The Holonomy of the Determinant of Cohomology of an Algebraic Bundle

H. Gillet1 and C. Soulé2

Abstract. The purpose of this note is to remark that Theorem 3.7 in [1], when combined with the work of Bismut and Freed [2], leads, in the algebraic case, to an improvement of both results concerning the holonomy of determinant line bundles.

So let $f: X \to Y$ be a smooth proper map between projective complex manifolds. Choose a metric h on the relative tangent space $T_{X/Y}$ and a smooth complement T^HX to $T_{X/Y}$ in TX. We assume that (f, T^HX, h) is a Kähler fibration in the sense of [3], i.e. there exists a closed (1,1) form ω on X for which $T_{X/Y}$ and T^HX are orthogonal, and ω restricts to the (1,1) form associated to h on $T_{X/Y}$.

Let E be an algebraic vector bundle on X, endowed with a smooth Hermitian metric h_E . The (algebraic) determinant line bundle

$$\lambda(E) = \det Rf_*(E)$$

may then be equipped with its Quillen metric [3], whose associated connection we denote by V_Q .

Given a smooth loop

$$\gamma:S^1\to Y$$

we want to compute the holonomy of V_Q along γ . By pulling back f along γ we get a commutative diagram of real manifolds,

$$\begin{array}{ccc}
M & \xrightarrow{\tilde{\gamma}} X \\
\downarrow^{f_{\gamma}} & \downarrow^{f} \\
S^{1} & \xrightarrow{\chi} Y
\end{array}$$

with $TM \cong \tilde{\gamma}^*(T_{X/Y}) \oplus f_{\gamma}^*(TS^1)$ (because of the choice of T^HX). Endow TM with the orthonormal direct sum of $\tilde{\gamma}^*(h)$ with the metric on TS^1 giving norm one to $\frac{d}{dt}$ and invariant by rotation. Let D be the Dirac operator acting on the sections of

¹ Department of Mathematics, University of Illinois at Chicago, Box 4348, Chicago, Il 60680, USA

² I.H.E.S., 35, Route de Chartres, F-91440 Bures-sur-Yvette, France

220 H. Gillet and C. Soulé

 $E \otimes F \otimes \xi^{-1}$ on M, where F is the (locally defined) bundle of spinors and ξ a square root of $\det(T_{X/Y}^{*(0,1)})$. Denote by $\eta(0)$ the η -invariant of D, by h(D) the dimension of the kernel of D, and by χ the Euler characteristic of E on any fiber of f on $\gamma(S^1)$.

Theorem. The holonomy $\mu(\gamma)$ of ∇_O around γ is

$$\mu(\gamma) = (-1)^{\chi} \exp(2\pi i(\eta(0) + h(D))/2) \in S^1$$
.

To prove this theorem, for every real number $\varepsilon > 0$, we define D^{ε} as D above, except that $\frac{d}{dt}$ has norm ε^{-1} (so $D = D^1$). If $\eta^{\varepsilon}(0)$ is the êta invariant of D^{ε} , and $\bar{\eta}^{\varepsilon}(0) = (\eta^{\varepsilon}(0) + \dim(D^{\varepsilon})/2)$, we know from [2] that

$$\lim_{\varepsilon\to 0} (-1)^{\chi} \exp(2\pi i \bar{\eta}^{\varepsilon}(0)) = \mu(\gamma).$$

On the other hand, the proof of Theorem 3.7 in [1] shows that, for any $\varepsilon > 0$,

$$\mu(\gamma) \equiv \exp(2\pi i \bar{\eta}^{\varepsilon}(0))$$

is $S^1 \otimes \mathbb{Q}$. Since we know from [2] that $\bar{\eta}^{\varepsilon}(0)$ is a continuous function of ε , the number $\exp(2\pi i \bar{\eta}^{\varepsilon}(0)) \in S^1$ depends continuously on ε . It is constant modulo roots of unity, therefore it is constant. We conclude that

$$\mu(\gamma) = \lim_{\varepsilon \to 0} (-1)^{\chi} \exp(2\pi i \bar{\eta}^{\varepsilon}(0)) = (-1)^{\chi} \exp(2\pi i \bar{\eta}^{\varepsilon}(0))$$

for all ε , in particular for $\varepsilon = 1$. In other words, the adiabatic limit of [2] is stationary under our hypotheses.

References

- Gillet, H., Soulé, C.: Arithmetic Chow groups and differential characters. In: Algebraic K-theory: connections with geometry and topology. Jardine, J.F., Snaith, V.P. (eds.), pp. 30–68.
 Dordrecht: Kluwer Academic 1989
- 2. Bismut, J.-M., Freed, D.-S.: The analysis of elliptic families. II. Dirac operators, êta invariants and the holonomy theorem. Commun. Math. Phys. 107, 103–163 (1986)
- 3. Bismut, J.-M., Gillet, H., Soulé, C.: Analytic torsion and holomorphic determinant bundles. I-III. Commun. Math. Phys. 115, 49-78, 78-126, 301-351 (1988)

Communicated by A. Jaffe

Received December 1, 1989