L.

III. Special Coordinates

In the preceding sections the geometry of Jί has been described in a coordinate-
independent manner. Previous discussions of Jί - both in the supergravity and
mathematics literature - have been primarily in the context of a particular
coordinate frame which we shall refer to as special coordinates. These special
coordinates are in part characterized by the fact that ̂ MNP is locally expressible as
the third partial derivative of a holomorphic function.5 Special coordinates do not
naturally arise in conformal field theory, and this has made it difficult to apply
results on the structure of Jί to conformal field theory. In this section we attempt to
rectify this by showing how the local existence of special coordinates follows in the
general coordinate-independent framework of the previous section.

In the beginning of the previous section, a real basis of local flat sections of J f
obeying

(40)

<β>A>=-ίδA,A>=-ίδA,

where A, B = 0,1,.. ., n, was introduced. Ω may be expanded in terms of this basis:

Ω(Z) = WA(Z)ocA + i^A(Z)βA. (41)

The coefficients WA and !FA are holomorphic and transform as sections of L since Ω
is a holomorphic section of tf ® L.

We wish to show that WA (or alternately ^A) are good projective coordinates in
the neighborhood of a generic point Z%. Because the variation of Ω is always non-
zero under motion along JK, we expect the 2n + 2 coefficients of Ω in a fixed basis to
provide complex coordinates on Jί. However, since Jί has complex dimension n,
only half of these 2n + 2 coefficients are required for complex projective coordinates.

We now demonstrate that, for sufficiently smooth ί2, WA provide good
projective coordinates near Z%. The proof is somewhat cumbersome, those
uninterested in the details may skip directly to Eq. (58).

WA are good projective coordinates in a neighborhood of Z o if

ΣWλ(Zo)WA(Zo)^0i (42)

5 It is curious that special coordinates are not singled out by this condition alone. In [6] it was
shown that ^MNP = dMdlidv^' in "holonormal" coordinates, but this J5"' is not related to Jf by (1)
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and there are n linearly independent one forms

dXi = Xi

AW\M{Z0)dZM i = l , . . . , n . (43)

Under these circumstances n of the WΛ's provide ordinary coordinates (the Jacobian
is non-zero) and the remaining WΛ extends these to projective coordinates.

Equation (42) is a consequence of the non-vanishing norm of Ω. To verify
condition (43), consider a Kahler gauge in which

<VΓ(Z O ( Z o ) = 0, (44)

Jf(Z 0 ,Z 0 ) = In 2 (45)

and a coordinate system in which

«!Mn{Z0) = δMfi. (46)

With respect to these coordinates, define the basis

o , (47)

βM = iίGM-G^Zo,

which obeys (40). Using the formulae

WA,M = KβA\dMΩ},

^A,M=-<«A\dMΩ >, ( 4 8 )

one finds that in this basis

W°,M(Zo) = 0,

^WZo)=-i<W (49)

From this it is easily seen that there are n linearly independent dX^s by choosing
XA = ^A m (43). The WΛ defined in the particular basis (47) are thus good projective
coordinates in a neighborhood of Z o .

It remains to show that the WΛ defined with respect to a general basis are good
projective coordinates. A general basis is obtained by acting with an Sp(2n + 2, R)
matrix S on the basis (47). One then needs to show there are n linearly independent
one forms

dXi = Xi

AW
fA

9M(Z0)dZM i = l , . . , n (50)

where
W'A9M = i(βA\SdMΩ). (51)

To this end, consider the n dimensional subspace of real vectors XA obeying

(S-1X% = 0. (52)

Linear dependence of the corresponding dX"s would imply a non-trival
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solution of

<S-U|3Mi2(Zo)> = 0, (53)

where λA = λiXA is subject to the constraint (52). Using the relation

dMΩ{Z0) = \aιu-
l-βM (54)

implied by (47), one finds that (53) is equivalent to

(S-1λ)M = i(S-1λ)M. (55)

The norm of S ~1 λ is then

< ( S - 1 l ) * | S - 1 l > = 2 Σ ( S - U ) 5 ( S - U ) y 4 ^ 0 . (56)
A

On the other hand

<(S"1/l)*|S-1/l> = <A*μ> = 0 (57)

since S is real and λ = λAβ
Λ. We therefore conclude that λ must vanish, and the n

dX^s are linearly independent.
This establishes that the WA defined with respect to any basis for H3 of the form

(40) are good projective coordinates in the Kahler gauge (44), (45). However a change
of Kahler gauge multiplies WΛ by a non-vanishing holomorphic function, so the
result holds in any gauge.

We therefore conclude that WΛ are locally good complex projective coordinates.
We will refer to these coordinates as special projective coordinates. Non-projective
special coordinates can then be defined in the usual manner.

In special projective coordinates, Ω takes the form [6]

Ω(W) = WAOLA + i^A{W)βA. (58)

The Kahler potential is

X = - In (WA Pλ + fA Wλ\ (59)

where WA = (WA)* and &λ = (J2^)*. From the relation

0 = <Ω\dAΩ} = - WBdA^B + 3?A (60)

one learns that

<FA = dA<F (61)

where
&=\WA&A (62)

is a locally holomorphic function of projective weight two [18]. It further follows
[18] that the section of sym(T*) 3®L 2 defined in the previous section:

(63)

is, in special coordinates, the third derivative of the holomorphic function 3F,

^ABc = dAdBdc<F. (64)

Equations (59) and (61) reduce to the supergravity formula (1) after transforming
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to non-protective special coordinates [9]. This then establishes that the special
geometries discussed in Sect. II satisfy the requirements of the target space
geometries of D = 4, N = 2 vector multiplet sigma models coupled to supergravity.
These requirements were previously stated in a local, coordinate dependent form:
the action is determined entirely by a locally holomorphic function #", and the
Kahler potential for the vector multiplet is related to <F by (61) and (59). In this
section we have seen that the special geometries defined geometrically in the
previous section always locally admit special coordinates in which this is the case.

How unique are special coordinates? Our starting point in Eq. (40), was a basis
for the fibers of ^f with an Sp(2n + 2,R) invariant inner product. This basis is unique
up to Sp(2n + 2,R) rotations, which therefore parameterize the "special" coordinate
transformations which preserve the special structure [7]. Since these transform-
ations in general mix up OLA and βB, they will also mix up dAβF and WB:

where M is in Sp(2n + 2, R) and idA& and WB have been grouped into a 2n + 2
component column vector. Special coordinate transformations are referred to as
duality rotations in the supergravity literature [7].

For Calabi-Yau moduli spaces there is a preferred subclass of special
coordinates, used in [16] which we shall call "integral coordinates." These are
obtained by choosing aA and βB to generate integral cohomology, and are integral
periods of Ω. (Projective) integral coordinates are unique up to Sp(2n + 2, Z)
transformations. Two values of Ω for which (i^A, WΛ) differ by an Sp{2n + 2,Z)
transformation correspond to the same point in Jί. Thus the integral periods of Ω
give coordinates on a Teichmueller space <Γ. Sp(2n + 2, Z) is then a subgroup of the
modular group by which <T is divided to obtain M. These are also the duality
transformations of string theory. The analog of integral coordinates for conformal
field theory moduli space is discussed in Sect. V.

IV. Definitions of a Special Manifold

Special geometries arise in the construction of four dimensional Lagrangians with
n N = 2 vector super multiplets coupled to supergravity. The complex scalar compo-
nents of the vector supermultiplet are coordinates on an n complex dimensional
manifold M. Their kinetic term is determined by a metric ^ on M. Invariance of
the Lagrangian under N— 2 supersymmetry places local constraints on the
geometry of Jί. Namely, there must exist a homogeneous of degree two holo-
morphic function J* related to the metric in projective coordinates W by [4]

*ΛB = ~ dAdBln(WAd^ + dA&W~A). (66)

Equation (66) reduces to (1) in non-projective coordinates. Of course this expression
does not make sense globally. One must in addition specify the transformations
relating the various quantities on overlaps of patches. In order that N = 2
supersymmetry transformations can be defined in each patch, the transformation
rules must preserve the relation (66) between 9Ag9 dA^ and WA. This restricts the
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allowed transformations to the Sp(2n + 2, R)® GL(1, C) transformations discussed
in Sect. IV.

Guided by this we are led to the following definition of a special geometry:

Definition (1). A special manifold is an n dimensional Kάhler manifold of restricted
type such that on each patch V\ of a good cover there exist complex projective
coordinates Wf and a homogeneous, degree two holomorphic function ^(W) related
to the Kάhler potential jft by

Jfi(W, W)= - I n ( W f d ^ + dA^i Wf). (67)

On intersections of adjacent patches Ut and Uj, dA^ and WA are related by special
coordinate transformations

(68)

where theftj are holomorphic and Mtj is a constant element of Sp(2n + 2, R).

The transition of functions are subject to the usual consistency conditions on
triple overlaps:

p fij + fjk + fki 1
C J.,

MijMjkMki=l. (69)

Definition (1) of course refers to a particular coordinate system. An alternate,
coordinate-independent definition is:

Definition (2). Let L denote the complex line bundle whose first Chern class equals the
Kάhler form, β, of an n dimensional Kάhler manifold Jί of restricted type. Let tf
denote a holomorphic Sp(2n + 2,R) vector bundle over Jί and <,|,> the compatible
hermitian metric on Jf7. Jί is a special manifold if, for some choice ofjf, there exists a
holomorphic section Ω of J4f®L with the property

33ϊn<β|β>. (70)
In

Note that the transition functions of a holomorphic Sp(2n + 2, R) vector bundle
are necessarily constant on each overlap.

The equivalence of definitions (1) and (2) follow from the results of Sects. (II) and
(III). To see that (2) follows from (1), note that WA and idAtF are the components of
the section Ω'm each patch. To see that (1) follows from (2), recall that the existence of

a holomorphic section of 3tf ® L with the property / = — — dd\n <Ω\Ω> was our
2π

starting point in the beginning of Sect. III. This led, in Sect. IV, to the local existence
of special coordinates WA and one form dA& obeying the relations of definition
(1).

It is possible that an alternate definition of a special manifold can be given as a
manifold admitting a flat connection on the bundle E with the properties of the
connection ID. The bundle E is canonically associated with every Kahler manifold of
restricted type. Such a definition would have the advantage of not requiring the extra
structure associated to the bundle Jf.
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V. C = 9,(2,2) Superconformal Field Theory

In the previous sections we have developed the theory of special manifolds using
Calabi-Yau moduli space as a concrete example. However the results apply equally
to the moduli space of c = 9, (2,2) conformal field theories.

To see this, recall [26,5,7] that this moduli space has a product structure
Jίγ x Ji2, where Mx is associated with the (c,c) ring of chiral6 operators, and Jί2

with the (α, c) ring.7 Compactification of a type Πa string leads to D = 4, N = 2 vector
multiplet with Jίγ as a target space. This is possible only \iJix is a special manifold.
Similarly, lib compactification leads to a D = 4, N = 2 vector multiplet with ^ 2

 a s a

target space, so ^ 2 must also be a special manifold.
While this argument implies that Jίγ and Jt2 are special, more work is required

to explicitly identify the various geometric objects discussed in this paper with
objects in a two dimensional field theory. Such an identification would be extremely
useful for understanding the structure of N = 2 conformal field theories, and might
enable one to go beyond the c = 9 case discussed here. For the case of the Calabi-
Yau moduli space, for example the bundle Jίf was identified as the bundle whose
fibers are H3(X), the projective section Ω was identified as the section defined by the
(3,0) form, etc. In Sects. II and III we showed that properties of these objects then
implied properties of the D = 4, N = 2 Lagrangian, and vice versa.

For the conformal field theory moduli space, the situation is quite different, since
there have been few studies of its geometry. However the results of the present paper,
along with the work of [12,13] relating the cohomology ring of a Calabi-Yau
manifold to the chiral ring of a conformal field theory, allow us to make educated
guesses identifying the various sections and bundles with elements of a conformal
field theory. In this section we will describe these educated guesses, but we will not
verify them here. Some progress in directly verifying them using purely two
dimensional methods was made in [10].

The section Ω is presumably identified with the top weight chiral primary field
Ω + (or its dual [10]) which is known to exist in every (2,2) conformal field theory.
The main problem is to show that Ω + defines a holomorphic section of the vector
bundle whose fibers are the cohomology classes (with respect to G ί 1 / 2) of chiral
fields, and that an appropriate inner product can be defined on these fibers.

Steps in this direction were taken in [10], where it was shown that Ω + is in-
variant under antiholomorphic deformations of the moduli, and that In <ί2 " Ω + >
is the Kahler potential on Jί.

In fact the results of [10] required only (0,2) (rather than the full (2,2)) super-
symmetry. It is an open question how much, if any, of the analysis of this paper
might be applicable to the (0,2) moduli space.

The coordinates usually adopted in analyzing deformations of conformal field
theories are not special. Since many formulae simplify in special coordinates, it
would be useful to understand the transformation to special coordinates in
conformal field theory, which is roughly as follows. In the usual presentation of a

6 We use the word chiral here to denote fields which commute with G ί 1 / 2, as opposed to left or
right moving fields
7 This has only been shown locally, but seems likely to be valid globally
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c = 9,(2,2) conformal field theory, one is given the weights, multiplicities and
correlation functions of the chiral primary fields. Holomorphic deformations of the
conformal field theory are generated by weight (^,|) charge ( — 1 , —1) chiral
primary fields P M , and antiholomorphic deformations by their charge (1,1)
hermitian conjugates. (Charge (—1,1) fields will be ignored in the following, but
similar statements apply.) There is a canonical isomorphism of PM with charge
(—1,2) chiral primary fields GM

GM = ίΩt1/29PMl (71)

where Ωtί/2 = J — : ί 2 + (z), in precise analogy with (14). Ω+ will mix with
2τπ

GM under deformations of the conformal field theory, so the chiral fields with
QR — QL = 3> where QR(QL) is the right (left) (7(1) charge, should be identified as a
basis for the bundle E of Sect. II. The analog of Poincare duality was proven for (2, 2)
conformal field theories in [13]. This implies that a real basis | ocA >, | βB > for the fibers
of J f represented as chiral states, with an Sp(2n + 2, R) invariant inner product (as
in Eq. (40) or (47)) can be constructed in any conformal field theory, i.e. at any point
Z in Ji. This basis may be expressed in terms of the more conventional states of the
form |G M > obtained by acting with chiral operators on the vacuum at Z:

>> (72)

Ω-y. (73)

Local constant sections are then obtained by parallel transport of this basis. The
"vielbeins" $ defining these sections are given as the solution of

= 0 (74)

with the flat connection ID of Eq. (44). In conformal field theory terms, this
connection is essentially the hermitian connection associated to the Zamolodchikov
metric supplemented by a non-hermitian piece proportional to the structure
constants of the chiral ring.

In the basis (72), special projective coordinates might be defined by

WA = i(βA\Ωy. (75)

In these coordinates, dA3F is

dAnW)=-(*A\Ωy (76)

and & is

(77)

However, the technology for defining the variation of matrix elements such as (76)
and (77) on M is as yet not well understood (at least by us!), so at present these
expressions are formal.

It would certainly be of interest to understand the analog of integral coordinates
for the moduli space of c = 9, (2,2) conformal field theories or, equivalently, the
analog of integral cohomology. A possibly relevant clue is that, for the Calabi-Yau
case, points in Teichmueller space &~ for which Ω is itself a generator of integral

cohomology are fixed points of a subgroup of the modular group (just as for genus
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one curves τ = i is invariant under τ -• — I. Thus we might expect that "integral"

chiral cohomology classes could be identified by maximal chiral cohomology classes
at fixed points of modular (i.e. duality) transformations. These fixed points are often
characterized by enlarged symmetries which make them easy to analyze.

VI. General Values of C and D

In the previous sections, the moduli spaces of c = 9 conformal field theories and
Calabi-Yau threefolds have been analyzed. String or Kaluza-Klein compactific-
ation relates these to the moduli space of N = 2, D = 4 supergravity. For conformal
field theories with c> 9 or Calabi-Yau spaces of dimension d greater than three,
useful information cannot be obtained, at least not in any simple way, by considering
string or Kaluza-Klein compactification. However these moduli spaces are still
characterized by holomorphic sections Ω of certain vector bundles. Thus we expect
that an analysis along the lines of Sect. II could still lead to geometric information
about the moduli space. In mathematical terms, we are interested in Hodge structures

of weight - with the property that the maximal filtration F c / 3 is one dimensional. In

this section we make some preliminary remarks on this problem.
As in the case d = 3, a Kahler potential may be defined by

(78)

where Ω is a (d, 0) form and the Hodge metric is

(A\B} = id2$AA§. (79)

Then

GM = @MΩ (80)

is a (d — 1,1) form. Since the metric

(81)

is non-degenerate, GM forms a cotangent basis on M.
Now consider

GMN = 9M%Ω. (82)

The inner product of GMN with Gκ is

} = 0, (83)

which implies that GMN is a (d — 2,2) form. Its inner product with (2, d — 2) forms is

MPNQ ^MP^NQ ^MQ^NP)

^Mp%Q - V w - ) (84)
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The Hodge-Riemann bilinear relation then implies

&MP&NQ ~~ ̂ MQ&NP = ®> (85)

i.e. the eigenvalues of the sectional curvature are bounded. This result is valid for
all d, and is possibly a consequence of more general theorems [19] on curvatures
of Hodge bundles.

The obstacle to further progress at this point is that for d > 3 we do not know
how much of Hd~2'2 (X) is spanned by the forms GMN, or, equivalently, the number
of zero eigenvalues of the metric (84). In order to derive a flat connection analogous

d
to (20) one needs to know that the@Mί... <$Mq Ωίoτq^- can be expressed as linear

combinations of 2^Λ... 3f^ Ω. We do not know if this is possible.
Note that for d > 3, the "coefficients of Ω as a section of the bundle of d forms

cannot provide projective coordinates on Jt, because there are too many of them.
They may however provide some highly redundant coordinates which can be
reduced to coordinates on M by some identifications.

VII. Some Open Problems

We conclude this paper by mentioning some open problems in special geometry.
While there are many interesting problems in the general context of Hodge theory,
the following are mentioned for their relevance to string theory.

1. Classification of Special Manifolds. A classification of special manifolds would
amount to a description of all possible (2,2) supersymmetric vacua of string theory
(though there is of course no guarantee that every special geometry arises as the
moduli space of some string vacua). From the point of view of extracting low-energy
physics, this is the best form in which to obtain a description of string vacua (as
opposed to e.g. as representations of two dimensional algebras), because the moduli
space geometry gives directly the low-energy tree-level couplings. A complete
classification is undoubtedly a forbidding problem. A perhaps more reasonable
problem is classification of low dimensional special manifolds. This is also the
physically interesting case, since the dimension of the special manifold is the number
of (anti) families of a superstring compactification. Some important insights on this
problem are in [7].
2. Superpotentials on Special Manifolds. It is possible, and perhaps even plausible,
that non-perturbative string effects will generate a superpotential ΊV on Jί. If so, it
was shown in [2] that if must be a section of the line bundle L. The physical ground
state of the theory will then lie at the minimum of

V = ex(VM!'2MΨ'®ϋίJr - 3TST#*), (86)

and supersymmetry will be unbroken if and only \iQ)M

/Ψ vanishes at the minimum.
On a general Kahler manifold it is difficult to obtain any general information about
the nature of the minima, but for the more restricted special manifolds it may be
possible. Aϋ interesting recent discussion appears in [27].
3. Compactification of Special Manifolds. A typical structure of a special manifold
seems to be contractible space divided by some group action, as for the moduli space
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of curves. It may be possible, as in the case of curves, to compactify special manifolds
by the addition of boundary components in a way that preserves at least some,
though possibly not all of the special structure. An alternate exciting possibility,
suggested in [28,18], is that special geometries might be "glued" together along their
boundaries in such a way as to form a "universal special geometry" which contains
the moduli spaces of all supersymmetric string vacua.

Some understanding of this issue is probably essential for any progress on (2)
since there are generally many sections on non-compact manifolds.
4. Examples of Special Manifolds. Global moduli spaces for c = 3 and c = 6, (4,4)
[29] conformal field theories have been described. For the case c — 9, the 6-torus has
been discussed, but this has more than (2,2) supersymmetry. No global description
of any c = 9, (2,2) conformal field theory moduli space has been given to our
knowledge until very recently [30]. Some local descriptions are given for example in
[7,24,15,31]. c = 9, (2,2) is the case of most interesting for string theory; it is also
evident from this paper that such moduli spaces have special properties not shared
by other values of c. These spaces are deserving of further study.
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