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Abstract. We derive discrete symmetries of braid group statistics related to
charge conjugation and outer automorphisms of the local algebra. The
structure of the latter (which are abelian superselection charges) is analyzed in
some detail. We use the results to study in great generality a phenomenon
recently observed in conformal quantum field theories: the existence of two-
dimensional space-time fields with conventional (local, fermionic, dual)
commutation relations, expressible as bilinear sums over light-cone fields with
exchange algebra commutation relations.

1. Introduction

Braid group statistics is the natural statistics in low space-time dimensions. A
fundamental reason why it has for a long time escaped our attention, except
for a class of "any on" models with abelian representations of the braid group, is the
intimate relation between statistics and internal symmetries: the ordinary (Lie
group) symmetries go along with permutation group statistics only [1], while
braid group statistics signals a new type of "quantum symmetry" [2] which we are
only recently beginning to understand.

While braid group statistics must be expected in up to 2 + 1 space-time
dimensions (at least for "gauge charges" localized in narrow tubes extending to
space-like infinity), the only explicit occurrence of non-abelian braid group statistics
so far is in 1 +1 dimensional conformal quantum field theories. Even there, it is not
the statistics associated with the local two-dimensional observables that has been
read off the Wightman functions (conformal block functions) completely deter-
mined by Ward identities, but in fact the statistics of its "chiral" local light-cone
fields, i.e. an effectively one-dimensional quantum field theory with particularly
simple kinematics.

By virtue of conformal covariance, space-time fields factorize as bilinear
expressions in light-cone fields. The monodromy (analyticity) properties of
conformal block functions [3], interpreted as vacuum expectation values of light-
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cone fields interpolating different superselection sectors, turn into commutation
relations (exchange algebra) of the latter [4, 5]. By a non-trivial interplay of the
structure constants of the two exchange algebras (on either light-cone), this
decomposition is compatible with local commutativity, or more general "conven-
tional" commutation relations of the space-time fields [6, 7].

We use the term "conventional" for commutation relations determined only by
the charges carried by the fields, in contradistinction to "exchange" commutation
relations (see below) the structure constants of which depend also on the charged
sectors among which the fields interpolate. Space-time fields with bosonic or
fermionic commutation relations have been studied in terms of boundary
conditions imposed on modular invariant partition functions [8]. Yet the general
systematics remain somewhat obscure.

In this article we shall address the reverse question. Given two (isomorphic)
exchange quantum field theories $F over the oriented real axis. Their tensor
product ZF®^ is interpreted as a quantum field theory over Minkowski space-
time M 2 = R + x R " with the identification t + x = x+, t — x = X- of coordinates.
The metric in M 2 is given by (ί, x)2 = t2 — x2 = x+x _. The ordering* > on the real
axes is such that the quadrant x+ >0, x_>0 becomes the forward light-cone.

Then we ask for subalgebras #" of ^® SF consisting of space-time fields

Φ=ΣF+®F_ (1.1)

with conventional commutation relations. We shall identify several such subal-
gebras. The underlying systematics are traced back to the outer localized
automorphisms (abelian superselection charges) of the algebra of light-cone
observables, playing a prominent role in the construction.

The first subalgebra consists of mutually local space-time operators which are
left-right symmetric (or rather conjugate): the sum (1.1) contains only terms for
which the charge carried by F_ is conjugate to the charge carried by F+. A second
subalgebra consists of "unbalanced" fields with an abelian "excess charge" carried
by one of its chiral factors. The commutation relations and operator products of
these fields, in general, still depend on the excess charge of the sectors they act on.
This dependence cannot always be removed due to an intrinsic obstruction
(comparable with pseudo-reality of Lie group representations) preventing the
possibility to represent multiplication of equivalence classes of automorphisms in
terms of individual multiplication of a unique choice of representatives. If one
restricts oneself to excess charges without this obstruction (we give criteria for the
obstruction to be absent or uneffective), one obtains a third subalgebra of space-
time fields with soliton-like (dual) commutation relations. Finally, among these
we identify subalgebras of mutually local space-time operators with excess
charge, and discuss extended algebras of local light-cone operators.

We address this question in the framework of algebraic quantum field theory
[9-12], based on "first principles" to the largest possible extent (especially locality
and spectral properties). In that approach it is apparent that braid group statistics
and the exchange algebra, which were at first sight ascribed to the peculiarities of

1 The choice of the ordering is not immaterial, as soon as issues related to the spectrum condition
are discussed
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conformal invariance, are in fact basic structural features of general low-
dimensional quantum field theories. For our present task it is best suited to derive
symmetries of the relevant structure constants, and to elucidate the prominent role
of localized automorphisms for the existence of unbalanced space-time fields 2.

The detailed study of braid group statistics leads to a natural (though not
canonical) construction of a charged field algebra, the "reduced field bundle" or
"abstract exchange algebra" $F [13] from the observable content, i.e. the algebra of
observables J / , of the theory. The abstract derivation, being completely model
independent and in particular never assuming conformal invariance, precisely
predicts all the remarkable structural observations, made in large classes of two-
dimensional models of conformal field theory, but is not limited to these. Thus the
results of the first sections of this article about the structure of superselection rules
with braid group statistics are of general validity in low dimensions. Moreover,
since in the sequel we do not assume the conformal light-cone theory to be
governed by some symmetry group, we allow for the possibility of more general
conformal field theories than those given by current algebras based on Lie groups,
cosets, or orbifolds. The interesting conjecture that there might be always such a
symmetry, is beyond the intentions of the present article.

As a matter of fact, the known conformal models appear quite exhaustive for
the admissible braid group statistics. One might speculate whether the conformal
models provide some "complete sample collection of prototypes" of braid group
statistics, in this respect comparable to the free theories scanning permutation
group parastatistics. The study of non-trivial braid group statistics in these simple
models may be helpful to devise particle theories with braid group statistics
("plektons"), the scattering matrix of which is strongly constrained by the relevant
braid group representations.

In Sects. 2 and 3, we introduce the algebraic framework, as far as it is needed for
the present study. In Sect. 4, we prepare by a number of lemmata of general validity
the construction of algebras of conventional space-time fields from exchange light-
cone fields, which is given in Sect. 5 almost as a corollary of the preceding work. A
reader familiar with algebraic quantum field theory may almost directly proceed to
Sect. 5, provided he or she accepts the Lemmata 4.4-7. Yet we think that the results
of Sects. 2-4, having implications about selection rules for fractional spins, charge
conjugation and TPC symmetry, and multiplicative properties of abelian charges
in very general situations, are of their own interest.

It is only in Sect. 5, when we specify the algebra of observables J / to be a local
net over the real axis (light-cone), that we implicitly assume (though not really use)
conformal covariance. The conformal light-cone unites the space-like property of
supporting local fields (such as current algebras), and the time-like property of
boundedness of the spectrum of the generator of translations. Both these
properties are among the first principles of algebraic quantum field theory; the
latter may be replaced by the weaker (and technical) assumption of Borchers'
"Property B" [10, Theorem 3.3]. It is hardly conceivable how these two axioms

2 In fact, one deals with bounded operators instead of Wightman fields. Since point-like limits
exist at least in field theories with conformal covariance, leaving the relevant structures unaffected,
we shall not always make a clear verbal distinction between fields and operators
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can be realized over a one-dimensional "space-time" without conformal
covariance.

Let us list here the remaining axioms and assumptions made in Sects. 2-4.
Besides the physically immediate axioms of locality and isotony of the C* algebra
(local net) of observables si, we require, as usual, Haag duality as a maximality
criterion for si, and restrict ourselves to representations of si describing
arbitrarily narrowly localizable superselection charges. (Both these assumptions
can, in fact, be derived from conformal covariance in the vacuum sector.)
Furthermore we postulate the existence of conjugate charges and - tied to it -
fίniteness of statistics. (These properties are reasonable but not self-evident in
conformal theories, while they can be derived in massive theories.)

Instead of repeating the complete system of definitions of the framework, we
content ourselves - but still with some care about stating the results reliably - with
an instructive exposition with emphasis on the physical motivation of the basic
objects of our concern (localized morphisms, intertwiners, and the reduced field
bundle in Sect. 2, statistics operators and the exchange algebra in Sect. 3,
automorphisms in Sect. 4). The reader not familiar with the powerful C* algebra
algorithm is recommended to consult in cases of doubt the original papers
[11,12], the adaptation to low dimensions [13,14], and [15] containing a
pedagogigal introduction, of which we selected and reorganized the results
relevant for the present analysis according to our needs.

2. Superselection Charges, Localized Morphisms,
and the Reduced Field Bundle

A superselection charge is an equivalence class [π] of C* representations π: si
-*0b(2tf1) of the local net si of observables. The latter is (the norm closure of) the
union of all its C* subalgebras (local algebras) stf{Θ) of observables localized in the
finite space-time region 3 Θ. We are interested in representations locally equivalent
to the vacuum representation π0. This property is usually motivated by the
physical picture of localizable charges (particles) undetectable in the causal
complement G' of any finite space-time region G. Though the particle picture is
meaningless in a conformal theory, local equivalence of representations of si is
automatically guaranteed in the case of a conformal theory on the (compactified)
light-cone [16].

Localizable charges are described in terms of localized and transportable C*
morphisms ρ\si-*sί such that [π]aπ0oρ:si-+ίg(j#'0) are all realized on the
Hubert space J f0 of the vacuum representation. One may assume π 0 faithful and
use it is an identification of si with its image πo(si)C^{^o)\ then the represen-
tation π is given by the action of si on jtf0 via the morphism ρ:

A:Ψ\-+ρ(A)Ψ

(2.1)

3 It is sufficient to consider only space-time regions Θ which are double-cones (intersections of a
forward and a backward light-cone) in d^2, respectively intervals of the real axis in a light-cone
theory
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The less ambiguous notation (ρ, Ψ) e (ρ, Jf0) = J fρ is employed in order to indicate
the nontrivial action of s/.

2Λ. Definition, (i) A morphism ρ is said to be localized in the space-time region Θ, if

(2.2)

(ii) It is called transportable, if for every Θ there is an equivalent morphism ρ e [ρ]
localized in &. (See also the remark after Proposition 2.5.)

The product Q\°Q2~QxQ2 has the natural interpretation of describing a
physical situation containing both charges ρf.

2.2. Proposition [11, Sect. 2]. (i) The composition induces an abelian class
multiplication of superselection charges.
(ii) // Qi are localized in Gx then ρ1ρ2 is localized inΘ1v Θ2, the smallest double-cone

(interval) containing both Θ{.
(iii) // Θ( are at space-like distance (causally disconnected), then

Even if ρt are irreducible, ρίρ2 needs not to be irreducible (non-additive
superselection quantum numbers like irreducible representations of non-abelian
Lie groups). But, by Borchers' property B, for every (irreducible) subrepresentation
π on J^π = Ej^Q oϊ ρxρ2, Eeρ1ρ2(sί)t a projection, there is an isometry T in some
local algebra s/(Θ)9 TT* = E, T*T= 1, mapping EJf0 unitarily onto jf0. Then the

m a P Q(A): = T*ρlβ2(A)T (2.3)

is again a localized morphism, equivalent to the subrepresentation π, and
transportable if ρt are. T is an intertwiner from ρ to

2.3. Definition, (i) T is an intertwiner from ρ to ρ' (or: Te(ρ'|ρ)), if

) = ρ'(A)TVAes/. (2.4)

(ii) T is an isometry if T * T = 1 .

In other words, Te(ρΊρ) considered as a map from J^ρ to $?Q,

T:(ρ,Ψ)^(ρ',TΨ) (2.5)

intertwines the respective actions (2.1) of si.

2.4. Lemma [11]. (i) // ρt are localized in Θb i = l,2, then {ρ2\ρi)Cs/(Θ1 vΘ2).
(ii) // ρf have no common (equivalent) subrepresentation, then (ρ2^i) = {0}

(iii) // and only if ρ is irreducible, then (ρ\ρ) = ρ(j/)' equals C (Schufs Lemma).
(IN) If Te(Q2\Ql), Se(ρ 3 |ρ 2), then T*e(ρ α |ρ 2 ) and STe(ρ 3 |ρ 1). Moreover,
TG(ρ2ρ|ρ1ρ) and ρ(T)e(ρρ2 |ρρ1).
(v) // ρx is irreducible, then Te(ρ 2 |ρ 1) is a multiple of an isometry.

Now we can physically motivate and understand the abstract action of charged
fields interpolating among different superselection sectors.

Let ρ, ρα, ρ^ be irreducible transportable morphisms such that ρ^ is equivalent
to some subrepresentation of ραρ. Let Te e (ραρlρ^) be an isometry. For Aestf define
the linear operator (e,A): J ^ - ^ J ^ by

(2.6)
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This corresponds to the action of A in the background charge ρα, addition of the
charge ρ, and subsequent projection and unitary transport by means of
T* e (ρβ\ρaρ) of the state (ρβρ, ρa(Λ) Ψ) e J?QOLQ to a state in J^Qβ. The collective label e
("super-selection channel") stands for the three irreducible morphisms involved as
well as for the specific intertwiner Te chosen, see below. We shall call s(e) = ρα,
r(e) = ρβ the "source" and the "range" of e (referring to the interpolation of the map
(e, A)), and c(e) = ρ the "charge" of e (referring to the charge added by the operator
(e, A)), and write e = (ρα, ρ, ρβ) if we want to specify only its source, charge, and
range.

We shall now restrict ourselves to the set Ao of transportable morphisms,
possessing conjugates and having finite statistics (see below). Δo is closed under
composition and taking subrepresentations [11,12]. Moreover, if ρα, ρeA0 are
irreducible, then ρaρ contains only finitely many inequivalent irreducible subrepre-
sentations ρβ, each occurring with finite multiplicity

Y (2.7)

Two irreducible localized morphisms ρ, ρ are called conjugate to each other, if [ρρ]
contains the vacuum representation as a subrepresentation, i.e. if there are
isometries

Re(ρρ\id), Re(ρρ\id). (2.8)

Finiteness of statistics assures that conjugates are unique (up to equivalence).
After these preliminaries, we define the reduced field bundle.

2.5. Definition. Let VOCAO be a countable 4 collection of "reference morphisms,"
one per equivalence class of irreducible morphisms in Ao (or in some subset A
closed under composition and taking subrepresentations and conjugates), id e Vo.
For every triple ρ, ρα, ρ̂  e Vo let N = (iVρ)f, and if JV + 0 fix an orthonormal basis of
intertwiners Te=Tιe(ρaρ\ρβ):

r T^δtj, i,; = l,...,iV (2.9)

(i.e. here and from now on the collective label e consists apart from its charge,
source, and range also of a multiplicity index i = 1,..., N. We shall never display the
multiplicity indices, and adopt an implicit summation convention for i whenever
Te and T* occur in the same formula). Then

ΣOT = 1, (2.10)
e

where the summation extends over r(e), while s(e), c(e) are kept fixed. If ρα or ρ = id,
we choose Te = l. If ρβ = id (hence ρα = ρ), we call Te = :Rρ.

The reduced space bundle is the sum of Hubert spaces

Jf = Θ 2tfQ (2.11)
ρeV0

equipped with the scalar product <(ρl5

 ϊfί

1),(ρ2, Ψ2)} = <>ρiρ2(Ψu Ψ2} induced from
the scalar product of Jf0.

4 Countability seems not to be a severe restriction
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The reduced field bundle is the sum of vector spaces (extending over all
superselection channels e of Vo)

^=®(e9s/) (2.12)
e

with operators (e, A)e^r acting on states (ρα, Ψ) e Jf by (cf. (2.6))

(e,A)(ρa, ?P) = W K e ) , T*QJΛ)V) (2.13)

2.6. Proposition [13,14]. 3F is a Banach subalgebra of &(Jίf). More specifically we
have:

(i) ||(β,A)||g||A||.
(ii) The product of (et, At) e 3F with charges ρ{ = c(et) is again in J5":

( 2 ) ( ύ £ i i ; f , f (2.14)

where the finite sum extends over all f with s(f) = ρl9 c(f) = ρ2 and all e with s(e)
= s(eί), r(e) = r(e2) and c(e) = r(f) (that is, (e,Af) do the same interpolation as the
product on the left-hand side, and carry charges contained in ρ1ρ2)> The notation
eγ oe2 indicates the condition s(e2) = r(ei). In (2.14), with ρa = s(eί):

(2.15)

= C. (2.16)

(iii) si is contained in 3F by the identification (cf. (2.1))

A= Σ (e,A). (2.17)
e,c(e) = id

(iv) The following two definitions for (e, A) to be localized in Θ (or: (e,
are equivalent:

1. (e,A) commutes with srf{&) acting on J f.
2. There are ρ equivalent toρ = c{e\ § localized in Θ, and U e (ρ\ρ) unitary, such that

(v) // (e9A)e^(Θ)9 then (e, A)*

Remarks. 1. By 2.6(iv(2)), the localization is independent of s(e), r{e). Every
(e, A)e!F with A a. local operator is contained in some 1F(G).
2. It might be reasonable in certain physical contexts to consider a weaker
localizability reflecting some "minimal volume" occupied by charges; namely,
instead of 2.1 (ii) assume only that, if ρ is localized in Θ, then for every translate
Θ + x there is ρ e [ρ] localized in & + x. The results of this and the following sections
are not affected except that 2.6(iv) is then only meaningful for double cones &
sufficiently large to contain the localization region of an equivalent of ρ, i.e.
charged operators cannot be better localized than the charges they carry.

3. Statistics and Exchange Algebra

The statistics of a localized morphism ρ is a unitary operator ερ = ε(ρ,ρ)e(ρ2 |ρ2)
= ρ2(s/y C s/. It induces a collection of unitary representations of the braid groups
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Bn (in sufficiently high dimensions: of the permutation groups Sn), related to wave
function permutations [17], or commutation relations [12] for fields carrying
charge [ρ]. More generally, for any two localized morphisms ρί9 ρ2 there are
unitary operators

ε{Qι> Qi) e (QiQilQiQi) > β(βi, QIMQU QI)* = ε(Qu Qi)* Φi> Qi) = 1 (3.1)

with properties generalizing representations of the braid groups (see 3.3 (i) below).

3.1. Proposition [11,13]. Let ρt be localized in Θt. Let ρf e [ ρ j be localized in Θt such
that (9γ and Θ2 are at space-like distance, and Ut e (ρjρi) unitary. Then the unitary
statistics operator ρ2{UX) U* Uiρί(U2) is independent of Ut and does not change if &t

are continuously changed within the space-like complements of each other. Thus, in
dimension d^\ + 1 , where G' has two connected components, it can take only two
values:

J ε te0) if Θι>®2 ,
. f U 2 > ^ 9 (3.2)

where a global ordering > for space-like separated double-cones (disjoint intervals)
has been chosen. In dimension d ^ 2 + l , where &' is connected, these two values
coincide:

ε(QuQ2MQ2>Qi) = l' ( 3 3 )

Remark. If charges can only be localized in narrow space-like cones extending to
infinity ("gauge charges") [18], then (3.3) holds only for d^3 + 1.

3.2. Proposition, (i) The statistics operators of product morphisms are

Φi£ 2 > Qs) =

εto3? Q1Q2) =

(ii) IfTe(Q2\Ql),then

) = &(Q2> QS) T > „ 5 )

Proof For the first equations, one may choose for simplicity Θ3 < Θl9 Θ2, ρι=ρι,

Q2 = Qi> U1 = U2 = l. Then

> Qz) >

Qs(T)s(Ql, ρ 3) = Q3(T) U*3Qί(U3) = U*U3(T)Ql(U3)

where we used Lemma 2.4(i) and (2.2). The second equations are obtained by
choosing Θ3>Θ1, Θ2 instead.

3.3. Corollary.

(i) ρ3(ε(ρ1 ? ρ 2))ε(ρ l 5 ρ3)ρi(ε(ρ2 5 Qz)) = ε(Qi> Qz)Q2(β(Qi> QZ)MQI> QI)-
(ii) ρ3(R) = ε(ρρ,ρ3)R = ε(ρ3,ρρ)*R for Re(ρρ\id).

Proof By the substitutions ρ2->ί?2έ?i> ^i"^^i^2 a n d T=ε(ρί,ρ2) respectively
ρ2-^ρρ, ργ-^id and T=R in 3.2(ii), using ε(ρ1,ρ2) = l if ρ t or ρ2 = id.
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The Corollary 3.3 (i) and (3.1) are the relevant equations for the braid group
property of the statistics operators. In particular, for Q( = Q the unitary operators
Qkί(£ρ) satisfy the defining relations of the generators σk of the braid group,
reducing to the permutation group if (in high dimensions) also (3.3) holds.

3.4. Lemma. Let (ebA^e^(β^, & = Φί). Then

Proof. By Proposition 2.6(v(2)) let Ct = U^ejiίiO^ L ^ e ^ ^ ) , & localized in 0f.
Then for G{ at space-like distance one has with (2.2)

QlA^Ai = QjtUfCj) UfCt = Qi(Uf) UmCj) Ct = Qi(Uf) UfCjCi,

which implies the claim since Cf commute.

3.5. Lemma, (i) The operators ρa(s(ρί9ρ2)) and ρα(ε(ρ2,ρi)*) unitarily map

(ii) // φ i ) = ρ£, s(e1) = ρa, r(eι) = s{e2\ r(e2) = ρy all in Vo, then Γ e i Γ e 2 G(ρ α ρ 1 ρ 2 | ρ y ) ,

and / .

/ε(ρi,ρ2) \ τ τ _ v «(±) τ τ (^Ί^
QaL\p(n n \*l e i e 2 ~ ^ Ke'2oe'1;eloe2

1e'21e'ι> \3>l)

where c(eβ = ρi9 s{e'2) = ρa, r{e'2) = s{e\\ r(e\) = ρv and

(iii) For c(e t ), s(e1), r(e2) fixed, the finite square matrices Deιoe2.fe (see (2.16),) and
{Ve2oe', are unitary, and R(-> ( + ) t

D(±) Rl^) =/S
- iVei°e2;e2°e'i e'2°e\\e'{°e2

 KJe\oe2,e'\ °e2 >

e,f ei°e2

/ The first statement follows from Lemma 2.4(iv). By 2.4(iii) the operator in
(3.8) vanishes for r(e\)*r{e2) and is a scalar otherwise. Then (3.7), (3.9), and (3.10)
follow from the orthonormality (2.9) and completeness (2.10) of intertwiners.

3.6. Proposition (Exchange Algebra [13]). In the reduced field bundle 2.5, 2.6, one
has the following commutation relations: Let (ehA^e^(Θ^, r(e1) = s(e2) = ρβ.
Then5 (with the remaining specifications as in Lemma 3.5),

(e2,A2)(e1,A1)= Σ ^ U w i K ' ^ M ^ ^ ) if li^A- (3.11)

5 Note that the structure constants R (3.8) of the exchange algebra and D (2.16) of the operator
product expansion (known as "braid matrices" [5-7,19] and as "duality matrices" [7,19]
respectively in conformal field theory, and satisfying the braid and "pentagon" equations by virtue
of Proposition 3.2 and Corollary 3.3) depend on the reference morphisms Vo and the intertwiners
Te chosen in Definition 2.5. While their transformation behaviour is manifest from the definitions,
their actual values are of limited relevance. The intrinsic quantities are, e.g., their eigenvalues
which can be typically expressed in terms of the invariant statistics parameters introduced below,
and the Markov traces associated to the statistics [13]



470 K.-H. Rehren

Proof. Acting on some state (ρα, Ψ\ we obtain for the left-hand side

and a similar expression for every operator product on the right-hand side. Using
the previous lemmata, the claim follows easily.

4. Automorphisms and Symmetries of the Structure Constants

4.1. Definition. For ρeA0 irreducible, ρ a conjugate, Re(ρρ\id) an isometry, the
statistics parameter of the sector [ρ] is

λρ: = R*ρ(sρ)Re<i:. (4.1)

The statistics parameter, as an element of (ρ|ρ) = ρ(j/)/, is a scalar, and does not
vanish by definition of Ao (finite statistics). It is independent of the choice of the
isometry R and depends only on the equivalence class of ρ. The statistics
parameters of conjugate morphisms coincide. We denote by

the decomposition into a phase ω(ρ) (statistics phase) generalizing the distinction
between bosons and fermions, and the inverse modulus rf(ρ)^l (statistical
dimension) generalizing the order of (permutation group) para-statistics.

Remarks. 1. For conformally covariant theories on the light-cone, a spin-statistics
theorem [14]

ω(ρ) = exp 2πihρ, (4.3)

relates the statistics phase ω(ρ) of a covariant sector to the conformal scaling
dimensions hρ(modΈ) of fields carrying charge [ρ]. Analogues are expected to hold
also for the Poincare spin of more general low-dimensional exchange fields. So far,
however, the reason for the validity of a spin-statistics theorem is understood only
for covariance groups that can geometrically change the sign of a space-like
separation by real transformations: the conformal group acting on the compacti-
fied light-cone, and the Poincare group in 2 +1 dimensions. In fact, this action of
the covariance group does not imply that the two statistics operators (3.2) coincide,
since in these situations the relevant ordering is defined with respect to some
reference frame (a "point at infinity" [14] respectively, a space-like direction [20]),
but rather relates their difference (the "monodromy" operator ε(ρ1? ρ2)ε(ρ2> Qi))to

the covariance quantum numbers (spin).
2. The statistics parameter λ(ρ) is a convex sum of the eigenvalues of ερ. Namely, if
ερ= Σ Vfii is the spectral decomposition of the statistics operator, then
λ(ρ)= ΣμiR*Q(Ei)R, where #*£(£;)# e(ρ|ρ) are positive scalars summing up to 1.
In particular, d(ρ)^ί. In conformal models, the statistical dimensions d(ρ) are
known as the normalized entries SOρ/Soo of the modular matrix, measuring the
relative dimensions of representations of the chiral algebra [21]. More generally,
the square of the statistical dimension is the von Neumann index of the inclusion of
factors ρ(s/(Θ))Cs/(Θ) [22].
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4.2. Lemma [11, Proposition 2.7]. (i) The following four definitions for τeA0

irreducible to be an automorphism are equivalent:

1. τ possesses an inverse τ~1eA0.
2. τ2 is irreducible.
3. ετ is a scalar (hence ετ = λ(τ) = ω(τ)).
4. d(τ) = l.

(ii) For τeAoan automorphism and ρeA0 irreducible, ρτ~τρ are again irreducible,
d(ρτ) = d(τρ) = d(ρ), and

ε(ρ, τ)ε(τ, ρ) = ε(τ, ρ)ε(ρ, τ) = ω ^ g ) = : « & ) . (4.4)

(iii) The equivalence classes of automorphisms in Ao define an abelian group Γo by
class multiplication: [τ x ] [τ 2 ] = [ ^ T J , and [τ] ~ * = [τ~ *] = [τ].

Proof If τ has an inverse, the irreducibility of τρ and ρτ follows immediately from
that of ρ:

ρ(τ[st))' = ρW = <C, τ{ρ{j*))' = τ(ρ(O') = τ(C) = C .

In particular, τ2 is irreducible, and ετ e τ2(stf) is a scalar, which coincides with the
statistics parameter by definition of the latter, and with the statistics phase by
unitarity. Hence (1) implies (2) implies (3) implies (4). Since a nontrivial convex sum
of complex phases has modulus < 1, (4) implies that ετ has only one eigenvalue,
hence (3). To see that (3) implies (1) first note that τ is injective since localized
morphisms are norm-preserving maps. If ε(τ) is a scalar, then τ is also surjective: let
Aesrf(Θ^) and τ be localized in &. Choose τ equivalent to τ and localized in
&>(Θί v0), and Ue(τ\τ) unitary. Then U = εττ(U), and

= τ(U)τ(A)τ(U*)eτ(j*).

Hence τ has an inverse. Since τ is trivial on sί(G'\ so is its inverse, hence τ " 1 is
localized in Θ. It is easy to see that τ~ 1 is transportable if τ is. Of course, the inverse
is a conjugate and has finite statistics, hence is in Ao. To prove (4.4) remark that
ρτ~x is conjugate to τρ with (ρτ~1 ° τρ\id) = (ρρ\ίd). Let R be an isometry in (ρρ\id).
By Proposition 3.2 and Corollary 3.3, one has

λ(τρ) = R*ρτ '' [e(τρ, τρ)] R = #*ρτ " 1 [τ(ε(τ, ρ))εττ
2(ερ)τ(β(ρ, τ))] R

= ω(τ)Λ*ρ[ε(τ, ρ)τ(ερ)ε(ρ, τ)] R = ω(τ)R*ρ [ρ(ε(ρ, τ))ερρ(ε(τ, ρ))] R

= ω(τ)ε(ρ, τ)#*ρ(ερ) Rε(τ, ρ) = ω(τ)λ(ρ)ε(ρ, τ)ε(τ, ρ).

Comparing phases and moduli yields the claim, (iii) is obvious.

4.3. Lemma. Let ρ^ρ^A^ be irreducible, τ, τ f ezl 0 automorphisms. Then

( i ) Ω I l t 2 ( ρ ) = Ω l 2

(ii) // ρ is equivalent to a subrepresentation of ρ1ρ2, then Ωτ(ρ) = Ωτ(ρί)Ωτ(ρ2).

Proof, (i) follows from Proposition 3.2(i):

ε(τίτ2, ρ)ε(ρ, τίτ2) = ε(τ1?
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For (ii) choose an isometry Te(ρίρ2\Q). Then, again using Proposition 3.2:

ε(τ, ρ)fi(ρ, τ) = ε(τ, ρ)τ(Γ*Γ)ε(ρ, τ) = Γ*ε(τ, ρ1ρ2)ε(ρ1ρ2, τ) T

= T*QM*> QI)W*> QMQu τ)eMQ2, *)) T

= f2 t(ρ1)T*ρ1(ε(τ,ρ2)ε(ρ2,τ))Γ
implies the claim.

In view of the spin-statistics theorem (4.3), this lemma provides non-trivial
selection rules for scaling dimensions (respectively fractional spins).

Let us return to the group Γo of equivalence classes of automorphisms. In
general it is impossible to choose representatives τ e [τ] e Γo, forming a group
isomorphic to Γo by their individual multiplication. We now give criteria, when
such an intrinsic obstruction is present or absent.

4.4. Lemma, (i) Let τeήobe an automorphism such that [τ v] = [id]. // and only if
ω(τ)v = l, there is τ e [ τ ] satisfying Γ — id.

(ii) Let a subgroup Γ = ® Zv. {Z0 = Z) of Γo be generated by τ£ with [τ?*] = [id]. //

and only if ω(τi)
v< = l, one may choose τ f e [ τ j generating a subgroup of Ao

isomorphic to Γ by individual multiplication.

Proof For the " i f statement of (i) we refer to [23, Lemma 2.4], where by virtue of
permutation group statistics ω(τ)v = 1 is automatically guaranteed. For the reverse
statement it is sufficient to compute

1 = ε(id, τ) = ε(τ\ τ) = ε^ε .) . . . τ v " \εj = ω(τ)v = ω(τ)v.

The statement (ii) is an immediate consequence of (i) for every factor Z v . of Γ. But
the generators τt of different factors may be chosen to have space-like separated
localization; then they commute individually.

4.5. Lemma. Let τeA0 be an automorphism.

(i) ω(τw) = ω(τ)m2.
(ii) Suppose [τ v] = [id]. Then ω(τ)y2 = ω(τ)2 v = l. // v is odd, then ω(τ)v = l. If for
some odd μ there is a fixpoint equivalence class of τμ: [τμρ] = [ρ], then ω(τ)v — X.lfτ
has permutation group statistics, then ω(τ)v = l.

Proof (i) By Proposition 3.2 one can compute ε(τw, τm) as a product of m2 factors
τfc(ετ) = ω(τ), if m^O. For m negative, the claim follows from ω(ρ) = ω(ρ).
(ii) The first statement follows from (i) and ω(τ v + 1 ) = ω(τ). If v = 2n + l, then
l = ω ( τ ) v 2

 = ω ( τ ) 2 v π + v = ω(τ)v. If μ is odd and [τ"ρ] = [ρ], then (by Lemma 4.3)
l=(Ωτμ(ρ))~v = ω(τμy = ω(τ)μ2v = ω(τ)v, since μ2 is also odd. If τ has permutation
group statistics, then 1 = ε2 = ω(τ)2 implying ω(τ)v = 1 also for even v.

Remarks. 1. In conformal field theories, automorphisms with the obstruction, i.e.
ω ( τ ) v = - 1 , are encountered. In SU(2) WZW models [24] of level fc, the self-

it
conjugate automorphisms have scaling dimensions -, thus by the spin-statistics

theorem ω(τ)2 = ( - l)fc. More generally, in SU(N) WZW models [24] at odd level k
there are automorphisms of order v = N, which have ω(τ)v = — 1. In contrast, in all
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unitary minimal models [3] and coset models [25, 26] of SU(N) as well as in the
WZW models of even level, the fixpoint condition of the lemma applies, hence
ω(τ)v = 1 for all automorphisms of order v, and the obstruction is absent.
2. Whether the obstruction occurs or not is an instance of the intrinsic
characterization of sectors given by Longo [22, II. Sect. 6]. In the case v = 2 (τ self-
conjugate) it amounts to the property of reality or pseudo-reality [12].

The following two lemmata display some symmetry properties of the structure
constants D and R of the operator product expansion and the commutation
relations of the reduced field bundle (2.14), (3.11). Besides their particular interest
for our task in Sect. 5, they are of general relevance for the TPC symmetry of the
exchange algebra [14] and for the study of extended algebras [26].

From now on, we fix a choice VOCΛ of irreducible reference morphisms, as in
2.5. It is not always possible to choose Vo such that with τ e Vo an automorphism
and ρ e Fo, also ρτ is in Vo. But there are unique equivalent reference morphisms in
Vo denoted by

τ e [ ] n F + e \ \ n V (4.5)

One should always be careful to distinguish the individual multiplication ρ1

oρ2,
class multiplication [ρ x ] [ρ 2 ] , and multiplication within Vo which is only defined if
at least one factor is an automorphism: ρτ respectively τ 1 + τ 2 = ττ

1

2.
For ρ, τ e Vo there is precisely one superselection channel with source ρ and

charge τ. The corresponding unitary basis intertwiner Te is called (7(ρ,τ)e(ρτ|ρτ).
For e a superselection channel of Fo, we denote by e the charge conjugate

superselection channel with s(e) = s(e), c(e) = c(e), r(e) = r(e\ (considered as an
independent multiplet of the same size JV).

For t a superselection channel of Vo consisting of automorphisms only, in
particular r(t) = s(t) + c(t) and N = 1, we denote by (et) the superselection channel
with s(et) = s(e)s(t\ c(et) = c(e)c(t\ r(et) = r(e)rit\ (also considered as an independent
multiplet of the same size as e).

We define coefficients

ζ{e): = RtRtρMQ*, <?)*) Teρβ(Te)RSβ e (id\id)=C (4.6)

and

μ(e, t): = U*(ρp, τ 0 + τ)ρβ(T*) Γe*ρα(ε(τ0, ρ))ρβτ0(t7(ρ, τ)) l/(ρα, τ0)

xT{et)e(r(et)\r(et)) = <E, (4.7)

where e = (ρα, ρ, ρ )̂, t = (τ0, τ, τ 0 + τ).
Remark that both ζ and μ are in fact NxN tensors in the suppressed

multiplicity indices of e, e and e, (te) respectively. One may verify, that as such μ(e, t)
is a unitary matrix, while ζ is unitary up to a factor:

/ w Π ' μ*μ = μμ1 = i. (4.8)
d(ρa)d(ρ)

4.6. Lemma.

(4-10)
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4.7. Lemma.

) ( / ) ( ) / ί ) . (4.12)

Remarks. 1. Lemma 4.6 is an essential consistency condition for the TPC
symmetry 6 of exchange fields. For the derivation in the case of conformal light-
cone theories, see [14]. Yet, the general validity of the lemma raises the hope that
one might derive TPC symmetry for general exchange field theories.
2. The relevance of Lemma 4.7 for the possibility to extend the local algebra s/ to
some larger local algebra ^extC^ will become apparent in the discussion in
Sect. 6.

The rest of this section is devoted to the proof of the lemmata. The calculations
make extensive use of the intertwiner calculus given by Definition 2.3, Lemma 2.4,
Definition 2.5, Proposition 3.2, and Corollary 3.3. Since the "linear" notation used
here is quite untransparent, we advise the reader to follow it in a "diagrammatical"
notation [27], in which the intertwining properties of the operators involved are
easily kept track of, and the numerous equivalence relations are most efficiently
visualized. Let us describe this diagrammatical notation in a few words.

Operators are represented by graphs, and irreducible morphisms ρ e Vo are
represented by vertical lines drawn to the right of the operator to which ρ is
applied. (No line is drawn for ρ = id.) A B is represented by the graph of A drawn
on top of the graph of B, the graph of A* is the upside-down mirror image of the
graph of A. The graph of an intertwiner Te(ρ1... ρn\ρ\ ... ρ'm) has lines ρ'm, ...,ρΊ
"coming in from below," and lines ρn, ...,ρι "going out above." E.g., the basic
intertwiners are given by

Fig.1

By Lemma 2.4 (iv), the product ST of two intertwiners is again an intertwiner
provided the lower (ingoing) lines of S match with the upper (outgoing) lines of T.
Here, if necessary for the matching, vertical lines may be added to the left of the
graph of an intertwiner without changing the operator.

With these rules, the formulae (2.4), (3.1), (3.4), (3.5), and Corollary 3.3 turn into
apparently "obvious" diagrammatical identities, and the definitions (4.6), (4.7) lose
much of their unwieldiness; ζ(e) describes a "turn-over" that takes e into its
conjugate e, while μ(e, t) describes the separation of the superselection channel (et)

6 The role of the factors ζ is partially to account for the dependence on the bases of intertwiners
chosen in 2.5, and partially to cancel the factors collected by *-conjugation in $F and complex
transformations of the covariance group taking x into — x
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into e and t. In the diagrammatical notation, the manipulations below become
quite natural and easily reproducible. In particular, it will be sufficient to
demonstrate only the proofs of (4.9), (4.11) for the upper sign; for the lower sign the
calculations are quite similar, and (4.10), (4.12) are proven in the same spirit guided
by the diagrammatical intuition, but with less difficulty.

Proof of (4.9). Let us start writing the l.h.s. (left-hand side) of (4.9), by inserting the
definitions, in the following form (e1=(ρa9ρl9ρβ), e2 = (ρβ,ρ2,ργ)):

. s. = R

*) Te2Qγ(T,2 Γ£7£ρ β (β(ρ 2 , Qi)) T-e{Γ-e,)R-Qy.

We replace T^Tj* by 1 = £ TST£9 where the sum extends over r(e) while s(e) = ρβ,

c(e) = ρ2 are kept fixed, see (2.10). This does not change the expression, since the
intertwiner ργ(T^ .. .)R^ e (ργr(e)\ίd) vanishes unless r(e) = ρy9 hence e = e2. Similar-
ly, after by virtue of (2.4)rcommuting R*2R*β = R%βρβρβ(R%2\ we may replace RQPR$P

by 1 = Σ TeT*9 where the sum extends over r(e) with s(e) = ρp, c(e) = ρβ fixed. Again
e

this does not change the expression, since the intertwiner R^ ... Tee(ίd\r(e))
vanishes unless r(e) = id9 hence Te = RSβ. We thus obtain

βi)*) TeίQ^T9ιρ^R*Jε(Qβ9 ρ2)*) Tei

which turns into

l.h.s. = RlRlρMQ*, βi)*) TeιQ£T9ίT*1Qβρ1(R*)ε(ρaρl9 ρ2)*) Te2

X QyiQMQl, β l)) Te'2Te[)R-Qy >

where T9ί has been commuted to the left using (2.4) and (3.5). Now, again 7^7^*

may be replaced by l = £ T g 7 ! * , since the intertwiner R^l...ρβ(T^)e(id\ρβr(e))
e

vanishes unless r(e) = ρβ, hence e = ev Finally, commuting the various R* to the left
and the various Te to the right, we end up with

l.h.s. = Λ*2Λ*1R*βρβ[ε(ρβ, ρ1)*ρ1(ε(ραρ1, ρ2)*)QiQ2QMQ2> βi))]

xΓβ lT e 2ρ y(TB iT r i)Λ ί y.

To compute the r.h.s. (right-hand side) of (4.9) we start from (ρδ = r(ef

2) = s(ef

1))

r.h.s. = R;2RijeJLε(Q» Qi)*)

Replacing Te i e y(TB i) = C r f l ( T r i ) T e i and Λ Λ f ^ Λ ^ ρ r f ^ ) , eliminating Te,Je%
and RρόR*ό by similar arguments as before, then commuting T£ to the left and
eliminating Te.2T£2 as before, and finally commuting R* to the left and Te to the
right, we end up with

r.h.s. = RlR*2Rl
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Now, to arrive at the desired conclusion, we insert into the expression for the l.h.s.
the following formula which is an application of Corollary 3.3 (ii):

Rit = QI(R-*MQ iQi> Q2) = QiiQiiRζMQi* QIQI)*)*(QIQI> QI) >

commute JR^ to the left of R%2 and ρ2(
ε(£?2> QiQi)*)ε(QιQu Qi)to the right of R£Λ. The

coincidence of the statistics operators thus collected in the argument of ρα is then
due to the braid equivalences (3.1), Proposition 3.2(i), and Corollary 3.3(i).

Proof of (4.11). Let us first prove the unitarity (4.8) of μ(e, t). Let e = (ρa,ρ,ρβ),
£ = (τo,τ,τ + τo). Then

μ(e, t)*μ(e, t) = T*t)U(ρa, τo)*ρατo(ί7(ρ, τ)*)ρα(ε(τ0, ρ)*) Teρβ(Tt) U(ρβ, τ 0 + τ)

x U(ρβ9 τ 0 + τ)*ρ£T*) Te*ρα(ε(τ0, ρ))ρβτ0(l/(ρ, τ)) t/(ρα, τ0) T{et)

= T*t)U(ρa, τo)*ρατo(l/(ρ, τ)*)ρα(ε(τ0, ρ)*) TeT*

x ρα(ε(τ0, ρ))ρατ0(t/(ρ, τ)) t/(ρα, τ0) T(et),

since U and Tt are unitary. Now, TeT* may be replaced by 1 = £ Te,T$> since the
e'

intertwiner 7J*f) ...Te,e(ρτ

β°
+τ\r(e')oτoτ) vanishes unless r(e') = ρβ, hence e' = e. The

remaining unitaries ε and U cancel, and we are left with

if μ is considered as a matrix, hence (et) carrying independent multiplicity labels.
Now, using the definitions and (by similar arguments as before):

μ(e, t) T*t) = U(ρβ, τ 0 + τ)*ρ^T*) Te*ρα(ε(τ0, ρ))ρβτ0(t7(ρ, τ)) t/(ρα, τ 0 ) ,

we compute (abbreviating C/(ρy,τ0 + τ 1 + τ 2 ) = l 7 y etc.)

x U*ρJtτo(Uξ)ε(τθ9 ρ2)

Since the l.h.s. is a scalar, we may omit Uγ on both sides of this expression. Uβ and
Uδ cancel trivially, while Ua cancels after commuting it through the statistics
operator in the middle. Next, by virtue of Proposition 3.2(ii) we commute U% to the
left and U1 to the right of this statistics operator, and obtain

... = Qy(W T*2ρβ(ε(ττ

0\ Ql)τ^{U2) T*) T^ρα

x ρjo l.Qiτi(V%)ε{ρ2τ29 ρ iτ 1)ρ 2τ 2(l7 1)]

x Q«(Φo, ρ2)*) Teφ(Tf2τ
τ

0%Ut)ε(ττ

0

2, ρ j

= ρy(T*T*)Te*Te*

x ραte

where in the second step we have commuted all T* to the left and all T to the right,
and subsequently cancelled Ut by commuting them through the statistics
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operators. Evaluating the statistics operators collected in the argument of ρα by
virtue of Proposition 3.2(i) and Lemma 4.2(ii), we find

[...] = Ωτi(ρ2) ε(ρ29ρ1)ρ2ρ1τ0(ε(τ29τ1)).

Inserting this into the preceding expression, we get

... = O t l(ρ2) Qy(T*T*)

This is, in view of the unitarity of μ, the desired relation.

5. Space-Time Fields from Light-Cone Fields

We specialize the situation of the preceding sections to a local net si over the
oriented light-cone. We choose two identical replica of si and identify the product
of its supports R x 1R with two-dimensional Minkowski space-time M 2 , as in the
Introduction. We shall find space-time operators

Φe&(ΐ)®&(3) (5.1)

(/, JClR intervals) acting on (subspaces of) J f ® J f with "conventional" (local,
fermionic, or dual, as opposed to exchange type) commutation relations among
each other provided their space-time localizations Θ = I x J, which are double
cones in the usual sense, are at space-like distance. For Θt at space-like distance we
write Θί <Θ2 if h </2> i e $ i ϋ e s i n the left causal complement of φ2.

We also derive very simple operator product expansions.

5.1. Proposition. Let ^ 0 : = © ^Q-Q, (5.2)

where J^ ρ ρ , : = J ^ ® ^ , . The space-time operators1

ζ(e){e,A)®(e9B) (5.3)
e,c(e) = ρ

acting on 34?O commute with each other if they are localized at space-like distance in
M 2 . With the notations as in Proposition 2.6 one has the operator product expansion
(for arbitrary localizations)

Σ rAf, B7). (5.4)

Proof. Space-like distance between Θt in M 2 means Iι<I2, Ji>Ji o r ^i>^2>
Jt<J2. Hence with the exchange algebra (3.11),

= Σ C(e2)ζ(e1)(e2,A2)(e1,Ai)®(e2,B2)(e1,Bι)
eι,e2

= Σ αβ2)C(e1)Λif.).2i. i
U''

7 Here as well as in the subsequent Propositions 5.2 and 5.4 one may verify that the dependence on
the choice of the generic intertwiners Te originated in Definition 2.5 is completely cancelled by the
factors ζ and μ, with a remaining dependence only on jRρ. Since άim(ρρ\ίd) = l, this freedom is just
one overall phase factor per charge sector
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With Lemma 4.6 and Lemma 3.5(iii) the coefficients summed over et yield

Σ β2) («Ί^i)(e'2, A2)®{e\, B,)(e'2, B2)
eί

To prove (5.4), we use the operator product expansion (2.14):

Σ eιer.t.Jw.r.*
e,f,e',f

= Σ ζ(f)ζ(e)(e,Af)Θ(e,B-f)=Σζ(f)ΦiS ι\ApBτ),
e,f f

where again Lemma 4.6 and Lemma 3.5(iii) have been used.
Let us now discuss space-time fields with excess charge.

5.2. Proposition. For τeV0 an automorphism let

Jtτ:= Θ #Q*,,. (5-5)
QeVo

Define space-time operators Φ<f^ ):# τ o->J (f τ o + τ by

Φ%τ>e\A,B):= Σ ζ(e)μ(e9t)(et9A)®(e,B), (5.6)
e,c(e) = ρ

where t = (τ0, τ, τ 0 + τ). Then one has

φte?β2)φ(βίi)={ | Λ ( ) f φ t e β ) φ ( β
τ o + τ i τo l β ( ρ ) * J ί l 0 ί 2 ; ί i o ί l T0+τ2 τo

and

f (5.8)

The proof is completely analogous to that of the preceding proposition, this
time also using Lemma 4.7.

The structure constants in (5.7) and (5.8) in general depend on the excess charge
τ 0 of the sector J ^ o they act on. The following lemma shows that this is related to
the obstruction discussed in Sect. 4.

5.3 Lemma. Let Vo and a subgroup of automorphisms Γ be chosen such that within Γ
one has τ 1 + τ 2 = τ 1 τ 2 and Tt=U(τί,τ2) = l (cf. Lemma 4.4). For super selection
channels within Γ one has

e<C, Dtιot2lst = l. (5.9)

Proof. It is sufficient to note that ε(τ2,τί)e(τίτ2\τ2τ1) = (τί -\-τ2\τί + τ 2 ) is a scalar,
while all basis intertwiners Tt involved in the definitions are 1.

Remark. Equation (5.9) can be expressed in terms of statistics phases alone.
Namely, if Γ = (x) ZVk as in Lemma 4.4 is generated by τ(k\ τ(k)Vk = id, with disjoint

k
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localizations Jk, we may assume Ik>Iι'\ik>/, hence

e ί τ<*> τ(D)= I 1 i f k>l

' I O (r(l)\ if

Then, for τt= X njfe)τ(fe)eΓ one has

5.4. Proposition. For ΓcV0 a subgroup of automorphisms as in 5.3 let

# r:=θi r (5.10)

τeΓ

Define space-time operators Φ(ρT>δ)e J ^ r ) by

Φ(«τ »μ,B) = Σ Φ%*\A9B). (5.11)

77zen one has

and

(ί2τ2(ρi)ε(τ1;τ2))*Γ Φ ? l ^ ^ P j 1 ^

Φ ( β ? * 2 ) μ 2 ,B 2 )Φ^^^^ (5.13)

Remark. The commutation relation (5.12) holds also if one chooses only one self-
conjugate automorphism τeV0 which may be obstructed: ω(τ)2 = — 1, i.e. τ2 φ id.
Namely, the first equation of (5.9) is also valid if either τ1 or τ 2 = id or if τx = τ2.
However, the operator products φίe^φίeϊ.δi) faπ t o be of the form Φ(ρ'δ).

Equations (5.12) are in general soliton-like (dual) commutation relations.

Example. Consider the Ising model. There is besides the vacuum sector id = 0 only
one automorphism τ = τ with hτ = \, and one more sector ρ = ρ e Vo with hρ = γ£.
Identifying respectively

φ(0,0)? φ(ρ,ρ)^ φ(τ,t)? φ(τ, 0)? φ(ρτ,ρ)^ φ(0,τ)

with the operators 1, σ, m, ψ, μ, ψ, all the well-known bosonic, fermionic, and dual
commutation relations [28] are read off (5.12), e.g.

Observe that (since ρτ = ρ) σ and μ map the vacuum sector &idtid into two
orthogonal copies of the same sector J^>ρ, one contained in # 0 , the other in # τ .
The fact that these two are equivalent representation sectors of the light-cone
observables stf®stf expresses the indistinguishability of the order and disorder
operators, although they cannot be identified because of their dual commutation
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relations. This phenomenon obviously occurs whenever there are fϊxpoints of the
action of some automorphism τ acting in Vo.

5.5. Proposition. Let VcVobea subset of reference morphisms representing a subset
of irreducible superselection sectors closed under conjugation and composition with
subsequent reduction. Let ΓcV0 be, as in 5.3, a subgroup of automorphisms not
subject to the obstruction 8 . Then the operators (5.11) with ρeV,τeΓ are mutually
local, if and only if

ω(τ) = 1, ω(ρτ) = ω(ρ) Vρ ε V, τ e Γ. (5.14)

Proof Φ ( ρ τ ' § ) are mutually local if and only if the coefficients in (5.12) are all unity.
Choosing τ1 = id one gets Ωt(ρ) = l. Choosing ρί = id, τί=τ2 one gets eτ = l, i.e.
(5.14) as necessary conditions. That these are also sufficient conditions can be seen
from the remark after Lemma 5.3.

6. Discussion

We have constructed various subalgebras of the tensor product of two reduced
field bundles, consisting of space-time fields with conventional commutation
relations. In particular we have identified subalgebras of mutually local space-time
fields in Proposition 5.5. Let us consider the extremal cases of this proposition.
Choosing Γ = {ίd} trivial and V= Vo maximal, we arrive back at the subalgebra
constructed in Proposition 5.1. Choosing instead Γ maximal and V = {id}, the
operators ΦiXtid)(A, l) = φ\A)®l define an extended local net on one light-cone
«β/ext containing si (namely Φ(ίd'id)(A, ΐ) = A®l) with vacuum representation

Γ. The construction of Sect. 5 allows to study the superselec-
τeΓ

tion structure of the extended algebra. Namely, one has 9 for ρ e Vo

τeΓ

Let us discuss three possibilities. (1) Γ acts freely on its orbit in Vo through ρ (e.g.,
ρ = id). Then the corresponding superselection sector J4?ρ

ext of s/ext (the sum over \Γ\
inequivalent sectors of si) is irreducible. (2) ρ is a fixpoint for all τeΓ. Then jΊfρ

ext is
the sum over \Γ\ identical sectors J^ρ oϊsi, which is reducible as a sector of j / e x t . [Of
course, the generic situation will lie between (1) and (2).] (3) ρ φ V is such that ω(ρτ)
+ ω(ρ) for some τeΓ. Then by the spin-statistics theorem (4.3), J^ e x t contains
states with non-integer-spaced scaling dimensions, and consequently cannot be a
covariant sector of s/exV The following example exhibits all three possibilities in the
same model.

Example [8, 26]. Consider the algebra si generated by the stress-energy tensor
with c = f. The ten covariant superselection sectors Vo of si are [29, 3]: the
vacuum sector id; a self-conjugate automorphism τ with hτ = 3; two self-conjugate

8 Γ needs not to be contained in V. But in view of the condition (5.14) and Lemma 4.3 (ii) no
generality is lost (and left-right symmetry restored) if one enlarges V to contain Γ
9 Since the action on the second tensor factor is trivial, we write only the first factor
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sectors ρ with hρ = γξ respectively!, which are fixpoints of τ; a pair of self-conjugate
sectors σ φ στ with hσ = § and hστ = y; and two pairs of self-conjugate sectors π + πτ

with hπ = I respectively ^ , hπτ = ψ respectively f£.
Choosing Γ = {id, τ} maximal, the orbits through id, σ, and π have no fixpoints

(1), while ρ stabilize Γ (2). The diagonal and antidiagonal subspaces of J^ρ0^fρτ
turn out to carry inequivalent conjugate representations of j / e x t . The represen-
tations J4?π(B$?nτ are not covariant (3). Thus the six covariant superselection sectors
of j / e x t are: the vacuum sector Jfo

ext = J^d0^fτ; two pairs of conjugate sectors
J^p\ ^ f - ' C c ^ Θ ^ ; and one self-conjugate sector f̂σ

ext = jfff©jf^.
In fact, there are two space-time theories associated with c = f, namely the

minimal (Sί/(2) coset) models of type A and D. The ̂ 4 type model contains only
diagonal operators Φ(

o

ρ>ρ) acting in the diagonal Hubert space Jf0. The D type
model contains non-diagonal operators (with charges different from π, πτ above)
acting in $Γ. The A type model is given by our Proposition 5.1, the D type model is
given by our Proposition 5.5 with V = {id, τ,ρ = ρ\ σ, στ}. The double occurrence of
^Q,Q = ^Qτ,Q m ^r i s w e U known from the analysis of the modular invariant
partition function.

The same D type model has also the alternative interpretation as an A type
SU(3) coset model [26]. In our language: it is nothing but the construction of
Proposition 5.1 with respect to the extended algebra j / e x t .

The discussion of the example (and in particular the last remark) sheds also
some new light on a result obtained from modular properties required to hold for
the partition function [21, Sect. 5]: With respect to the maximally extended
light-cone algebras, the local space-time field theory contains every superselection
sector precisely once, paired with its conjugate.

Let us discuss the phenomenon of fields which are individually indistin-
guishable, but "dual" (in general: "v-al") with respect to each other (like the
order/disorder fields of the critical Ising model) in the generality offered by
Proposition 5.4. Thus let τ be an automorphism such that τv = id, ρ a generic
morphism such that [ρτ] = [ρ], and denote by Φk the space-time fields with charge
ρ and excess charge τk, k = 0,..., v — 1:

While Φk are formally all the same, they interpolate different copies of identical
Hubert spaces. We find the commutation relations

ωiτ) M~Λ

In particular, these fields are always local with respect to themselves (fc =j) and
have monodromy determined by the excess charge difference ω(τ)~(h~j)2

= ω(τk-j)-K
Some comments are in order comparing the present analysis of the space-time

field content with the study of modular invariant partition functions [8]. Although
there is much overlap in the answers, the questions that have been asked are not
the same.

We have constructed subspaces which are generated by local space-time fields
acting on the vacuum. Apparently, if these subspaces are chosen maximal, then the
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trace of exp [2πi(τL0 — τl o )] in this subspace yields a modular invariant, but in our
approach we don't control "maximality." On the other hand, we find also
fermionic and dual space-time fields in a uniform setting, while in the modular
approach one has to choose different boundary conditions to make visible
different types of space-time fields.

The characters contributing to the partition functions measure only the
conformal energy (Lo). They cannot distinguish a sector from its conjugate. It is
impossible to decide from the modular invariant whether the theory contains a
primary state |ft>®|ft> or rather |ft>®|fi), while our analysis indicates that the
former in general cannot be created by a conventional field. (There are many
examples, however, where ρ = ρτ for some automorphism τ, thus \h} ® |Λ> is created
by an excess charge field Φ(§r'ρ). I owe this observation to A. N. Schellekens.)

Finally, while the study of modular in variance is limited to "rational" models,
the present analysis applies also for theories with an infinite number of sectors.

The present results fit nicely into the picture of the algebra of local observables
being the invariant subalgebra of some algebra of charged fields on which a
"symmetry" acts. The symmetry associated with braid group statistics [27] is not a
usual symmetry group, but is still expected to be equipped with a coproduct
determining the action on a product of fields in terms of the actions on the factors
and an antipode playing the role of an inverse [2]. Although the structure of the
generalized symmetry is not yet completely clear and maybe not unique: if one
assumes two copies of an algebra of multiplet fields carrying representations of the
symmetry in 1:1 correspondence with their superselection charges, our space-time
local fields Φ{Q'® appear just as contractions over the symmetry degrees of freedom,
i.e. scalars contained in the product of a representation with its conjugate. Fields
with excess charge transform like one-dimensional representations of the
symmetry.

Acknowledgement I thank K. Schoutens for explaining to me many aspects and examples of
models with extended algebras.
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