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Abstract. For billiards with a hyperbolic behavior, Fundamental Theorems
ensure an abundance of geometrically nicely situated and sufficiently large
stable and unstable invariant manifolds. A "Transversal" Fundamental
Theorem has recently been suggested by the present authors to prove global
ergodicity (and then, as an easy consequence, the K-property) of semi-
dispersing billiards, in particular, the global ergodicity of systems of N ̂  3
elastic hard balls conjectured by the celebrated Boltzmann-Sίnai ergodίc
hypothesis. (In fact, the suggested "Transversal" Fundamental Theorem has
been successfully applied by the authors in the cases N = 3 and 4.) The theorem
generalizes the Fundamental Theorem of Chernov and Sinai that was really
the fundamental tool to obtain local ergodicity of semi-dispersing billiards. Our
theorem, however, is stronger even in their case, too, since its conditions are
simpler and weaker. Moreover, a complete set of conditions is formulated
under which the Fundamental Theorem and its consequences like the Zig-zag
theorem are valid for general semi-dispersing billiards beyond the utmost
interesting case of systems of elastic hard balls. As an application, we also give
conditions for the ergodicity (and, consequently, the K-property) of dispersing-
billiards. "Transversality" means the following: instead of the stable and
unstable foliations occurring in the Chernov-Sinai formulation of the stable
version of the Fundamental Theorem, we use the stable foliation and an
arbitrary nice one transversal to the stable one.

1. Introduction

Smooth dynamical systems with singularities satisfying a hyperbolicity condition
play an utmost important role in the theory of dynamical systems for (i) they
contain such interesting classes as systems of elastic hard balls or - more generally
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- semi-dispersing billiards (and also a lot of non-dispersing ones, like the
Bunimovich stadium) and maps like the Lozi-map; (ii) their theory is closely
related to the theory of non-uniformly hyperbolic smooth dynamical systems.
Since Sinai's celebrated paper (S-1970) it has been well understood that, once the
positivity of the ergodic components has been proven, the main tool for obtaining
additional, topological inference on the ergodic components of the system is a
suitable form of the so-called fundamental theorem.

As mentioned before, the class of semi-dispersing billiards (i.e. those with - not
necessarily strictly - convex scatterers) contains hard-ball-systems as well, and it
was this class of billiards for which, in 1987, Chernov and Sinai (S-Ch, 1987) proved
a strong fundamental theorem immediately in the multidimensional setting. The
main consequence of the Chernov-Sinai theory is, in general, that a suitable open
neighborhood of a phase point possessing a sufficiently rich trajectory belongs to
one ergodic component (local ergodicity).

In fact, the system of two elastic balls on the v-torus Tv: v ̂  2 is isomorphic to a
dispersing billiard (i.e. to one with strictly convex scatterers) and the main
application of their theory was that this system was a K-flow on the submanifold of
the phase space specified by the trivial conservation laws. For completeness, this
result will be derived in Sect. 7 and we shall see that, in this case, global ergodicity
follows relatively easily from local ergodicity.

If, however, one aims at proving global ergodicity for general semi-dispersing
billiards, then essentially new problems arise in going beyond local ergodicity (that
already assumes that the Ansatz, a special global condition of the Chernov-Sinai
theory has been verified, which in itself is not an easy task, in general). In fact, the
method should also be complemented by geometric-algebraic and topological
(dimension-theoretic) tools (see, for instance, K-S-Sz (1989-B) for a billiard in T3

with two cylindric scatterers or K-S-Sz (1989-C) for the system of three balls on
Tv: v ̂  2). This latter part of the argument where - surprisingly enough - the
fundamental theorem gets applied again, and this is exactly the place where its
"transversal" form is, in general, needed. This means that, when ensuring an
abundance of not too short local stable invariant manifolds, instead of the unstable
foliation we assume an arbitrary smooth foliation (in a small neighborhood of a
sufficient point) about which we only require its transversality to the stable one.

In the applications to semi-dispersing billiards one also finds that the
conditions of the fundamental theorem should also be relaxed. To this end we
reshape the Ansatz to make its verification simpler (see Condition 3.1 in this paper)
and use the sufficiency assumption for a point in its minimal form that can imply
local hyperbolicity at all.

As to the proof one can observe that the method of Chernov and Sinai is so
robust that, apart from simpler additional ideas, it also works for proving the
necessary stronger form of the theorem (cf. K-S-Sz (1989-C), Theorem 2.4). Since
the original proof, we think a gem of the theory in itself, was formulated in an
extremely concise and occasionally sketchy way and, moreover, because of the
very importance of the fundamental theorems, the main aim of the present paper is
to give an elaborated proof of our "transversal" version of the fundamental
theorem.
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Our theorem, however, contains two additional assumptions: one on the
subset of degenerate tangencies and further one on the subset of double
singularities. These conditions seem to be necessary for the method and, implicitly,
are also used in S-Ch (1987). As a matter of fact, in the applications to date, their
verification is not too hard and, for instance, for systems of hard balls they hold
obviously.

The careful reader will notice the difference between the definitions of bad
parallelograms given in S-Ch (1987) and in Sect. 5 of the present paper. Our
definition helps to resolve a small gap in the original proof.

Finally, we note that the definition of the function z(x) for the distance from the
singularities is also different here. It is based on our metric ρ introduced in the
phase space of the Poincare section map, which makes the whole discussion more
natural and simple.

The paper is organized as follows. Section 2 prepares the formulation, done in
Sect. 3, of the fundamental theorem and of its main corollaries (the Zig-zag
Theorem and the one on local ergodicity) by collecting the necessary notions and
facts about semi-dispersing billiards. Section 4 contains elementary geometric
facts about semi-dispersing billiards to be used in the proofs. In Sects. 5 and 6 we
prove the fundamental theorem. Section 5 gives the main body of the proof while
Sect. 6 separates the proof of the Tail Bound, the only place where the Ansatz is
used. Finally as an application, in Sect. 7 we also give a detailed proof of the
ergodicity of dispersing billiards including systems of two balls.

2. Semi-Dispersing Billiards and Invariant Manifolds

Billiards. A billiard is a dynamical system describing the motion of a point particle
in a connected, compact domain Q C Rd or Q C T* = Tord, d ̂  2 with a piecewise C2-
smooth boundary. Inside Q the motion is uniform while the reflection at the
boundary dQ is elastic (the angle of reflection equals the angle of incidence). Since
the absolute value of the velocity is a first integral of motion, the phase space of our
system can be identified with the unit tangent bundle over Q. Namely, the
configuration space is Q while the phase space is M = Q x Sd_ l 5 where Sd_ x is the
surface of the unit d-ball. In other words, every phase point x is of the form (q, v),
where qeQ and veSd-v The natural projections π:M-+Q and p:M-^Sd^1 are
defined by π(q, v) = q and by p(q, v) = v, respectively.

Suppose that dQ = u\dQί, where dQ( are the smooth components of the
boundary. Denote dM = dQ xSd-x and let n(q) be the unit normal vector of the
boundary component 3Qt at q e dQi directed inwards to Q.

The flow {S*}: t e R is determined for the subset M' c M of phase points whose
trajectories never cross the intersections of the smooth pieces of dQ and do not
contain an infinite number of reflections in a finite time interval. If μ denotes the
Liouville (probability) measure on M, i.e. dμ(q, υ) = constant x dq dv, where dq
and dv are the Lebesgue measures on Q and on Sd_1 respectively, then under
certain conditions μ(M') = 1 and μ is invariant [cf. K-S-F (1980)]. The interior of
the phase space M can be endowed with the natural Riemannian metric. For our
present purpose it is sufficient to pose the following assumption.
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Condition 2.1. (Residuality of trajectories with a finite accumulation.) The set of
phase points in whose trajectory the moments of reflections accumulate in a finite
time interval form a residual set.

We remind the reader that a subset is residual if it is contained in a countable
union of closed, codimension 2 0-sets [cf K-S-Sz (1989-C)].

We remark that a strong form of Condition 2.1 holds for billiard systems
isomorphic to systems of elastic hard balls in Tv, the v-dimensional torus. As a
matter of fact, for these systems the aforementioned set is empty [cf. G (1981) and
I (1988)].

If at every point q e dQ the normal vectors n(q) (oriented inwards Q) of smooth
pieces of dQ are linearly independent, then, by K-S-F (1980), then the set in
question has measure 0, but its topological smallness is not treated.

The dynamical system (M, {£"},//) is said to be a billiard. Notice, that
(M, {£'}, μ) is neither everywhere defined nor smooth.

The main object of the present paper is a particularly interesting class of
billiards: that of semidispersing ones where, for every qedQ, the second funda-
mental form K(q) of the boundary is non-negative (if, moreover, for every q e dQ,
K(q) is positive, then the billiard is called a dispersing one).

It will be convenient to denote (q, — v) by — x if x = (q, v); then, of course, for
y = Stx we have — x = St(—y).

Invariant Manifolds. We recall that a C^-smooth, connected submanifold γscM
without boundary is called a local stable (invariant) manifold for {S*} at x e M iff

(i) xef.
(ii) 3Ci = Ci(ys)>0 (ΐ = l,2) such that, for any yi9y2eγs

9 f>0,

dist ( S % Sty2) ̂  Cx exp {- C2ή distil, y2).

A local stable manifold for {£"'} is called a local unstable manifold for {S*}.
In what follows we summarize some facts about the existence of invariant

manifolds and their dimensions.
In the construction of invariant manifolds a crucial role is played by the time

evolution equation for the second fundamental form of codimension 1 submani-
folds in Q orthogonal to a given vector x. Let x = (q, v) e M\dM and choose a C2-
smooth codimension 1 submanifold Σ c Q\dQ such that q e Σ and υ = v(q) is a unit
normal vector to Σ at q. Denote by Σ the normal section of the unit tangent bundle
of Q restricted to Σ (Σ is uniquely defined by the orientation (q, v) e Σ). We call Σ a
local orthogonal manifold with support Σ.

Recall that the second fundamental form BΣ(x) oϊΣ (or Σ) at x is defined through

and is a self-adjoint operator acting in the (d— l)-dimensional tangent hyperplane
J(x) of Σ at x.

A local orthogonal manifold Σ is called convex if BΣ(y) ̂  0 for every yeΣ.
Consider a trajectory {xt = Stx:teR}. Between consecutive reflections the

hyperplanes J(xx) can simply be identified by a projection parallel with v. Further,
this identification can be extended along the whole trajectory by determining it in
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points of dM. Let xedM. Then, first of all, S*~x and St+x can be identified by
gluing y, y' e dM iff π(y) = π(y') = q and, moreover, p(y') = p(y) — 2(n(q\ p{y))n(q). We

shall use the following convention: if, for x'eδM, we write x*~ or x ί+, then we
mean (q\ v*~) and (q\ vt+) respectively, while, if we write x\ then we mean the glued
object as represented by xt+. In addition, for x*edM, (i) it makes sense to define
«/(*;'") and J>(xt+) and the identification between them is determined by a
projection parallel to n(q) and (ii) we denote by V(xr) the projection of J>(xt+) onto
$~qdQ parallel to vt+ and by V*(x*) its adjoint which, in fact, projects 3~qtdQ onto
J\xt+) parallel to n(q% where 3~qtdQ is the tangent hyperplane to dQ in qedQ.

Poincare Map. Traditionally one reduces the study of the ergodic properties of the
flow {S*} to that of a discrete time dynamical system. This system is given by an
automorphism T, the so-called Poincare section of {S*}, where the section is
defined by using dM+ = {x = (q, v) e dM, (v, n(q)) ̂  0 and 3ε such that VO < δ < ε Sδx
φ dM}. However, if necessary we can, in addition, introduce "virtual" hyperplanar
boundaries of codimension 1 in the configuration space (and, correspondingly, in
the phase space, too) and thus we can obtain a system with a bounded free path
(lack of infinite horizon!). These virtual walls are transparent [cf. S-Ch (1987)], i.e.
when hitting these walls the velocity remains unchanged. If the union of these
virtual boundaries in Q is ΈQ, then the phase space of this new discrete time system
will be dM = dMκjdM, where ΈM=ΈQxSd.ί.

Let τ:M-»R+ be defined as follows:

τ(x): = inϊ{t>O:StxedM + }.

Introduce the mapping T+ :M^dM as T+x: = Sτ(x) + ox. The restriction T of
the mapping T+ to dM is the Poincare section of the flow {&}. Then 0M, T, μ±) is a
dynamical system with dμί(q,v) = const \(v,n(q))\dq dv, where dq is the Rieman-
nian measure on ^^\ = dQ\jΈQ. An additional remark is that — x=Tn( — y) if
y=Tnx. ^

A smooth piece ΣcdM of the T+-image of a local orthogonal manifold in M
will also be called a local orthogonal manifold (in dM). Finally, we say that a local
orthogonal manifold £ c dM is convex if it is the T+-image of a convex orthogonal
submanifold in M.

Important Convention. For brevity, by slightly abusing the notation, we will
throughout this paper denote <3M (and'δβ) by simply dM (and dQ)\

The natural Riemannian metric ρ on dM inducing the invariant measure μγ can
be defined via the equation

{dQ)2 = (n(ql v)2 • {dq,)2 + (dq2)
2 + (dv)2, (2.2)

(x = (q, v)edM, dq = (dql9 dq2) e ^qdQ, dv e J(x)).

In this formula the component dq2 e &~qdQ of dq is orthogonal to v while dqγ is a
scalar multiple of v — (n(q), v) n(q).

Semidispersίng Billiards. From now on, throughout this paper, we restrict our
attention to semi-dispersing billiards. For a local orthogonal manifold Σ to
x e M\dM let Σι — S*Σ. The invariant manifolds are the solutions of a differential-
geometric problem: at every point their second fundamental form should be equal
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to an operator-valued continued fraction. To obtain these continued fractions we
have to recall the evolution laws for BΣt. For the sake of definiteness, we fix a point
xeM and understand all operators mapping some J(x!) into itself as operators
mapping J{x) into itself by using the unitary identification introduced above.

Proposition 2.3. (i) If xeM and forO^f^txr φdM, then

(ii) If x'edM.then

BΣt+(xί+) = Bv-tf-) + 2(t/\

The proposition and the semi-dispersing property imply that, if Bτ{x) ̂  0, x e Σ,
then BjyfflZiO for every ί^O, i.e. convexity of Σ is preserved under S\ ί^O.

The billiard flow {S*} has singularities of different types. Since we shall always
work with the Poincare section map T it is sufficient to give a more detailed
description of the set McdM of the singularities of T. 01 = 01'\J01" is a 2d-3
dimensional CW-complex which consists of two types of CW-complexes:

a) 0t'\ = π~\κjfi{SQ)^T-^π-\κjfi{dQ)^\ (the "double reflections" and their
preimages under T);
b) gt: = {x = (q,v)edM:(v,n(q)) = 0 } u Γ 1 [ { x = feι;)€δM:(v,n(q)) = 0}] ("tan-
gencies" and their pre-images under T).
ForneZlet ^-τ-^ca>

Denote for arbitrary neN by Δn the set of double singularities of maximal
order n. Δn consists of points x e dM for which there exist two different integers k1

and k2(\kί\^n, |fc2|^n) such that Tkίx and Tk2x belong to the set of singular
reflections ("double" or "tangential" ones). The set of singular reflections is
denoted by ¥01 (β = ίf0tκjT~\$P0ϊ)). Introduce the following notations:

dM°: = 3M\ (J 0t\

\neZ

\n=l

Let, moreover, M*: = (T + )" 1 δM*.
Next, for every xeM" (M" = {x:Stxφ0t for every ί^O}) we introduce the

operator-valued continued fractions B(x) mentioned before. Let to = 0 and
0 < f 1 < f 2 < be the sequence of reflection moments of the positive semi-
trajectory {x' ί^O}. One can show [cf. S (1979), Ch (1982)] that, for semi-
dispersing billiards, the operator-valued continued fraction

B(x) = 1 (2.4)

s2+-



A "Transversal" Fundamental Theorem 541

exists whenever x e M" and is a non-negative linear operator for every x e M",

where sH = tH-tH.l9 Kn = K(q% *?•> = P * V » ) and cosφn = (if»+

9n(4'n)).

Remark 2.5. It is very important to observe that a finite analog of the present
continued fraction formula is also valid for the second fundamental form

of the Sf-image of any convex local orthogonal manifold Σ containing the phase-
point — S\x) (xeM"\dM, S\x)φdM). This formula, which is a consequence of
Proposition 2.3, looks as follows:

B(—x) — ~

(2.6)

(Here sn is the length of the trajectory segment between S'(x) and the last reflection
before it.) The semi-dispersing property (non-negativity of Vk*KkVk) implies the
non-negativity of every partial continued fraction of the right-hand side in (2.6)
and, moreover, the formula in (2.6) is monotone in the self-adjoint operator
variable BΣ( — S'x). These properties together with the continuity of the operator
coefficients sk = sk 1 and Vk*KkVk and also with the convergence of the right-hand
side in (2.6) yield the following proposition:

Proposition 2.7. Using the notions and notations above, for every ε > 0 there exist a
large positive integer nε and a suitably small neighborhood Uε of x in M such that for
every y e UεnM" and for every convex local orthogonal manifold Σ containing — S*y
such that S*y is after the nf reflection of y (in the positive semi-trajectory) we have
that

\\B(x)-BstΣ(-y)\\<ε.

Here the operators B(x) and BStΣ( — y) are extended from J>{x) and J>(y) to the bigger
vector space tTQ> taking the value zero in the orthogonal complement of J>(x) and
J>(y\ respectively.

The dilation effect of the dynamics on an orthogonal manifold Σ is described by
the linearization of S\ i.e. by

y (2.8)

The linearization of Tn is

(2.9)
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where I is a local orthogonal manifold in dM through xedM. We will be
consequent in using Dx Σ for the flow and Dn

x Σ for the map. Observe that, for Σ
convex I K D ^ Γ i ^ l and IKD^)"1!! £ 1 [see Ch (1982)].

It is of special importance to characterize the positive subspace of B(x). To this
end we decompose

where

β ( * W ) > 0 , B(x)|,o(JC) = 0.

For x e M" let j(x) = dim */+(;*;), and

Ω = {xeM: for some neighborhood U(x)CM,

j(y) is a positive constant in U(X)CΛM"}

being, of course, an open set. For x = (q, v) e Ω, consider the tangent space
= ^~qQ®^~vSd-i> where there is a natural isomorphism between $~vSd-1 and J(x\
The set E(x) = {(e,f)):eeJί

+(x), f= — B(x)e] is a linear subspace of $~XM and
dimE(x)=j(x).

Theorem 2.10 [Ch (1982)]. If for some qedQ, K{q) + 0, then Ω Φ 0 and, for a.e. xeΩ,
there exists a local stable manifold ys(x) of dimension j(x) atx and &~xy

s(x) = E(x). The
proof of this theorem and further steps of the analysis are based on a simple but
important observation: the positive subspace </+(:*) of B(x) is finitely defined.
Namely, there exists a function Z0:M"->Z+ such that

S0(x) = {eeS(x): Vl"KlVle = Q for every /=1,2, ...,/0(x)}.

Denote by l(x) the minimal such function lo(x). It is easy to see that l(x) is upper
semicontinuous on Ω. The following characterisation of */+(x) is trivial:

where ££ is the linear subspace spanned by those indicated in the brackets and
Jm+(x) denotes the positive subspace of J{x) for the operator V*KmVm.

Remark. The most important special case j(x) = d — 1 of the last theorem (more
exactly, the a.e. existence of invariant manifolds in a neighborhood of each
sufficient point) can easily be obtained from the Fundamental Theorem
(Theorem 3.6).

The following simple lemma is an easy consequence of the definitions.

Lemma2.11. If j(x°-) = d-ί, then / ( x 0 - ) ^ ^ - ^ ^ - ^ ) 0 " ) .

If T+xe@nnM\ rc^O, then B(y) has two limiting values as y-+x [cf. S-Ch
(1987). p. 170] and they will be denoted by J?1^), B2{y). In this case all the notions
and notations introduced above for B{x) will have two values and will be
distinguished by superscripts 1 and 2, e.g. J\{x\ l\x\f{x)\ i = 1,2. For these points,
too, we introduce j(x) = min{j1(x),j2(x)} and /(x) = max{/1(x), I2(x))}.
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Sufficiency of Trajectories. For any interval (a, b\ — oo ̂  a < b ^ oo we will
throughout denote by S{a'b)x the trajectory segment {S^'.cKKb}. As already
said the notion of sufficiency is important because it is the weakest requirement
that can ensure local hyperbolicity of a semi-dispersing billiard.

Definition2.12. A trajectory segment Sia>b)x, -oo<.a<b^oo satisfying S{a'b)x
0 , 9 ^ = 0 is said to be sufficient if

dim 2 {Ju + (x): t e (α, b), S*x e dM} = d -1,

where, for any t such that S*x e dM, J>u +(x) denotes the positive subspace of J(x)
for the operator V*KV taken at S*x. If S(a>b)x intersects S ^ just once, then S(a'b)x is
called sufficient if both branches of the trajectory are sufficient in the time interval
(a,b).

Finally a point x e M * is said to be sufficient if its trajectory S{ 0 0 ' 0 0 ) is
sufficient.

Note that, by virtue of Lemma 2.11, x is sufficient if and only if — x is sufficient.
The last lemma of this section prepares our improvement for the strong

fundamental theorem of Chernov and Sinai. But first we should again introduce
some notations. For any y e U(x) = U let

τv{y) = inf {t > 0: S\y) e U(x) and for some s e (0, ί), Ss(y) φ U(x)}

and, for any convex orthogonal manifold Σ 3 y9 let

Dτ _ . nτuOO
y,Σ — 'υy,Σ

Lemma 2.13. For every xeM° such that S ( 0 ' 0 0 ) is sufficient, there exist a
neighborhood U(x) and a positive constant λ = λ(x) < 1 such that

(i) through almost every point y e U(x) there do pass uniformly transversal local
stable and unstable manifolds ys(y) and yu(y) of dimension d—1;
(ii) for any ye U(x) and for any convex orthogonal manifold Σ± 3 ±y,

Due to the continuity of B(y\ if U(x) is sufficiently small, then, for every
y e U(x), l(y) ̂  l(x) and {V*KmVm: 1 ̂  m ̂  l(x)} is a ^-dependent, sufficient sequence
of operators uniformly close to the analogous sequence defined for x. It follows
from the Poincare recurrence theorem that for every neighborhood U(x) and for
a.e. yeU(x)nM° the recurrence time τ_υ( — y) is finite and
Sτ-*-yχ-y): = y' e(-U(x))nM°. Then, in view of Lemma 2.11, for a.e. yeU{x)
nM°, the trajectory {S\—y):O^ί^τ_v(—y)} contains a sufficient sequence of
reflection operators thus implying B( — y) > 0 andj( — y) = d—\. Now the existence
Theorem 2.10 can be applied providing the a.e. existence in U(x) of local stable and
unstable manifolds of dimension (d—1).

The validity of (ii) follows easily from Theorem 2.10, from the positivity and
continuity of B and, finally, from the existence of a sufficient sequence of reflections.
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Remark 2.14. The assertion of the previous lemma also holds if xeM1.

Further Convention. The essential constants of the proof are denoted by λ = A~1,
0 < λ < 1, ct > 0, and εj > 0. The difference between the c/s and ε/s is that the latter
ones can be chosen arbitrarily small by approprietely shrinking the neighborhood
we are working in. All the constants will be independent of the parameter δ and
about the c/s we will always say what they depend on.

3. Formulation of the Fundamental Theorem

The main aim of this section is to formulate the Fundamental Theorem in its most
general and applicable form. We note that there are two dual forms of the
Fundamental Theorem: the first one providing an ample set of not too short local
stable invariant manifolds and the other one stating the same property for the local
unstable manifolds. Now we are going to draw up the first (stable) version of the
Fundamental Theorem; the dualization, being an easy exercise, is left to the reader.

In order to phrase the theorem we need three important preliminary
conditions.

Condition 3.1 (Chernov-Sinai Ansatz). For vs@-almost every point x e S& we have
x e <3M* and the positive semitrajectory of the point x is sufficient, where vsm denotes
the measure on the codίmension 1 CW-subcomplex SM of dM induced by the
Rίemannian metric ρ.

The other important regularity condition needed for the proof of the
Fundamental Theorem is:

Condition 3.2 (Regularity of the set of degenerate tangencies). The set

{x = {q,v)edQxSd_ί:(v,n(q)) = 0 and K(q)v = 0}

is a finite union of compact smooth submanifolds of dM (usually with boundary), I e.
this set is a CW-subcomplex of (Ά.

We remark that Condition 3.2 trivially holds for semi-dispersing billiards with
solely cylindric scatterers.

Our last regularity condition concerns the sets Δn of double singularities:

Condition 3.3 (Regularity of double singularities). For every neN the set Δnis a
finite union of compact smooth submanifolds of dM.

Definition 3.4. Let x e 3M* and let U(x) be an open neighborhood of x in dM
diffeomorphic to R2d~2 and U(X)= (J Γa a smooth foliation of U(x) with

(d— l)-dimensional smooth submanifolds Γa which are uniformly transversal to all
possible local stable invariant manifolds in U(x) (B**'1 is the standard (d— 1)-
dimensional open ball, i.e. the factor of U(x) by the foliation).

The parametrized family

#* = {G?:i=l,2,...,/(5)} (O<<5<<50)

of finite coverings of U(x) is called a family of regular coverings iff the following five
requirements are fulfilled:
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(a) all the sets Gf are open parallelepipeds of dimension Id — 2, i.e. they are images
of the standard unit cube [0, i ] 2 ί *- 2 cR 2 ί *- 2 under inhomogeneous linear map-
pings R 2 d ~ 2 -> U(x) where linearity is defined in terms of a fixed coordinate system
in U(x), say the exponential coordinates using the mapping expx;
(b) for the centers wf e M° of Gf (according to this coordinate system) the tangent
spaces E(wf) and ^~wδΓ(wf) are parallel (according to the coordinate system) to
some (d— l)-dimensiόnal faces of Gf. The faces of Gf parallel to E(wf) are called
s-faces (there are 2d~1 of them), while those faces of Gf parallel to ^~wόΓ(wf) are
called Γ-faces (there are also 2d~* of them) and they are supposed to be cubes with
edge-length δ;
(c) if GfnGδj + 0, then

where cί > 0 is a fixed number (not depending on δ)\

(d) for every δ<δ0 there are at most 22d~2 different indices I^i1<i2<...<ik

such that

n G i*0;
(e) the system of the centers

{w?:i= 1,2,...,/(<$)}

constitutes a (2d — 2)-dimensional linear lattice with edge-length e.g. (1— 0.01)<5
such that the stable- and Γ-faces of the elementary parallelepipeds of this lattice are
cubes. (In the notion of this linear lattice again the fixed coordinate system in U(x)
is used.)

The following lemma, stating the existence of regular coverings, can be
obtained using simple geometric arguments, see S-Ch (1987).

Lemma 3.5. Let x e δM* be a sufficient point and let Uo be an open neighborhood of
x in dM with the smooth foliation Uo= I) Γα as above (recall that the manifolds

Γa are uniformly transversal to all possible local stable invariant manifolds). Then
there are arbitrarily small neighborhoods U of x in dM having families of regular
coverings with respect to the foliation U= (J (ΓΆnU).

aeBd~1

Now we are in the position of formulating the "Transversal" Fundamental
Theorem for semi-dispersing billiards generalizing the Fundamental Theorem of
S-Ch (1987). As said in the Introduction, the present version is stronger because
our form of the Ansatz is simpler and our condition of sufficiency is weaker and any
transversal foliation Uo = (J J^ can be used instead of the partition into local

unstable invariant manifolds. These improvements are important in applications,
e.g. in the case of three billiard balls on tori [see K-S-Sz (1989-C)].

We introduce the following notation: dΓ(Gf) is the union of those (2d — 3)-
dimensional faces of Gf which contain at least one Γ-face of Gf. We call dΓ(Gf) the
Γ-jacket of Gf. The notion of the s-jacket ds(Gf) of Gf is quite similar: It is the union
of the remaining (2d — 3)-dimensional faces of Gf. (They are just those (2d-3)-
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dimensional faces which contain at least one s-face of Gδ.) It is clear that d(Gf)
= dΓ(Gδ

i)uds(Gf). If the condition

is fulfilled for a point y then we say that the invariant manifold y\y) intersects the
parellelepiped Gδ correctly.

Theorem 3.6 ("Transversal" Fundamental Theorem). Suppose that

(i) Conditions 3J-3.3 are fulfilled for the semi-dispersing billiard flow (M, {£'}, μ);
(ii) the point xedM*\ (J Mn is sufficient;

Wo(iii) ε1 is a fixed constant between zero and one;
(iv) a smooth foliation Γ uniformly transversal to the local stable manifolds is given
in a neighborhood Uo of x.

Then there exists a small neighborhood Uεi(x) of x in dM such that for every
neighborhood U(x)CUει(x) of x and for every family

(0<δ<δo)

of regular coverings of U(x) the covering ^δ can be divided into two disjoint subsets
%δ

g and %δ

b such that

(I) for every parallelepiped Gf e &* and for every s-face Es of Gf the set

^ and 3 (d-\)-dimensional y\y) such that d(Gfnys(y))cdr(Gf)}

has positive μ^measure;

(Π)

i.e.

( U Gf)=o(δ).

Remark 3.7. This theorem guarantees the existence of an ample set of points
yeU(x)CdM with suitably long local stable invariant manifolds in arbitrarily
small neighborhoods U(x) of x in dM if only x e dM* is a sufficient point. The
following simple generalization is important in applications [see K-S-Sz
(1989-C)]: instead of assuming that xedM* is sufficient we can assume that
x e M*\dM is sufficient and $ C M is a small ball-like C2-smooth codimension one
submanifold of the phase space M containing the point x in its interior and being
transversal to the flow. In this (more general) setup every sufficiently small
manifold S can be mapped to a neighborhood U(T+x)CdM of T+x via the
correspondence y^>Sτ(y)y {ysS\ where the positive numbers τ(j ) are close to τ(x)
and Sτ(y)y=T+y. Using this mapping S>^U(T+x) every geometric object in
U(T+x) playing role in the Fundamental Theorem has its counterpart in £ and the
theorem itself remains true in $ without any modification.
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Remark 3.8. Assume that xedM*n&" (n^O). The statement of the Fundamental
Theorem also remains true in this case. We only need the following modification in
(II):

Remark 3.9. The grid condition (e) in the definition of regular coverings
(Definition 3.4) is not necessary in the Fundamental Theorem, nonetheless in all
applications it is enough to know that the theorem is true for every family of
regular coverings satisfying the condition (e) too. The other reason for retaining
the condition (e) is of didactics: the best way for constructing families of regular
coverings (Lemma 3.5) is to begin with a linear lattice {wf :i= 1,2, ...,/(<5)} of
centers of the parallelepipeds to be constructed. In this way the geometric and
combinatorial structure of the covering @δ = {Gδ:i = l,2,...,I(δ)} will be more
transparent than it would be without condition (e).

In the applications one often uses two corollaries of the fundamental theorem
whose formulations are less technical. The first one is called the Zig-zag Theorem
in K-S-Sz (1989-B), and is also derived there from the fundamental theorem
phrased for the case when the foliation Γ is Γu = {yu}. As a matter of fact, Γu is not a
smooth foliation as Γ was supposed to be in Definition 3.4, but it is clear from all
our proofs that about Γ its transversality to Γs — {ys} and the continuity of ^y{y)

were only exploited.

Corollary 3.10 (Zig-zag Theorem). Assume the conditions of the Fundamental
Theorem for the flow (M, {S*}9 μ) and let the base-point x e 3M* be sufficient. Then
there exist arbitrarily small neighborhoods U(x) of x in dM such that for every null-
set N C U(x) there exists a set A = A(N) C U(x) of full measure (i.e. μ^A) = μi(U(x)))
such that we have:

(i)
(ii) for every pair of points y,zeA there exist two finite sequences γs

ί9y
s

2,...,y
s

k, and

y\9y
u

2, •• ϊ7k °f local stable and unstable invariant manifolds in U(x) such that

(a) yeγ\, zeyu

k;

(b) 0

We note that, because of transversality, the non-empty sets yjny" and y"nys

i+1

must contain exactly one point.

Proof. First we prove the corollary assuming x e δM°, i.e. x does not belong to any
manifold of singularity. At the end of the proof we shall briefly discuss the small
modifications in the proof needed for the general case xedM*.

Set U(x) a suitably small neighborhood of x in dM having a family \<&b: δ < δ0}
of regular coverings, cf. Lemma 3.5. Let the null-set NcU{x) be given. For every
δ < δ0 we consider the set Gδ

g of good parallelepipeds of the covering &δ. Here Gδ is
chosen in such a way that its elements are "good parallelepipeds" with respect to
both the stable and the unstable versions of the Fundamental Theorem,
A*i ( U G(\ =0(δ) a n d 5 moreover, in the application of the stable (unstable)

\GfeGt )

version of the theorem the role of the transversal foliation Γ is played by the
partition {yu} (and {ys}, respectively). The actual choice of the small parameter
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εx >0 is arbitrary. Two elements Gf and Gδ of <§\ are connected with an edge, by
definition, if and only if GfnG? φ 0. Thus ^δ turns out to be a graph. Its connected
components are called clusters. One cluster of 9δ

g with a maximal number of
elements is denoted by Jίδ.

Sublemma 3.11.

μi(U(x))-μi( U Gf)-0 ( a s ^ O ) .

Proof. The statement of the sublemma is an easy consequence of a fact from
combinatorics which we are going to formulate as follows. Let the unit cube [0, l ] w

CRm be divided into Nm small cubes

Let, moreover, # * be a family of such cubes with the property

U Ckl.....

(Here λ is the Lebesgue measure in Rm.) Two elements C and C of Cg are connected
with an edge iff CnC + 0. (The cubes are closed!) In this way Cg is also a graph.
One of its connected components with a maximal number of vertices is denoted by
HN. The well-known combinatorial fact is that

U cV
CeH* )

• 1 (as JV-KX)).

This can be proved using an easy induction on the dimension m.
Now we return to the proof of the Zig-zag theorem. We denote by J the set of

\ +00

points yeU(x)\ (J 0Γ having (d— l)-dimensional invariant manifolds ys(y)
\ m = — oo

and γu(y) such that y is their interior point. It is known from Ch (1982) that μ±(J)

By Sublemma 3.11 there exists a sequence δuδ2,δ3,... tending to zero such
that the set lim inf [κjJίδn~] has full measure in U(x).

Let

A1 : = (J\N)nΓlim wϊ( (J GfΛl.
[n-̂ oo \Gf-eJi0" J]

We obviously have that μ1(Aλ) = μι(U(x)). The essential statement (ii) of the
Zig-zag Theorem without the inclusions (yfny^cA and (y"πy + 1 ) C ^ is a
consequence of the goodness of the parallelepipeds from Mb (in the sense of both
the stable and the unstable versions of the Fundamental Theorem), of the existence
of the invariant manifolds for the points of A and, finally, of the connectedness of
Jίδ. (In the explanation of this statement some topology must be applied
concerning the intersections of C^-small perturbations of s-faces and w-faces of
parallelepipeds.) In order to prove the existence of a subset AcAx with
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= μγ(A) such that the relations ys

tny"cA and y"nys

i+ίCA hold for appropriate
sequences ys

ί9 ys

2,..., ys

k; y", yu

2,..., yl we can consider an ample family of perturbed
sequences of the original one and we can also use the absolute continuity (see K-S
(1986)) of the foliations {ys}, {yu} to gain the inclusion relations demanded in (ii) (in
more detail see K-S-Sz (1989-A)).

Finally, we discuss the case xedM1, say x e i " , n > 0 . In this situation the
smooth component 0ln{x) oί0ίn containing x splits the neighborhood U(x) into two
semi-balls. Statement (II) of the stable version of Theorem 3.6 is only true for bad
parallelepipeds, not intersecting Mn(x). The previous proof of the Zig-zag Theorem
applies for both open semi-balls of U(x). The only remaining task is to connect
general pairs of points lying in different semi-balls of U(x). This can be done by
passing through 0l\x) along local unstable invariant manifolds, because the
unstable version of Theorem 3.6 holds in U(x) without restrictions (n>0).

Corollary 3.12. Assume the conditions of the Fundamental Theorem for the flow
(M, {S^.μ) and for the base point xe(dM)c\M* = dM*. Then there exists a
neighborhood U(x) of x in dM contained in one ergodic component of the system
(dM,T,μi).

Proof Using Hopf s classical method and the Zig-zag Theorem we get the
statement of this corollary in a straightforward way.

4. Elementary Geometric Facts about Semi-Dispersing Billiards

In this section we summarize some facts concerning the geometry of the invariant
manifolds and the set of singularities of semi-dispersing billiards. All the
statements will be formulated in terms of the Poincare section map.

Lemma 4.1. // the regularity of the set of degenerate tangencies (Condition 3.2)
and of double singularities (Condition 3.3) hold, then, for any n e N , the set Δn of
double singularities is the union of a finite number of compact codimension 2 smooth
manifolds.

Proof. It is sufficient to prove the statement of the lemma for the intersection of the
set S& of singular reflections with its image under Tk (l^k^2n); applying an
appropriate power of T we get the lemma. The proof is based on the following
simple geometric fact:

Sublemma 4.2. Every d—1-dimensional convex local orthogonal manifold ΣcdM
intersects the set of singular reflections in at most a finite number of (d — 2)-
dimensional smooth manifolds.

The statement of the sublemma follows from the definition of the convexity of Σ
CdM: it is the T+ image of a convex local orthogonal manifold in M.

To prove Lemma 4.1 observe first that the set of singular reflections consists of
a finite number of at most (2d—3)-dimensional open disks Dt. The regularity of the
set of degenerate tangencies provides that Dt can be chosen in such a way that if Dt

belongs to the set of "tangential reflections," then either K(q)v = 0 for every
(q,v)eDi or K(q)vή=0 for every (q,v)eDt.



550 A. Kramli, N. Simanyi, and D. Szasz

If Dt belongs to the set of "double reflections," then there exist two smooth
pieces dQ and dQ" of dQ such that π φ ^ c d β ' n d β " . Let us fix a phase point
(q, v) e Dt. The set

Σk

q: = {Tk(q,v'):v'eSd-_u\\v'-v\\<εq} (4.3)

is a convex orthogonal manifold.
Letting q run over π(Dι) and applying Sublemma 4.2 we get the statement of the

lemma for Dt.
If Dt belongs to the set of "tangential reflections" then there is no such natural

way of representing TkDt as a union of convex orthogonal manifolds. Assume first
that K(q)v + 0 for every {q,v)eDi.

For a fixed (q, v) e Dt consider the geodesic g(s) C dQ: g(0) = q, g'(0) = v and s is
the arclength-parameter. Since K(q)v + 0, g"(s)= — oc(s)n(g(s)), where α(s)>0 in a
small interval — s0 ^ 5 ̂  s0. This means that g(s) is, up to the second order, a circle
with radius (α(O))"1 which has its center on the half-line {q~βn(q), βeR + }. It is
well known from the theory of 2-dimensional dispersing billiards (see V (1982)) that
there exists a "synchronizing" function τ(s)>0 ( — s0Ss^s0) such that the
projection of the curve {π(Sτ(s)(g(s), g'(s))\ — s o ^ s ^ s o } on the plane spanned by
the vectors v and n(q) will be a convex planar curve. Moreover, if, for |s| 5^s0, the
function τ(s) is sufficiently small then the curvature of the planar curve defined
above is large enough. These facts imply

Sublemma 4.4. The T+-image of the manifold

^ f ) : \ s \ ^ s 0 , \\v(s)-v'\\ <εo,v'e^g{s)dQ} (4.5)

is a convex local orthogonal manifold containing T+(Sτ{s)(g(s\g'(s))) and, moreover,
T'ΣgCDi, where T~x\= -T+(-x).

Sublemma 4.4 provides that Sublemma 4.2 can be applied to Tk~1T+Σg, so
Sublemma 4.2 together with Condition 3.3 imply the statement of Lemma 4.1 for
D,

If K(q)v = 0 for every (q,v)eDb then TDt is automatically of codimension 2.
This statement is obvious if Dt itself is of codimension 2. In the case dimD^ = 2d — 3
we can observe that Dt collapses along the trajectory of the flow therefore its image
under T+ must be of codimension 2. Hence the lemma.

Now we can estimate the measure of the phase points being simultaneously
close to two smooth pieces of ^ M .

Lemma 4.6. Denote by Mt the smooth components of (J $n (i= 1, ...,K). Then
\n\ZN

μί {x: 3iJ ^ K, i +;, ρ(x, 9t^ < δ, ρ(x, 9t$ < δ} = o(δ)

if N is fixed.

Proof Lemma 4.1 implies that for every Mt and for v^.-almost every
ρ(y, AN)>0. Thus for every η >0 there exists an open subset ΛηJc3k\ containing AN

n&i such that v^.(Aηt t) < η. Further, for every η > 0, there exists a δ > 0 such that the
neighborhoods (Ri\Aηt f)

[<5]: 1 ̂  i^K are disjoint, where Alη] : = {y: 3x e A such that
ρ(x,y)<η}.
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Therefore

{x: 3iJ^K, i Φ;, ρ(x, ^ ) < δ9 ρ(x9 9t) < δ} C (Δ

K

where A = (J zl . From the fact that the surface measure of A in (J ^ w is less
ί = l ' \n\£N

than K77 we obtain that the μx -measure of the right-hand side of the previous
inclusion is of order Kηδ. By choosing η sufficiently small the lemma follows.

In Sect. 3 (in Definition 3.4/(a)) we used the geodesic coordinate system in a
sufficiently small neighborhood U(x) of x in dM. Thus the tangent spaces of the
submanifolds of U(x) can be regarded as linear subspaces of R 2 d~ 2 . Let us recall
the definition of the angle of two linear subspaces S£γ and J£2(cR2d~2).

angle(^f l J ^f 2 ) : = S U P * n

where angle (vl9 v2) denotes the angle of two vectors vί and v2 eR2d~2. We restrict
our considerations to angles between the tangent hyperplanes of two convex local
orthogonal submanifolds of dimension d—\ and to those between a (d — 1)-
dimensional convex local orthogonal submanifold and a (2d — 3)-dimensional
smooth component of @tn. In fact, we want to prove that the angles in question are
sufficiently small; to this end we are looking for upper estimates of them.

Remark 4.8. Recall that the tangent space FyΣ (yeΣ, yφ dM) of a convex local
orthogonal manifold is uniquely determined by J(y) and the second fundamental
form BΣ(y):

(see Sect. 2). Using this formula we see that angle (^yΣ9 ^y>Σ')^>0 if \\B(y)-B(y')\\
-•0 and ρ(y,y')->0 and a similar statement is true for the Poincare map, too. (For
the definition of B cf. Proposition 2.7.)

Lemma 4.9. For every x e dM° and for every ε there exists a neighborhood U(x)
C dM of x such that for every ys

u ys

2 and for every smooth (2d — 3)-dimensional piece
M of 0ln (n > 0) intersecting U(x) and for every yu y29 and y@ (e U(x)) lying on ys

u ys

2,
and $,, respectively, we have

(i)
(ii) , j ^

Proof By virtue of the continuity of B(y) (cf. Proposition 2.7) for every η > 0 one can
choose U(x) in such a way that for every y1,y2eU(x) WBiy^ — B(y2)\\ <η.
Remark 4.8 implies inequality (i), if η is chosen small enough.

In order to prove (ii) it is sufficient to find a (d— l)-dimensional subspace ^~ykΣ
of ^y^y such that

This can be attained by constructing a convex local orthogonal manifold — y& e Σ
C—$, having a second fundamental form BΣ( — y<%) close to B{yγ). The construc-
tion of the convex orthogonal manifold Σ is the same as that of the manifolds Σ\
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and Σg in (4.3) and (4.5), respectively, for — Tkμ^ where Tky<% belongs to the set of
singular reflections (k = n or fc = n + l).

(In the third case when Tky@ belongs to a tangential reflection and K(q') = 0 in a
neighborhood of π(Tky%) in dQ, then d i m ^ < Id — 3 because of the collapse and the
lemma does not refer to this case.)

For every point x ε dM we denote by z(x) the ^-distance of x from the compact
set ^ C δ M , i.e.

z(x) = min {ρ(x9 y):ye$}.

Lemma 4.10. There exists a constant c2 such that for every η>0,

μx {x e dM: z(x) <η}^ c2η.

Proof. The statement of the lemma is an obvious consequence of the definition of
the Riemannian metric ρ.

5. Proof of the Theorem Using the Tail Bound

The reader is reminded of our convention to denote by dM the extended boundary
also including the transparent walls. Moreover, we will assume x e δM° since the
case dM1 is analogous.

In the forthcoming proofs, a fundamental role will be played by the minimal
expansion rate κΆtδ{y) for the finite trajectory segment T [ 0 'Λ ](— Tny) in a small
neighborhood of a phase point.

Definition 5.1. Consider now y e dM°. Denote first

where Dn

y Σ was defined in Sect. 2 (cf. Definition 2.9) and the inf is taken for convex
local orthogonal manifolds Σ through — Tny in dM. (It is easy to see that the inf is
attained for a (d — l)-dimensional hyperplanar orthogonal manifold in Q supplied
with parallel velocities.) Denote, moreover,

1 ^ ) = inf inf I I W ^ Γ Ί Γ 1 , (5.2)
Σ weΣ

where the lower bound in Σ is taken for convex local orthogonal manifolds Σ
through - Tny such that

(i) Tn is continuous on Σ,
(ii) TnΣcBδ(-y).

For later use we formulate a simple property of κnδ.

Lemma 5.3. κnδ(y) is an increasing function of n.

Proof The monotonicity arises from two circumstances: from the trivial monoton-
icity in n of κn0(y) and from the observation that every submanifold Σn+1 to be
considered in the lower bound in (5.2) at the definition of κn+lδ(y) is of the form
T~xΣn, where Σn is a submanifold to be considered in the lower bound at the
definition of κnδ(y). Hence the lemma.
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We think of U 3 x as being fixed though in course of the proof we shall put
several conditions for its smallness. Then it makes sense to define the sets

Ub:=U\U9,

Ub

n: = {yeU: z(Tny) < (κn^

where c3 is a suitable constant to be described later. Denote also

r(y): = sup {r: d(f(y)nBr(y)) C dBr(y)}.

The reason for introducing U9 (g for "good") is shown by our first lemma.

Lemma 5.4. // ye U9, then r(y)^c3δ.

Proof. The argument relies upon Sinai's classical philosophy: "expansion prevails
over fractioning." We want to use the fact that ys(y), if it exists at all and its
dimension is d—ί, is a superset of the n-»oo limit of the submanifolds
— Σl(y): = — TnΣn

n(y\ where Σn

n(y) is a convex local orthogonal submanifold of dM
through — Tny which, for definiteness, can be taken as the T+-image of a (d— 1)-
dimensional hyperplanar manifold in Q of radius c3δ supplied with parallel
orthogonal and suitably oriented velocities [see P (1977) and Ch (1982)].

Now Lemma 5.4 is the consequence of the definitions of κnδ(y) and U9. Indeed,
denote by Σn

0 the connected piece of (— Σn

0(y))nBC:iδ(y) containing y. Assume on the
contrary that there exists a w e dΣn

0 such that w φ dBC3δ(y). This is only possible if
ρ(y, w)<c3δ and, moreover, for some fc Org/crgrc, we T~\S$). But on the other
hand, for every fc O^/c^w, z{Tky)^(κk^δ(y)yιc3δ, i.e. ρ(Tkw, Tky)
^(κk>C3δ(y))~1c3δ implying ρ(w,y)^c3δ, a contradiction. The convergence of
manifolds Σn

0 follows from Proposition 2.7. Lemma 5.4 is proved.

Remark 5.5. An utmost important remark is that, if we choose c3 depending on d
and on x sufficiently large, then the property r(y)^c3δ, yeGf will ensure that ys(y)
intersects Gf correctly unless ys(y) intersects dsGf.

In the proof of the theorem F = F(δ) will always denote a function F: R + -• Z +

defined in a neighborhood of the origin such that F(δ) /* oo as δ \ 0. For such a
fixed function F we denote

Ub

ω:= U Ub

H. (5.6)
n>F(δ)

Tail Bound (Lemma 6.1). For any fixed permitted function F

= o(δ). (5.7)

While Sect. 6 is devoted to proving this statement we now prove the
fundamental theorem by also using the Tail Bound.

Proof of Theorem3.6. Fix ε x >0. Consider a family ^δ = {Gδ

iΆ^i^I{δ)} of
coverings satisfying the conditions of the theorem in a sufficiently small
neighborhood U(cdM) oϊx and fix a function F. Then we will say that Gδ is bad,
i.e. Gfe^i f f
(i) either it intersects more than one smooth piece of the singularities of TF(δ\

(ii) or it intersects not more than one smooth piece of the singularities of TF{δ) and
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there exists an s-face Es of Gf such that

μi(Gtn(Eψ^n Uic) < | μJGf), (5.8)

where ε3 will be specified later and Uic denotes the set of points in Gf whose local
stable invariant manifold intersects Gf correctly, see the definition just before
Theorem 3.6.

Otherwise we say that Gfe^δ (g stands for good, again), thus ^ = ^ u ^ .
We note that, in view of the transversality of the s-faces and the Γ-faces of the

parallelepipeds, which is uniform in U, there exist two constants 0 < c 4 < c 5 such
that the ratio of the μx-measure of each product-type set arising in the forthcoming
arguments and its "volume" calculated by multiplying the "volumes" of its factors
lies between c4 and c5.

Now, in view of Lemma 4.6, it is easy to bound the total measure of
parallelepipeds from $1 intersecting more than one smooth piece of the
singularities of TF{δ). Indeed, their total measure is, of course, o(δ) if F(δ) is
increasing sufficiently slowly.

From now on we shall fix such a function F and will only consider
parallelepipeds Gf intersecting not more than one regular piece of singularity of

In this case, by choosing U sufficiently small, we can assume that the order of
this piece of singularity, if it exists at all, is sufficiently large ( ^ n 0 , say), a fact that,
by Lemma 4.9, also implies that the angle of this piece of singularity, denoted by 01,
and of any ys(y): y e Gf is smaller than ε 2 !

Give first a lower bound for μ^GfniEψ1^), where Es is an s-face of Gf:

μί(Gfn(Eψ^) ^ c^δy-'δ^1 ^ c^\~ Vi(Gf), (5.9)

where c6r>0. Choose ε3 = ε3(εi) to satisfy 83<c6ε
d

1~
1.

The following observation is fundamental for the proof: by choosing ε2 = ^2^4)
sufficiently small, it will be true that

if, Gf intersects at most one regular piece of singularity of TF{δ) and for a yeGδ

with Gfe^g, ys(y) does not intersect Gδ correctly, then necessarily

y e (Gf n( J)[ε4<5])u(Gf n(3sGf)[ε4<5])u Ub

ω. (5.10)

For the proof of (5.10) see the method of constructing local invariant manifolds in
Lemma 5.4 and the statement of Lemma 4.9.

As we did above, it is simple to give upper bounds for the measures of the first
two sets appearing on the right-hand side of the previous inclusion. In fact,

5ε4δδ2d-2^^-μi(Gf) (5.11)

and
μΛGir\(dsGifεA ^)<2(rf — I ) c « ε 4 ^ ^ 2 d ~ 3 < — β\(Gδ) (5.12)

if only ε4 = ε4(ε3) is sufficiently small.
Observe first that, by (5.8), for Gf e <$* statement (I) of the Theorem is evident.
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Consider next a bad parallelepiped of type (ii) assuming that for some s-face Es

of Gf (5.8) holds. Then from (5.9-12) we obtain

But then

where the summation Σ is taken for bad parallelepipeds of type (ii). This chain of
inequalities, however, combined with the Tail Bound immediately implies that for
our F, too, Σ'μ1(Gf) = o(δ\ thus providing the necessary bound for £ f

Finally, by rethinking the proof, one can see that the parameters can really be
chosen in the way indicated there. Indeed, ε2 should be chosen as a function of ε4, ε4

as a function of ε3, and, conclusively, ε3 as a function of ε l 5 the parameter figuring
the theorem. Also, one can see that the neighborhood U(x) should be small as a
function of εx (to intersect singularity lines of sufficiently high order, only). Hence
Theorem 3.6.

6. Proof of the Tail Bound

The aim of this section is to prove

Lemma 6.1 (Tail Bound). For any function F(δ) such that F(δ) /Όo as δ \ 0,

μi(Ub

ω) = o(δ)

(as to the definition of Ub

ω see (5.6)J.

Proof of Lemma 6.1. The proof is based on the following simple

Lemma6.2. Assume that, for any δ>0, α ^ m ^ 0 , n,meZ+ is a double array of
numbers satisfying the following conditions:

(i) There exist numbers Am such that for every meZ+ and <5>0,

(ii) For every m e Z + ,

(iii)

lim Σ
<5->0,Λί->oo n^

Then

lim Σ Σ
-0,N->oo n^N m



556 A. Kramli, N. Simanyi, and D. Szasz

Proof of Lemma 6.2. Let η>0. By choosing M sufficiently large, we have
£ Am<η and, consequently,

m>M M

uniformly in δ and N. Fix M large and apply (ii): then there exist δ0 and No such
that for every m^M, δ^δ0, and N^N0,

Σ anm<

Thus, if (5^(5O and N^N0, then

Σ Σ<
Hence the lemma.
Choose (7 and Λ = λ~1 according to Lemma 2.13. Then, by Poincare

recurrence, almost every point of U infinitely often returns to U and, on U, we have
the uniform lower bound A for the expansion rate. Lemma 6.1 will be established if
we check the conditions of Lemma 6.2 for afιm = δ~x μ^Ul^), where

Ulm. = {yeU:z(Tny)<(κn,C3δ(y)Γ%δ and κHtC3άy)elΛn

9Λ
m+1)}.

(The reader is reminded that each of the sets U9, Ub, Ub

m U
b

nm depends on the
parameter δ.)

In fact, by Lemma 6.2,

^ Σ ΣμAub

nJ=o{δ).

In checking the conditions of Lemma 6.2 the following lemma will play a
decisive role.

Lemma 6.3. For every
b

n2,m = φ. (6.4)

Proof of Lemma 6.3. Assume that, on the contrary, there exists weTnιUb

num

nTn2Ub

2tn. Then, from the definition of l/Jj>w, we have necessarily

Γ B l w , T " " 2 w e l / , (6.5)
and also

KnucdT-">wlκΛ2teJT-">w)elΛm,Λm+1). (6.6)

But any Σ permitted in the definition of κn29C3δ(T'H2w) [cf. (5.2)] is also permitted in
the definition of κnuC3δ(T~niw) and, moreover, because of (6.5) the minimal
expansion rate of T(n2~ni) on the manifold TniΣ is at least A. This contradicts to
(6.6). Lemma 6.3 is proved.

Now by Lemmas 6.3 and 4.10,

κ»,Cί4(7—y
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thus immediately implying the fulfilment of conditions (i) and (iii) of Lemma 6.2.
Its condition (ii) will follow from our following lemma:

Lemma 6.7. For every meZ+ and every function F(δ)s oo (δ \ιθ) we have

Σ μi(KJ = o(δ).
n^F(δ)

Proof of Lemma 6.7. We use the following simple consequence of the Ansatz
(Condition 3.1): For almost every y e0t (with respect to the Riemannian measure
inSt)

lim/cM,0(T-w3;)=(X). (6.8)
n —• o o

Denote by 0ί the subset of those points of 01 where (6.8) holds. Since the subset
of those points of 0ί whose trajectory enters once more to 01 has v^-measure 0, we
can also assume that for points of 01 both semi-trajectories never enter 01 again
(cf. Lemma 4.1.)

Let now m e Z + be fixed. For every y e 0t there exists an n0: = no(y, m) such that

Then, because of the continuity of κnt0(T~ny), for every ye0t there exists a
neighborhood V1: = Vλ(y9 m) C dM of y such that, for every weVu

where no = no(y,m). Now, also by continuity, and by the definition of κnδ(y\ for
every y e J?, there exists a neighborhood V2: = V2(y, m) (C dM) oΐy and there exists a
positive number δ1: = δ1(y,m) such that for every δ<δί and for every weF2,

Finally, since κnδ(T~nw) increases in n, we also have that for every δ<δί9 every
w e V2 and every n ̂  nΌ,

Next we claim that for every ye0ϊ and every δ<(c3)~ίδί,

Indeed,

thus the claim holds true if n^n0, and c3δ<δ1.
Because of regularity, for every η > 0, there exists a compact subset Kη oiM such

that vjβt\K^ < η. Then, because of the compactness of Kψ one can choose a finite
subset {yu ...,yt}cKη such that

U
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implying the existence of a δη > 0 such that

/

i = l

We can assume δη^ min δ^y^m). Let Nη: = max no(yi9m).

Then, for every δ < —,

i

\J n,m \^

and hence

But, on the other hand

TnUb

n>mc{wedM\z(w)<c3δ}aM[C3δ]. (6.9)

Consequently, whenever c3δ < δψ we have

w>U TnUb

n,mC(M\Kηr>δK (6.10)

Now, by Lemma 6.3

and, moreover, by (6.10) the right-hand side is at most of the order
δ vM(&\Kη)<δ η whenever c3δ<δη. Hence Lemma 6.7 and simultaneously the
Tail Bound are proved.

7. An Application: Έrgodicity of Two Billiards

Originally, various forms of the fundamental theorem were proved for two-
dimensional dispersing billiards with a finite horizon [see S (1970), B-S (1973), G
(1975) and also K-S-Sz (1989-A)]. The efficiency of Chernov-Sinai type funda-
mental theorems is partially explained by the fact that they also cover the
multidimensional case without assuming the finiteness of the horizon. This is why
the Chernov-Sinai theory implies important new results for dispersing billiards,
too, namely their ergodicity (and, moreover, their K-property).

Theorem 7.1. Every dispersing billiard with QcΎd (d^2) and satisfying Condi-
tion 2Λ is a K-system.

We notice that the case Q C Rd, Q compact is also contained in this theorem.

Proof Denote by dM the extended boundary of the phase space M as introduced in
Sect. 2. Then the horizon is, of course, finite. It will be convenient to write dM as

i

U dMb where dMt is a smooth cell of dimension 2d — 2. Since the billiard is
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dispersing, every orbit which ever enters dM\d(dM) is sufficient. On the other
hand, the subset of points in dM whose trajectories hit singularities (S$) more than
once form a codimension 2 subset [see Lemma 4.15 in K-S-Sz (1989-C)]. For
dispersing billiards the regularity Conditions 3.2 and 3.3 are obvious. Assume the
Ansatz for a moment. Then Corollary 3.12 of the fundamental theorem combined
with the two aforementioned facts immediately implies that each dMt lies in one
ergodic component. Thus global ergodicity follows by connecting neighboring
dMfS with beams of trajectories of positive measure step by step. This can be done
since Q is connected.

Next we verify the Ansatz. We have to show that the orbit of v^-almost every
point of S$ enters (dM\S&t)n{(q, v)edM:Kq>0} (virtual walls are excluded!) at
least once in the past and once in the future. If the positive semitrajectory of a point
(q,v) never enters the previous set, then necessarily {q-\-tv(modΎd):t^0} is not
dense in Ύd. But it is well known (see e.g. Lemma 3.1.1 of K-S-F (1980) that then
vί9...9vd are rationally dependent, i.e. there exist integers nu...,nd such that

Consequently, for any fixed q, the velocities for which {q + it; (mod T*): t ̂  0} is not
dense in Ύd form a countable union of codimension 1 submanifolds in 5d_1 and
thus their subset (cSd-ί) has measure 0. Therefore, by Fubini's theorem, the
Ansatz follows. Hence the theorem.

An interesting particular case of the previous theorem gives the K-property of
two-billiards. Consider the dynamical system of two elastic balls of radius R given
on the v-torus Ύv: v ̂  2 whose motion is uniform with elastic collisions. Assume the
conservation laws have the form

7 7 ( 7 2 )

t; 1 +f 2 = O, vf + V2 = i,

where (^, 1;̂) are the phase points of the balls (i = 1,2). Then it is easy to see that the
system of two balls is isomorphic to a dispersing billiard whose phase point is

(Qu VI) a n d whose phase space is Q x —= Sv_ l9 where Q CTV can be obtained as the
subset of Tv satisfying 1/2

distTv(^l9 — qί)^2R (7.3)

(hard core condition!).
Equivalently saying we obtain Q by cutting out from Tv 2V spheres of radius R.

If v ̂  5 then Q is connected provided R < 1/2; if 2 ̂  v ̂  4, then β is connected for

R < *——— but Q contains 2V connected components for R > *—-—. In any case,

the corresponding billiard system is a dispersing one, satisfying Conditions 2.1 and
3.1-3, and we have

Theorem 7.4. The system of two billiard balls of radius R on T v restricted to the

phase space defined by the conservation laws (7.2) and the hard core condition (7.3) is

(i) a K-system if v ^ 5 or 2 ^ v ^ 4 and R< ^—-—
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(ii) a K-system on each of the 2V connected components of the phase space z/ 2 ̂  v ̂  4

and
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