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Abstract. For several physically interesting Calabi-Yau manifolds, we count
and parametrize gauge-neutral matter particles occurring in corresponding
superstring compactifϊcations. To this end, we use the technique of exact and
spectral sequences and then describe and discuss our results in the more
familiar tensor notation.

0. Preliminaries

An appreciable subset of consistent and possibly realistic superstring models is
constructed on an "internal," complex 3-dimensional Calabi-Yau manifold [1],
denoted Jί. The particles of the low energy effective model correspond to elements
of various cohomology groups on M. For a very large family of (three
dimensional) Calabi-Yau manifolds all relevant such groups have been determined
in the literature [2], except for Hι(Jί, End J ^ ) , where End^^ denotes the bundle
of traceless endomorphisms of 9~M, the holomorphic tangent bundle of Jί.
Elements of Hx(Jf, End^#) correspond to matter particles which are neutral with
respect to any Yang-Mills gauge interaction but interact directly with the particles
of the standard model. Even though these particles tend to receive large masses,
they may have a desirable phenomenological impact [3].

In this paper we determine H*(Jf, End SΓjj) for a number of Calabi-Yau
manifolds that lead to phenomenologically interesting models. We relate the
elements of Hι(Jί,End Jf^) to cohomological data entirely on an ambient space
iΓ9 in which Jί is embedded. To this end we use the technique of exact and spectral
sequences (TESS) as in [2], except that we shall now employ it to its full extent
instead of using only the vanishing part.

* Supported by the Robert A. Welch Foundation and the NSF Grant: PHY 8605978. On leave of
absence from the "Ruder Boskovic" Institute, Bijenicka 54, YU-41000 Zagreb, Croatia,
Yugoslavia
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For the reader unacquainted with TESS, Sect. 1 will present its barest
essentials* following [2, 5]. This will establish our notation and conventions and
we also describe the standard plan of attack for such a computation. To develop
familiarity with TESS, we first unleash it on a pet example - a quintic hypersurface
in P 4 (Sect. 2).

In Sects. 3-5, we study the physically most interesting Calabi-Yau manifolds2:
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The first and the third were utilized by G. Tian and S.-T. Yau while R. Schimmrigk
used the second one to construct a multiply connected Calabi-Yau manifold of the
phenomenologically favourable |χ£ | = 6 [7]. Section 6 contains a summary of our
results and, understanding that exact and spectral sequences still mystify most of
the physics audience, also a description using conventional tensor notation.
Comparison with existing literature [8, 9,10] is done en route.

1. Notation and Technique

In this article we focus on the three Calabi-Yau manifolds (0.1) but nothing in
principle obstructs repeating our computations for any complete intersection
Calabi-Yau (CICY) manifold [11, 6] Jt. Indeed, the method is not restricted to
Calabi-Yau manifolds - in principle one can use it to compute the cohomology of
any complete intersection inside any product of compact complex homogeneous
spaces with coefficients in any bundle arising by restriction of a homogeneous
bundle combined with any bundle induced from the tangent bundle on Jί. In
particular, all Hodge numbers can be determined.

Whilst the method is "elementary" (since, as we shall see, it boils down to "mere
linear algebra"), that is not to say that it is simple to apply. The implementation of
the method can be extremely tedious. Perhaps it should be mechanized. In the case

of our three examples, each is embedded in a Ψ* = IP}1 x ... PJ- by means of a
system of homogeneous holomorphic polynomial constraints {/(z) = 0}. In this
section we describe how the cohomology on Jί is related to that on Ψ*.

i.l. Submanifold Cohomology from the Ambient One

The technique of exact and spectral sequences (TESS) is just tailored to relate the
cohomology on Jί with cohomological data entirely on iV. It hinges on two
relations. The first one is captured by the short exact sequence

^ ' L r — > 0 (1.1)

1 For brevity we do assume at least nodding acquaintance with the application of exact sequences
and accompanying long exact cohomology sequences. Should need arise, we refer the reader to
consult [2] as an introduction and [4] for complete details
2 Following [6], the [|("bra") column displays the dimensions of the IP" factors in the embedding
space W as row-entries. Each column in the |] ("ket") part represents a constraint polynomial f(z)
with the rth row-entry in the column being the degree of homogeneity of f(z) with respect to the PJr

factor in iV. We display the Hodge numbers blt and b2ί in the superscript and the Euler
characteristic χE in the subscript



Endomorphism Valued Cohomology and Gauge-Neutral Matter 385

of vector bundles over Jί, where $ is the bundle over iV a section of which defines
Jί as its zero locus. Restricting this bundle to Jί gives the normal bundle of the
embedding. This is the content of the sequence (1.1).

Reminder. In a sequence

The image of α, denoted imα, consists of all elements ba e B for each of which there
is some aeA such that α(α) = ba; the kernel of β, denoted kerβ, consists of all bβ e B
which are annihilated by β. The sequence is exact precisely if kerj?=imα,
kery = imβ, etc. Since {bβ} = {ba} = {α(α)}, ker/J can be identified with a quotient of
A with whatever was mapped into A by the map immediately preceding it.
Similarly, the cokernel of /?, denoted cokβ, is the quotient {C/im/?} and can be
identified with imγCD.

Our complete intersection Calabi-Yau manifolds are defined by a number of
polynomial equations. Thus, the bundle & is simply the direct sum of line bundles.

Sequence (1.1) is equivalent to equating the quotient {^ΊAjίl^ji} with & — ®$p
where each defining polynomial /(z) is a section of a corresponding line bundle Sf

over HΓ. Sequence (1.1) induces a long exact cohomology sequence

... —*H\M, FM) - U Hq(Jί, &r) -^ H%Jί, £)—^Hq+ \Jί, 3rM) —-...

of which the qth cohomology group we stack, by increasing q, below the
corresponding bundle; the sequence threads from left to right, row by row
downwards. We specify the map / ' more precisely in Appendix A but suffice it here
to remark that it may be viewed as an element of (3~%r®$)\M-

The other relation is encoded in the sheaf exact Koszul sequence

• Λ 0 >... >ώ >W'W ^^M ^ ^ 5 (1 ~)

providing a resolution ofGM, the structure sheaf of Jί. All the maps preceding ρ are
induced by contracting an element of /\k$* with /, the section of a vector bundle $.
The sequence (1.2) of sheaves of germs of holomorphic functions valued in the
indicated bundles (which we denote by the same symbols hoping to cause no
undue confusion) is exact over all of ΊV and remains exact if tensored by (the sheaf
of holomorphic functions valued in) any vector bundle f over W.

From the sheaf exact sequence (1.2) tensored by any Ί ^ , H*(Jί,Y~) is
determined using the accompanying spectral sequence {Ef' *(τ^*), d^. Suffice it here
to give only the algorithm for this computation; see [2,4] for further information.

For the exact sequence (1.2) tensored by TΓ:

1. Compute the chart of cohomology groups E\\Ψ°) = Hq{Ak£*®i^\ for
4 = 0,...,dim^r and fc = 0,...,K. We shall display the qth row E\\iT) (for
k = K, ...,0) below the sequence (1.2), stacking the rows by increasing q.

2. Set i = l .

3. Find all non-vanishing differentials d i : E
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4. Set

^

and shift i\-*i + l.
5. Go to 3, unless i > K, in which case exit.

The result of the algorithm is the chart E£+*i(Ή of groups often denoted E*
These groups abut to the ^-valued cohomology on Jί, inasmuch as Hq(Jί, y)
may be thought of as "composed" of the E£k'\if) (fc = 0,..., K). We note however

K

that there is no way to identify this with the direct sum φ £^+fc'k(iΓ).
fc = O

Nevertheless, it does follow that

τsinkHq(^,ir)= £ mnkE<£k>k('r). (1.3)
k = 0

Clearly, the determination of d( and their action (so that one knows how to
form the quotients in step 4) is the backbone of this technique. The crucial point is
that all differentials dt are determined by the defining polynomials {/} and, in
principle, all the steps of the algorithm can always be completed. The examples
soon to come will, we hope, clarify how this is accomplished. Whilst similar
computations can be carried out for all CICY manifolds, they can easily grow out
of hand. To use this method effectively requires considerable practise. Even so, the
computations for the Schimmrigk and Tian-Yau manifolds took several days. It
would probably be better to mechanize the procedure with a computer program.

Note that when K = ί9 the sequence (1.2) becomes a short exact sequence and
induces a long exact cohomology sequence. The latter can now be understood as a
collapsed spectral sequence in which there are only level-1 differentials d1 =f and

1.2. The Plan of Attack

By tensoring Sequence (1.1) with ZΓ^ and the dual of Sequence (1.1) with $ and with
^V respectively, we obtain three short exact sequences that fit together into the
diagram

0 0

1 I

I, 1.

0 0
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with exact rows and columns. Thus the vector bundle 3~M®^~M
 o v e r ^> intrinsic to

M, is related to the restriction to Jί of various vector bundles over if.
The short exact sequences appearing in the diagram (1.4) induce long exact

cohomology sequences which are interwoven accordingly. From here, we relate
H^{Jί^M®^) to the (^®^*)U, {$®3~$)\M and (^V®^)|^-valued coho-
mology groups on Jt. The latter cohomology groups are determined from
appropriate spectral sequences in terms of cohomological data entirely on 1V. To
complete the plan, we shall need to evaluate various cohomology groups on if.
Using the Kύnneth formula, these are given in terms of cohomology groups on the
Ψ1/ factors which we now discuss.

13. Homogeneous Bundles and Cohomology on P"

The complex projective space Pw = P(CW+ *) is the space of complex lines in <C"+\
i.e., a point in P" is a 1-dimensional linear subspace L c C π + 1 . Roughly speaking
then, a holomorphic vector bundle over Ψn is a holomorphically varying family of
vector spaces parametrized by LeΨn. One can therefore specify such a vector
bundle by assigning, in a holomorphic manner, a vector space to each Le Ψn.

Consider the assignment:

L\->La®(bx...bn) [C π + VL],

where La denotes the |α|-fold tensor product of L (L*, the dual of L, if a < 0) and is
still 1-dimensional. By (b1...bn), where bt^bt +15 for i = 1,...,(n — 1), we denote the
U(n) Young tableau 3 with b( boxes in the ith row (from its bottom), sticking out to
the right (left if bt < 0) of the vertical "spine" of the tableau. Alternatively, noting
that (l...l) = det, we also have that (b1...bn) = detbl(O(b2-b1)...(bn-b1)) which
the unsettled reader may utilize to avoid Young tableaux with boxes to the left. The
vector bundle corresponding to the assignment above shall be denoted by
(a\b1...bn) and we write the same for its sheaf of germs of sections.

In fact, all irreducible homogeneous vector bundles over έPn can be represented
in this way. We note that (a\bi...bn)* = ( — a\-bn... — bi) and that tensor products
of vector bundles can now be manipulated as Kronecker products of Young
tableaux. The decomposition Y® Y' = φ Yf then corresponds to a (holomorphic)

i

decomposition of a tensor product of two homogeneous bundles into a direct sum
of irreducible homogeneous bundles. E.g.:

(11 —10... 0)(χ)( — 110... 01) = (0|0... 0)φ(0| —10... 01),

corresponds to

« r p n ® ^ = [tr(^ p n ® e r^ l )^^]0End e r P n. (1.5)

For any homogeneous bundle Y over Pπ, there exists a simple algorithm for
determining the Ψ°-valued cohomology over P" [14] usually known as the Bott-

3 Recall that P" also equals the quotient {U(n + l)/(U(ή) x 1/(1))}. For a quick reference on Young
Tableaux, see [13]
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Borel-Weil theorem (BBW, for short). In the notation just reviewed, for {a\b1... £>„),
the algorithm consists of [5]:

1. Add the sequence 0,1, ...,n to the respective entries in (a\b1 ...bn).
2. If any two entries in the result of Step 1 are equal, all cohomology vanishes;
otherwise proceed.
3. Swap the minimum number (q) of neighbouring entries required to produce a
strictly increasing sequence.
4. Subtract the sequence 0,1,..., n from the result of 3, to obtain (βoβι... βn), where
j ? α ^ α + 1 , f o r α = 0,. . . ,(n-l).

Then H«(a\bί ...bn) = {βoβι... βn) [ C π + x ] and all other (alb,... ί>n)-valued coho-
mology vanishes.

This tic-tac-toe algorithm not only determines the non-vanishing cohomology
groups and their dimension, but also assigns a Young tableau to each. Indeed, if if
is any homogeneous vector bundle on Pw, then Hq^Pn,if) provides a finite
dimensional representation of GL(n + 1,<C) and the Young tableau which results
from the BBW algorithm identifies this representation (in case if is irreducible).
For example,

As usual, parentheses around indices denote symmetrization. These represent
sections of the feth power of the hyperplane bundle, corresponding to kth order
polynomials fai...akz

aι ...za\ Similarly, if°(-l |0...1) = (-10...1) [ C w + 1 ] - ^ ,
with tr[/L*] = O. These represent sections of the tangent bundle corresponding to
linear reparametrizations generated by zaλh

adb, where db = d/dzb.
In view of the Kύnneth formula,

we now have all the cohomology valued in homogeneous bundles over ijf at our
fingertips. Through Sequence (1.2) and the sequences in the diagram (1.4), so is

i.4. Some Auxiliary Information

It will be very handy to make use of Serre duality:

Hq(X, -r)* = Hdimχ-q(X, -r*®Jfx), (1.6)

where Jfx is the canonical bundle of X. For a Calabi-Yau manifold Jί, the first
Chern class vanishes and it follows that XM is holomorphically trivial. Serre
duality is thereby simplified. For a CICY we can be more precise. Consider, for
example, the case of a hypersurface of degree n + 1 in IP". In the short exact
sequence (1.1), g is the line bundle (-(n+l)|0...00) whilst ^ = (-l|0...01). It
follows that /\n~ι^M = (111... 1 \)\M. Thus, we can see directly that tfM = Λn~ γ3Γ^
is holomorphically trivial, being the restriction t o ^ o f ( —1 | — 1... — 1 — 1). Note
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that although this is trivial as a holomorphic line bundle, it is not trivial as a
homogeneous bundle. The above relation (1.6) becomes:

H\Jί,ir) = Hn-<ι(J{,r*)*<g){n..A\) (1.7)

and often provides a useful check of direct computations. The general case of a
CICY in P"1 x ... P^w may be treated similarly. The triviality of the canonical
bundle comes down to the condition (in the notation of [6]) that each row of the
"ket" sum to one more than the corresponding entry of the "bra."

We also quote [15]

Theorem 1. For a stable holomorphic vector bundle Y* over a compact projective
manifold X

Since the tangent bundle of a Calabi-Yau manifold is stable, H°(Λ/,End^~J() = 0
and

H°(^^®eri) = H0(^End^Θ^ = H0(^) = C

H2{Jί, Έnά^jf) is now determined by Serre duality and we shall use this to check
our direct computations.

2. A Pet Manifold

As a warm-up pet example and an opportunity to explain the application of TESS
in full force, consider a smooth quintic hypersurface in P 4 , Jί e [4, 5]:

Jί c> P 4 : f(z) = fabcdez
azbzczdze = 0.

Being a quintic polynomial, f(z) is a section of the line bundle $ = ( — 5|0000).

2.1. Submanίfold Cohomology from the Ambient Cohomology

2.1.1. £®£* = (0|0000)

Since £ is a line bundle over P 4 , S® £* = 0 is the trivial line bundle on P 4 . Since
there is only one defining function, sequence (1.2) is a short exact sequence

the corresponding spectral sequence is therefore the long exact sequence on
cohomology and, by BBW,

)=(ooooo),
and all others vanish. Note that this is consistent with Serre duality (1.7).
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2.1.2.

Tensoring the exact sequence (1.2) with (recall: K = \) yields4:

q

0

1

2

3

4

(11-1000) - ^

0

(00000)!

0

0

0

(-41-1000) -U

(-4-1000) 2 2 4

0

0

0

0

.Π 1 e/rίf © V?S' *^ "UΓi

^>0

=>0

=>0

= 0

From the first two rows,

1000)i — 0 ,

(-4-1000) 2 2 4 (00000)!

where the subscripts denote the dimensions of the respective cohomology groups
(represented by the Young tableaux in the chart) so that άimH°{Jί,$®3Γ$)
= 224+1=225. Note that this does not determine H°(J(,&&&$) uniquely in
termsofH°(-4|-1000)andi/°(l|-1000)(seep. 168ofBottandTuin[4])butwe
write

H°(J(, = (00000)! + ( - 4 -1000)2 2 4

instead of the Sequence (2.1) and reverve " 0 " for the direct sum.
We note that H\Jί9 &„&&*) = H3 ~\M, £®&$)*®{ί 1111) by Serre duality

(1.7) and, from the previous result on

and all other $~ψ ®$*-valued cohomology vanishes.

2.1.3. e ^ V ® ^ = (0|-1001)Θ(0|000)

The trace part (0|0000) is trivial and we can borrow the results for $®$* from
above. For the traceless, End^V Part> w e tensor Sequence (1.2) with (0| —1001).
Since both i/*(5| -1001) and #*(0| -1001) vanish, so does H\Jt, E n d ^ ) and so

2.2. Towards H*{Jl, End PM)

With the information we have collected, we return to the diagram (1.4).

4 To save some space, we shall abbreviate Hq(Ψ",(a\b1...bn)) to Hq(a\b1...bn) and likewise omit
explicitly written products of W's. Our notation for the cohomology on the submanifold M shall,
however, always contain the symbol Ji
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2.2.1.

From the rightmost column of the diagram (1.4), we now have that

q

0

1

2

3

mnu -
(00000) -

0

0

(11111)

^ [(00000)+ (-4

0

0

0

\M -^

- 1 0 0 0 ) ] —>• I

h

l\Jί,i®

=>0

\2(JίJ®

=>0

M

J Jέ)

JJέ)

The rows q = 1,2, and 3 tell us that # 2 ( ^ , ^ ® ̂ J ) = (11111)! and
vanishes for # = 1,3. By exactness merely, f must be 1 — 1 for # = 0, so that
H°(Jf, £®3~$) is the quotient of the sum in the middle and the image / ' (00000),
whence d\mH°{Jί,£®3r%) = 225-1 =224. In fact, as computed in Appendix A,
/ ' maps this (00000) = i/°(0|0000) onto the (00000) = H\\ \ -1000) appearing as a
quotient in the sequence (2.1) above. Thus, we may conclude that

2.2.2.

From the central column of the diagram (1.4), we have that

q

0

1

2

3

0

0

0

[(11111) + (11125)]

- ^ (^®^)L - ^ *VLr®*3

(00000) —• if°(^,^V®^|)

0 =>0

o /f2(^,^®«r*)

- ^ (11111) —• H 3(^,^V®^J)

Here, the isomorphism H ° ( ^ , ^ V ® ^ | ) = (00000) is readily obtained from row
q = 0 while the next row immediately tells us that Hι(Jί, ^V®^3) = 0. However,
to determine Ή.q(Jί^w®y^ for g = 2, and 3 we must again find out what
precisely the action of/' is. The argument of Appendix A may be adapted and we
conclude that H3(^,^V® f3) vanishes and that iί2(e^,e^V(χ)er|) = (

2.2.3. Finally, H*(Jί9

From the base row of the diagram (1.4), we now have that

0

1

2

3

^ ® ^ i

//2(^#, ^(g) .

^ 1 ) —• (ooooo)

T£) 0

ΓJ) —• (11125)

f'o

fl

(-4-1000)

0

(11111)

0
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The only invariant element at our disposal is fe( — 50000). In particular, there is
no invariant element in ( — 4 — 1000) and so /ό is obliged to vanish. We may
conclude that H\Jί,FM®F£) = (00000) and H\Jt,«rM®«r$) = (-4-1000).
Similarly, / 2 must vanish and finally we obtain that

H \Jί, = (11125)224,
(2.2)

Notice agreement with Eq. (1.8) and with Serre duality (1.7). Also, we have just
computed d i m i ί 1 ( ^ , E n d e ^ ) = 224, in agreement with [8, 9].

3. The Bi-cubic Hypersurface in Ψ2 x Ψ2

Γ2 3~l2;83

Among the physically more interesting manifolds, we start with Jίe\ \ ,
i.e., the space of solutions of a bi-cubic constraint J-162

v def

The polynomial / is a section of S =
- 3

- 3

0 0
0 0

, in the obvious notation for the

tensor product (-3|00)*®(-3|00). The tangent bundle is 3'W=2ΓX®3' where
- 1 0 1

0 0

0

- 1

0 0

0 1
. Therefore:

0 0
0 0

- 2
- 3

- 1 0

0 0

0 1

0 0

- 3

- 2

0 0

0 1

0 0

- 1 0

2*
0 0

0 0

- 1 1

0 1

- 1 0 - 1

- 1
0 1

- 1 1

0 0

3.1. Restricting the Ambient Cohomology to the Submanifold

We employ the spectral sequence separately for each summand. Again, since there
is only one defining function, the Koszul resolution (1.2) is simply a short exact
sequence

0-
0 0
0 0

0 0
0 0

0 0
0 0

• 0
M
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and the spectral sequence is equivalent to the corresponding long exact sequence
on cohomology. As the BBW algorithm and the Kunneth formula easily shows,
the action of / in these computations is always zero (Ef *(ir) = E*;*(ir) and the
spectral sequence collapses). The following results are easily obtained for
cohomology on Ji\

Bundle Non-zero cohomology Bundle Non-zero cohomology

Λ)|0 0'

loo o
- 2

- 3

'2

3

- 1

1

0

- 1 0

0 0

0 1\

0 0/

0 1

- 1 0

0 0>

H° =

H° =

H1

0 0

0 0 0

0 0 0

0 0 0

1 2 3

1 4

- 1 0

0 0

H3 =
1 1 1

1 1 l 7 l

- 2 - 1 (A 8

- 3 0 θ j 1 0

1 1

1 1

1 1 ϊ

0 1 2/8

- 3

- 2

Off

- 1 0,

0 0'

0 1

H° =

H3 =

0 0 0'

0 0 0

1 1 4

1 2 3

- 3 0 0\ 1 0

-2 -1 θλ
1 1 IV

1 1 ί)1

-1 1
All cohomology vanishes

1

- 1

0

0

0

- 1 1

0 0

- 1 0

All cohomology vanishes

The superscripts and subscripts are the dimensions of the P^- and P^-factor
cohomology groups; the total dimension is therefore the product. Notice
symmetry obtained by interchanging the factors P*<->P* corresponding to
swopping the rows above. Also there is Serre duality:

)
[cf.Eq.(1.7)].

Before discussing the results derived from the diagram (1.4), note that the map
j : SΓ^^-i, corresponding to the two components 3~w = $~x®3~y, is furnished by the

two differentials dx-(df/dx)'
- 2

- 3

- 1 0
and

- 3 0 0\

- l o;
(Appendix A can easily be adapted to give rigorous meaning and computational
utility to these differentials). We shall denote these two components of/ by / ' and /,
respectively. From the rightmost column of the diagram (1.4) we obtain that

vanish, that H2{Jί,C~ ~" — ' 3 | ° °H\Jί,8®y$) and H\Jl,

and that H°{M,S®^) is

0 O^1

<0 0 0

- 2 - 1

- 3 0 0
Θ

10

- 3 0

- 2 - 1
°

0

(3.2)

This is a vector space of dimension 161.
From the central column of the diagram (1.4), we obtain:

0 0 OX 1

0 0

- 1 0

0 0

0

- 1
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and

1 1 1

1 1 1

1 1 1

0 1 2,

0 1 2^8

1 1

1 1

1 1

From here on, the stacks represent direct sums. Along the argument in

2

1

1 1

1 2 3

Appendix A, the two components of j , /', and /, map H3

H3

= 2

0 0
0 1

1 1 1
1 1 1

= 2
1 1 I
l l i

onto the two copies of H4

0 1
0 0

0 0
0 0

and

also

. Computing as in Appendix A, this mapping turns out to be

surjective. We thus find that I) vanishes and

1 2

2 3\8

1 4;
1 4M0

3

10

1 1

p 1
0 1

1 1

8 '

a vector space of dimension 176.

3.2. The Endomorphism Valued Cohomology on the Submanifold

Finally, from the base row of the diagram (1.4), we obtain the accompanying long
exact cohomology sequence, which falls into two sequences (dual to each other),
the first of which is

\o
0

- 1

- 1

0

0
0

0

0

0

0

0

o,
0

1

1

0

0 0 0

0 0 0

- 2 - 1 0

- 3 0 0

- 3 0 0

- 2 - 1 0

• 0 .

The map j is again represented by the two components, / ' and / Their action,

however, cannot be 1 — 1, since there are two copies of I I to be mapped

into only one copy of the same I it is impossible on the grounds of in variance to

map into
- 2 - 1 0

- 3 0 0
or

- 3 0

- 2 - 1 0

(=1) and so

. Nevertheless, j has maximal rank

0 0 (A1

0 0 OΛ'
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(3.3)

in agreement with Eq. (1.8). This leaves

' - 1 0

0 0 OΛ

0 0 OV

,-1 0 lΛ
a vector space of dimension 176, as found in [9]. The remaining part of the exact
sequence yields

Ί 1

.0 1 2,

-2 -l oy
- 3 0 θΛo
- 3 0 OV0'

- 2 - 1

1 2 3\8

1 1 4Λo
4>io1 1

1 2 3Λ
0 1
1 1

8'

in agreement with (3.1).

4. The Schimmrigk Manifold

Now we turn to Jί e
3 1 Ί 8 ; 3 5

0 3 j _ 5 4

Let us denote the defining polynomials by

/<*) =
def

g(χ, y) =

where x e P 3 and y e P 2 . Here / and g are sections of

0 0 0v

0 0

- 3

0

0 0 0

0 0
and

, respectively and δ is now the rank-two direct sum of these two

line bundles. The tangent bundle on W is given similarly as in the previous case,

1 0 0 1

0 0
Θ

0 0 0 0

0 1

We therefore have

' = 2

- 2

φ

0 0 0

0 0

- 1 0 0

0 0

0 0 0

- 2 0 0 0

0 0

0 0 0

0 0

- 3 0 0 0

- 1 0
Θ

- 3
- 1 0 0

0 0

- 2 - 1 0

t / fjir ̂ y ιS <tiir ^ ^ £

0 0 1

0 0

0 0 0

0 0

0 0 0

0 1

Θ
- 1

- 1 0 1

0 0

0 0 1

- 1 0

0 0 0

- 1 1

0
0

(

{

0
0

1

- 1

Λ
)

- 1

0

/
θ (

0

1

Ί
,2

0

0 0 0

0 1
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4.1. Restricting the Ambient Cohomology to the Submanifold

Again, we compute the cohomology groups on Jt valued in each of these
irreducible bundles by using the corresponding spectral sequence. To this end,
note that the resolution (1.2) is now

4

3

0

0

0

0

f

ΎK
[1

(3

Mo

0
0

0

0

0
0

0

0

0

0
'-f

0 0 0
0 0

0 0 0
0 0

(4.1)

The arrows labeled by / and g denote maps induced by contraction with the
respective polynomials.

This time not all sequences converge at the first level and one has to determine
the action of the spectral sequence differentials, all induced by / and g. For

example, consider the spectral sequence for
- 3

1

0 0 0

- 1 0

q

0

1

2

3

4

5

Λ l O O O λ

V4|-i o

0

0

0

0

0

0

/ - : I

V 4

/o
V

0 0

- 1 0

0 0 0

- 1 0

0

/0 0 0 0\
VO o o )

(-2 0 0 O>

V 0 1 2 )

0

0

0

0\

/ f-3

\ \ 1

10

0

- 1

0

0 0

0 0

0

0

0

0

0 0\ β

o ) -

T

(^®^*)L

=>0

see below

=>0

=>0

= 0

Ξ=0

The map / is of maximum rank and yields the only non-vanishing differential in
this spectral sequence. The corresponding chart of Eq^k(Sι ®9"f), the next and final

level, is obtained by replacing £ j ! l = l 1 with 0 and

£ ΐ ' ° = ( ~ o o o ° ) b y i t s q u o t i e n t w i t h / ( o o o ° ) T h e r e f o r e ' t h e o n l y
non-zero δx®^"-valued cohomology on Jl is the first cohomology:

H1 L#
- 3 0 0 0

- 1 0
- 2 0 0 0V°

0 1 2

Γ , /O 0 0

L c o H o o o
- 3

0
0 0 0\ 2 0 Ί

o o A J 1 9
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In this way we obtain all the cohomology on Jί, valued in the various bundles
listed above. The results are:

Bundle Non-zero cohomology

\o o o /
- 2

3

- 2

0

- 3

1

0

- 3

- 2

0 0 0'

0 0

- 1 0

0 0

0 0 0

- 1 0

- 1 0 0>

0 0

0 0 0

- 1 0

- 1 0 1

0 0

0 0 0̂

- 1 1

0 0 1

1 - 1 0

*>- o o o oγ 3 _ / i l l
o o o ) ! H = Vi l l

- l o o oγ * /-2 o o oγ°

0 0 0 (A1 ί-2 - 1 0 0^20

0 0 0 j j \ 0 0 0

- 2 0 0 0\10 Γ /0 0 0 O^1

H=

0 1 2

o o o Λ ~\ooo ji
ooo oγ /-l o o oV

^V-2 -l o
1\4

-l - l o oγ
i ii

- 3 0 0 0\ 2 0

000 ) J

All cohomology vanishes

0 0 0 lV / - I 0 0 1\15

0 0 0

where we have omitted entries that can be obtained using Serre duality. In the
present case, Eq. (1.6) yields

1 1 1 1

1 1 1

The next step requires using Sequence (1.1), which for this example becomes

' M~

- 1

0

0

- 1

0 0 1

0 0

0 0 0'

0 1 - 3

0 0 0
0 0
0 0 0

0 0

• 0 . (4.2)

Merely from the way that j occurs in Sequence (4.2), it follows that

- 2 - 1 0 0

0 0

- 3

- 1
2

0 0 0

- 1 0

0 0 0

- 1 0

0

- 3

- 1 0 0

0 0

(4.3)
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These four components can be represented by /', / g', and g in a notation
analogous to the one of the previous section and can be investigated as in
Appendix A.

We tensor now the dual of the Sequence (4.2) with each of βl9 δl9 $~x, and 2Γy.
This yields four separate short exact sequences. The accompanying long exact
cohomology sequences determine the <?f(8> ^ί-valued and the ^ ®^Jrvalued
cohomology on Jί. The decomposition (4.3) and arguments as in Appendix A are
sufficient to locate all non-vanishing maps between the cohomology groups, as
induced by j . This information is then plugged into the long exact cohomology
sequence accompanying the short exact row sequence in the diagram (1.4).

Throughout, we use our knowledge about the map j to determine its action in
these various sequences and therefore the unknown cohomology groups. To spare
the reader of the boring details of this computation and save some space, we only
present the last few steps, these being the most complicated.

4.2. Endomorphίsm Valued Cohomology on the Submanίfold

In the short exact row sequence in the diagram (1.4) we study the action of j in

for each q separately and thereby determine
For q = 0, we have

0 0 0 0
o o o

- 2 - 1 0 0

0 0 0

- 1 0 0 0

- 2 - 1 0

0 0 0 0

0 0 0

(4 4)

As usual, j is here obliged to map to ί J and is of maximal rank ( = 1).

This leaves us with R\Ji,$~M®3~$)= ( I as in (1.8) and

cokj =

- 2 - 1 0 0

0 0 0

- i 0 0 0

- 2 - 1 0

contributes via the connecting homomorphism to H\M, 3~jι®^Ί) F ° r # = 1, we
have a rather longish stack of cohomology groups on both sides of the map; (see
Fig. 1) and the gory details are as follows. This is less complicated than the wiring
diagram that Fig. 1 first resembles - the mappings are essentially determined by
in variance. In Fig. 1 we have written any mapping derived from / or g as just / or
g. For example,
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r«*(jίί3);

Fig. 1. The mapping

cok - l o o oy
1 1 4 Ao"

-l -l o oy
i i i A

- 2 0 0 Oχi°

1 1 1

- 2 0 0

0 1 2 56

comes from

o o oy
0 0 Ao"

- 2

-2

- 1 0

0 0

0 0 0

0 0

0 0
- 1 0

10

10

56

In obtaining this cokernel in the first place, it is important to know that the linear
transformation

- l - i o oy
1 1 1 A

-10 0 0\ 4 / (-2 0 0 0V°
8 \ < < Λ —» , , , ( 4 5 )1 1 4 10 1 1 1 /

- 2 0 0 ON10

0 1 2
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is injective (has no kernel) for generic choice of the second defining polynomial, i.e.,
for generic gaaβγ = gaiaβγ)5- We verify this here explicitly and defer further similar
discussions to Sect. 6.

„ / - I 0 0 0\ / - i o 0 0\ /0 0 0 0\ + u lT h e ( 1 1 4 ) = { 0 0 3 J % 1 1 J*™« tableau
corresponds to a tensor 7^α/?y = 7^(α/?y). The combined kernel of the three maps in
(4.5) consists of tensors T}aβy) which are annihilated by the maps, i.e., the solutions
to the system of three tensorial equations

gaβγ[aτb]βy = ° 6 equat ions,

;fy = 0 10 equations,

^βδ=0 80 equations,

corresponding to the three maps, respectively. [The (δy

μδ — jδy

δμ) prefactor projects
the trace free part.]

Now, as 96 equations in only 40 unknowns, it is reasonable to expect that these
equations force T*βy = 0 for a generic choice of gaaβγ. By choosing a quite specific
gaaβr for example

and all other gaaβy = 0, it is possible explicitly to show that this is the case. Further
verifications of this form are needed in drawing conclusions from our identification
of

given above. We feel that there should be some general theory which can be
brought to bear here.

In any case, it now follows that if1(e

Λ = ker
1 1 1 4

1 1 1

2 0

B= ker

1 1 2 2\6

0 0 0 ) 1

1 1 1 3\ 1 0

0 0 0

1 1 1

- 1 0 1

1

3\1 0

8

= A + B + C, where

1 1 1

1 1 1
0 i 1 Άi5

1 1 1

1 1 1 2\4

- 3 0 0 ) m

0 1 1 l λ 4

- 1 0 1

(4.6)

(4.7)

2 4

c=
0 0 o ov IV

i Hi
- 2 - 1 0 0

- 1 0 1 A IV 0

is given dually.

0 0

2 0 - 1 0 0
- 2 - 1 0

(4.8)

' We use round brackets to denote symmetrization and square brackets to denote skewing
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In particular, dimH1(Jf,End^J() = 8S. This should be confronted with the
situation in Ref. [10] where a particular superconformal 1 +1-dimensional model
is identified with compactifϊcation on the Calabi-Yau manifold studied in this
section. The authors there find an amazing degree of agreement between the two
models. They, however, also report a total of 154 gauge-invariant scalars
in that superconformal 1 + 1-dimensional model allegedly corresponding to
Hi(J^,End^J() and also to certain extra states. The latter states come accom-
panied by the same number of extra (7(1) gauge particles [16]. With our present
result, this could imply an extra U(ί)66 gauge invariance which, however, was not
found in the superconformal model, suggesting that the identification is possibly
false (see however note added).

5. The Tian-Yau Manifold

Finally, we turn to

polynomials

Γ3 3 0 1 ] 1 4 ; 2 3

l_3 0 3 l j _ 1 8 *Now we have three defining

where

f(χ)=fabcχ
aχbχc, g(y) = gxβyf/f, h{x,y)d=haι

and yeΨl. These polynomials are sections of
- 3

0
0 0

0 0
and

- 1 0 0 0'

0 0 0

0

0 0

0 0

, respectively and $ is the direct sum of these.

The resolution (1.2) is now

0 0 0

0 0 0

0 0 0

0 0

0 0

0 0

0 0

0 0

0 0 0^

0

0

0

0

0

0

0

0

0

0 0

(o 0 0

0 0

(5.1)

JM~ •o,

where we have left the arrows unlabeled but it should not be too hard for the reader
to identify them with contractions with the polynomials /, g, and h. One can now
execute TESS as outlined in Sect. 1. Whilst (5.1) is a little more involved than (4.1)
used for the Schimmrigk manifold, there is some extra symmetry under ]P3<->]Py
which is helpful as in the bi-cubic and the computations turn out to be only slightly
more difficult than those of the previous section.

Rather than follow this track, however, we shall adopt a different approach as
will be described shortly. The reason for this is twofold: On one hand, this
alternative approach will serve as an example for a far more general computation -
a complex intersection in a homogeneous space for a complex semi-simple Lie
group. This generalizes in a way the CICYs which have been, in the physics
literature so far, considered to involve only complex projective spaces. On the
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other hand, our computations prove to be quite simpler in this alternative
approach. We also note that the Tian-Yau manifold has never before been
analyzed from this point of view.

In effect, what we shall do is firstly restrict to the zero locus of h(x, y). Since haa is
non-degenerate 6, it may be used to identify the homogeneous coordinates ya as
dual to xa. In other words, we may use haa to lower the α-indices and turn them into
α-indices:

d e f ,

The equation h(x,y) = 0 now reads xaya=0 and defines the natural incidence
submanifold in P 3 x P 3 * . Alternatively, a point xeΨ3 corresponds to a line
(1-dimensional linear subspace) Lc C 4 whilst 3; e P 3 * corresponds to a hyperplane
(3-dimensional linear subspace) i / c C 4 and the incidence submanifold consists of
the flag manifold 7 :

ί L and H are linear subspaces of (C4,} ^ { U(4)

[ ' of dimension 1 and 3 respectively J ((7(1) x (7(2) x (7(1)

This is a homogeneous space for GL(4, C) and its cohomology may be analyzed by
the BBW algorithm explained for the case of a projective space in Sect. 1.3. Indeed,
the algorithm is formally identical but the bundles that one can start with now
have the form (a\bc\d) for b^c, meaning that the fibre over LcH is

La®{bc) \_H/L\ (g) [ C 4 / # ] d .

More details can be found in [5].
Thus, we shall start with this flag manifold as our ambient space iV but

otherwise pursue TESS as outlined in Sect. 1. The advantage is that now we only
have two defining equations:

= fabcχ
aχbχc and g(y) = gabcyaybyc.

These polynomials are sections of

( —3|00|0) and (0|00|3)

respectively. The Koszul complex (1.2) reads

0 — , (3|00| - 3) i ^ ^ ^ O O I O ^ ^ <°lOOi°) —" (0|00|0)^ — , 0. (5.2)

There is a slight disadvantage, however, when it comes to the tangent bundle since,
although homogeneous, it is reducible. In the notation of [5], there is a
composition series:

6 This is the generic choice; some more special cases are also admissible [17] and those may need
to be examined on their own
7 This is manifestly a generalization of P* = {l/(4)/l/(3) x 1/(1)}
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meaning that ^V is a n extension (see p. 168 of Bott and Tu in [4])

O ( 5 3 )

It is not the trivial extension - roughly speaking, the possible extensions are
classified by first cohomology

-10|0).

1
and for &~w one must take I ) e(C2. This is reflected through various non-trivial

connecting homomorphisms when (5.3) is used to compute cohomology.
As an example of this artillery in action, we shall first compute the Hodge

numbers bίq for the Tian-Yau manifold. In other words, we shall compute
). We need the exact sequence

dual to (1.1). The Koszul complex (5.2) and the BBW algorithm yield

Bundle Non-vanishing cohomology

(3|00|0) # 2 = (1113) # 3 = ker (0003) -^(0000)

(0|00|-3) # 2 = ( - 3 - l - l - l ) H3 = ker(- 3000) -^(0000)

the first two of which give H*{Jί,$*). Using the dual of (5.3) to compute
gives

H\Jί ,&-$) = 2(0000),

Finally, we obtain

0 0 0 ^ 0
1 0 2(0000) See below

(1113) £_> (0111)

2 (-3-1-1-1) ^(-1-1-10) See below
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Suffice it here merely to state that all indicated maps are onto. Hi{J
therefore also vanishes and we have

[ker(1113)10-^(0111)4]6

of dimension 14 and

(0003)20 —-> (0000)i

+ 2(0000)!,

(-3000)2 0 - ^ (0000) i

of dimension 23, as in [12,6].
The computation of H^{J(, End5^) is fairly lengthy and we present only the

barest outline. The bundles with which we need to start the computation are

<f®<f*=2(0|00|0)Θ(-3|00|-3)Θ(3|00|3) (5.4)

(-21-1010)

(l|-10|3) (—2(00| — l)

(-3|01|-l) + (l|00|2) ( ' '

(0|01|2)

(2|01|0)

3(0|00|0)

1 — 1011) (-11021-1) (01011-1)

+ +
(5 7)

(ll-l-lll)

5.1. Restricting the Ambient Cohomology to the Submanifold

Using the Koszul complex (5.2) to compute cohomology on Jί gives the results in
Table 1 which together with the x?*-*ya duality

and Serre duality [cf. (1.7)]
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is a list of all necessary cohomology. For example,

Serre Serre

Table 1. The relevant cohomology groups on P 3 x IP3

Bundle Non-vanishing Cohomology

(0|00|0) H° = (0000)! if3 = (0000)!

(3|00|3) H^ίimU H2=(m3)ί0

(0|01|2) //° = (0000)1+(0012)20

H 1 = (0111)4 +(0123)6 4+ [00^0000)!—• (0003)20]19

(l|00|2) ^
(1| —10|0) if1 =(0000)!

(11-1110) \
> All cohomology vanishes

5.2. Endomorphism Valued Cohomology on the Submanifold

The cohomology of $®$* can be read off immediately from the table:

) = 2(0000),

H\Jl9g®g*)= (1113)φ( —3 —1 —1 —1),

H\Jί,£®£*)= (1113)φ( —3 —1 —1 —1),

) = 2(0000).

The cohomology of £®2Γ$ is slightly more subtle since it is given by an
extension, derived from Seq. (5.3), and so an exact sequence must be used. It turns
out, however, that, by in variance, the connecting homomorphisms are all zero and
the naϊve conclusion is valid:

2(0000) + [(0012)Θ (-2-100)]

(1122) + (0111) + (0123) + [cok(OOOO) -U (0003)]

(-2-2-1-l) + (-l-l-10) + (-3-2-10) + [cok(0000)-̂ (-3000)]

2 0
3 0
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Now one can use the right-hand column of (1.4) easily to compute

q

0
[ker(-3-l-l-l)-^(-l -1-10)] +(-2-100)

(1113) + (1122) + (0123) + [cok (0000) -U (0003)]
1

( _ 3 _ l _ l _ l ) + ( _ 2 - 2 - l - l ) + (-3-2-10) + [cok(0000)-^(-3000)]

2 2(0000)
3 0

The cohomology of 2ΓW® ZΓ$r is a little more tricky since the fact that it is given
by extensions affects (though simplifies) the outcome. We find:

)= (0000)!,

The middle column of (1.4) allows one to compute

0 (0000)

r
L J v " " / J +2(-1001)

(-1001)J
2 (0000) +[(0012)®(-2-100)]
3 0

Finally, we may use the bottom row of (1.4) to complete the calculations giving
that both H°(Jί, End ̂ ) and H\Jί9 End 3~M) vanish in agreement with (1.8), that
R\Jί, End fjι) = A + B + C9 where

(5.8)

(5.9)

C = (0012)2 Oθ(-2-100)2 O, (5.10)

and H\Jί, End &~M) dually.
Note that d i m H 1 ( ^ ' , E n d ^ ) = 60.
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6. Results and Remarks

Translating the entire preceding analysis into tensor notation would no doubt be
favored by most physicists but is, however, comparable to rewriting MAXIMA
into ASSEMBLER 8. Instead, we here discuss our results comparing with the
literature. Also, far more than just the dimension can be discerned from the above
analysis. In particular, an explicit parametrization for H1(Jf,Έnd^~J() can be
obtained which can then be used to determine the relative strengths of the Yukawa
couplings [18]. To see how this happens, we will shortly return to our pet example
and then the three CICY manifolds in turn.

The basic relations between the homogeneous vector bundle notation used and
the tensor notation on a IP" are

(-l|0...0)~Λαz*,

(01-10. ..0)~λadz\

(θ|o...oi)~;ια3fl.

All other relations can be obtained from these by multiplication as dictated by
the Young tableaux. Whenever it will simplify expressions, we shall factor out
powers of (1... 1) which is trivial holomorphically. For example,

#2(4|004) B i W (1124) = (1111)0(0013), (0013) - fa(bcd),

and we shall use faφcd) to represent #2(4|004). Note also that (1| —10...0) is the
cotangent bundle of P" and H\\ \ -10... 0) = (0...) by BBW. On the other hand,
cotangent bundle-valued 1-forms are, on a IP", represented by its Kahler class
which we denote by J [and bear in mind that Ji—>1 e(0...0)].

6.1. The Quintic in P 4

As derived in Eqs. (2.2) and in complete agreement with [8, 9], H1(J
= # 1 (-4 |-1000) = (-4-1000) and is represented by the tensor coefficients

which are totally symmetric in the (bcde) indices but vanish upon total
symmetrization with a. Such a tensor occurs as a non-trivial variation of

df(z) = dz°fa{z) = dz'f^zOfz'z*,

the differential of the defining polynomial f(z) and has a polynomial deformation
theoretic interpretation a la Kodaira and Spencer [8, 9]. On comparison of our
analysis of the quintic hypersurface in Ψ4 with deformation theory methods as
used in [8], it may appear that TESS is merely a meticulous and overly technical
reprise. The three physically more interesting cases however suggest otherwise as
we shall shortly see.

8 Some of the computing procedures however are indeed better understood at the level of tensors,
as pointed out in Sect. 4
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6.2. The Bi-cubic in Ψ2 x P 2

From Eq. (3.3)

'-1 o iy ί-2 -l oy
0 0 0Λ V-3 0 0/jo
0 0 0V + ί-3 0 0\1 0 '

,-1 0 l)8 [-2 -1 OΛ

we can again read off a basis for Hι(Jί, $~JI®^~JI)
 a s m the case of our pet example.

To that end, we start with the larger contributions.

-2 - 1 (Λ8

1 (\ (\) Pa(bc)(aβγ)'

Very much like in the pet example, this is symmetric in the (be) pair of indices but
vanishes upon total symmetrization with a. Also, it occurs as a non-trivial
variation of

dxf(x, y) = dxafa(x, y) = dxafabcaβyx
bxY/f,

again admitting a deformation theoretic interpretation. Of course, the analogous
is true of the corresponding P2<-»P2 companion,

dyf(x, y) = dfMx, y) = dffάbcaβrx'xhx<y>y>.

The two smaller, 8-dimensional contributions are represented by

- 1 0 1\8

 a ( 0 0 0V β

o o oA~A U i o i)rPβ'
both of which are traceless matrices. Deformation theory, as discussed in [9], does
not account for these contributions.

6.3. The Schimmrigk Manifold

This is perhaps the most complicated example and we shall devote some more time
to discuss each of the three contributions in (4.6)-(4.8) in turn.

The combined kernel in (4.6) is actually rather simple. It consists of elements of

1 1 ί 4)=(1 ι x ' W 0 ° °
i l l / Vi l l y^Vo o o

that vanish upon mapping, by/, into I 0 Q / ® \ 0 0 0 ) ( u P o n

factoring out I I I . Noting that these Young tableaux correspond to

scalars and trace free matrices, the restrictions defining the kernel are easily
enforced by
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Since these two conditions can be combined, we have that

409

ker
1 1 1

1 1 1

1 1 1

l l l / i
0 1 1 2^ 1 5

1 1 1

) = 0}. (4.6')

Similarly, the combined kernel in (4.7) becomes, after factoring out (1111) from
all P 3 bundles:

o o l i y
0 0 0 J,

, .0 0 0 2\ 1 0

k e r ( o o o j ,
0 0 0 2 λ l °

- 1 0 1 I.' f 2 4

To describe this, we introduce tensor variables p[ab\ piab\ and pfb)a for the three
Young tableaux on the left-hand side, respectively. To describe the kernel, we need
to constrain these variables to vanish upon mapping over into the right-hand side
Young tableaux. The last one of these is trace free in α, β and must satisfy a separate
condition

corresponding to the kernel of the base row mapping. For a generic choice offabc,
these are 32 independent equations in 80 components of pfb)a and leave 48
elements free to describe the kernel.

The combined kernel of the mapping into I j is described by

The parameters φt describe the triple mapping more precisely and are non-
vanishing but otherwise arbitrary. For a generic choice of gaaβy, these are 40
independent conditions on 6 +10 -h 48 (up to now free) components of our tensor
variables, leaving 24 to span the combined kernel.

Lastly, the three Young tableaux in (4.8) are represented by

P°β J Pa(bc) 9 Paa(βγ)

The last two tensors, occurring as non-trivial variations of

dxf(x) = dxafabcx
bxc

3 and dyg(x,y) = dyagaaβyx
ay^f9

correspond to the result of the polynomial deformation method [10] the other 36
components have been missed.
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6.4. The Tian-Yau Manifold

Without much ado, we simply list the tensor variables and the corresponding
constraints.

(0012)20-{/><•<*<>}.

Together with the xa<-+ya flipped contributions, these are 60 unrestricted
components spanning H\Ji,ZΓJl®ZΓ%) for the Tian-Yau CICY.

Note added. After the completion of this article, it was discovered [19] that the number of End 2ΓM-
valued 1-forms may jump for specially symmetric choices of the Calabi-Yau manifold Jί. Indeed,
the special choice of defining polynomials, with which the comparison in [10] is made, implies 108
rather then 88 End 2ΓM-valued 1-forms [19]. Even so, the exactly soluble model has 46 gauge-
neutral massless chiral superfields more, only three of which are accompanied by extra ί/(l)
gauge invariances 9. This discrepancy requires a thorough explanation for the two models to be
regarded as equivalent.

A. / V p

For any manifold (not necessarily Calabi-Yau) Jίc+W' = P" 1 x ... x PJJ,m defined
without multiplicity as the space of simultaneous solutions to a system of K
polynomial constraints f{a\z) = 0, the short sequence

0 >0

is exact, where

«=1 / M

Cd= <g> (-deg p p,(/«")|0...0)

are the line bundles over iV of which f(a)(z) are sections.
For the following discussion, the number of constraints and also the number of

projective spaces whose product is the ambient space is irrelevant. We shall
therefore consider the case where there is one of each, leaving the general treatment
to the reader. In fact, the degree of the defining function is also unimportant and so,
for simplicity, we shall discuss our pet example Jίe[A, 5], a smooth quintic
hypersurface in P 4 . The defining polynomial, f(z) = fabcdez

azbzczdze, is a section of
( — 5|0000). In more traditional notation (see, e.g., Griffiths and Harris in [4]), this
bundle is denoted Θ(5). The derivative of /(z)

* We thank A. N. Schellekens for discussions on this point
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is invariantly defined as a section of Θa(4) [i. e. (— 4|0000)(χ)(— 10000) in our general
notation]. As a holomorphic vector bundle, this is the direct sum of five copies of
Θ(4) but as a homogeneous bundle, the index a indicates that GL(5,(C) acts
according to the dual of the standard representation [i.e. as ( — 10000)]. This
derivative is responsible for the mapping

the kernel of which is FM. In other words, daf should define a natural section / ' of

In order to make this precise, recall the Euler exact sequence

0 — * # £ — • 0 β ί - l ) - ί ^ 0 — * 0

(i.e. (-10000)®(l 10000) = (0|0000) +(11-10000) as in [5]). Tensoring with 0(5)
gives

0 _ • ( - 4| -1000) —•> Θa(4) - ^ Θ(5) —> 0

as an exact sequence on IP4 and daf provides a natural section of the middle
bundle. Under the mapping za, daf maps to 5/; indeed, zada is the Euler
homogeneity operator and / has homogeneity 5. Since this vanishes on Jί, daf has
image in (— 4| —1000) when restricted to Jί. This is precisely / ' and we can use this
description to compute the induced mapping

tf°(0|0000) - ^ H°(Jί9 S ® 9-$) = H °(Jl, ( - 4| -1000))

encountered in Sect. 2. To this end, consider the commutative diagram

0 0 0

1 , 1 I
0 —> (11-1000) — ^ (-41-1000) —• (-4|-1000)L* —• 0

i

o° ~~ y ~ i ~~ Tί ~o°
0 0 0

with exact rows and columns. The first row may be used to compute the
cohomology of (1| —1000). Since all cohomology with coefficients in Θ{ — 1)
vanishes, the connecting homomorphism gives an isomorphism

(0|0000) = <C = i/°(P4, Θ) £ H\11 -1000),
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a result that agrees with the BBW computation. Now consider the elements

5eΓ(Ψ\Θ) dafeΓ(P*9ΘJt4)) /'eΓMr,(-4|-1000))

in the above diagram. They are related in a diagram chase:

sf=2?dj, daf\M=f,

and we may conclude that

uι ω α» ID

1 / ' • dj > 5

We have therefore computed the mapping / ' :

#°(0|0000)

0 —• H°(- 4 |-1000)

( - 4 -1000) R\M, ( - 4| -1000)) (00000)

as multiplication by 5. This shows that H°(Jt,$®$~$) splits

\ ) = (00000)θ( - 4 -1000).

In retrospect, it is clear that i/°(0|0000) cannot map into (-4-1000) because this
would yield an invariant element whereas the only invariant element is
/e( — 50000), a distinct representation.

Finally, we may deduce the following result needed for Sect. 2. The exact
sequence

0 —> (£®#*)\j, —• (<?®^~1)U —> $\*®&Ί —> 0

(0|0000) (-41-1000)

on Jί gives the exact sequence

o —-> H°(^,(O|OOOO)) —+ n\Jt,&®«r$) —• n\Mj®sr$) —± o.

#°(0|0000)

Since we have just computed #°(0|0000) ~^-> H\Jί, β®y$) we may conclude that

Acknowledgements. M.G.E. wishes to thank John Zweck for several useful conversations. T.H.
wishes to thank Paul Green for many helpful discussions.
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