
Communications in
Commun. Math. Phys. 129, 525-534 (1990) MathΘΠΓiatlCal

Physics
© Springer-Verlag 1990

The δ-Operator on Algebraic Curves

Jochen Brϋning, Norbert Peyerimhoff, and Herbert Schroder
Institut fur Mathematik, Universitat Augsburg, Memminger Strasse 6,
D-8900 Augsburg, Federal Republic of Germany

Abstract. For a singular algebraic curve we show that all closed extensions of
d are Fredholm, and we give a general index formula. In particular, we prove
a modified version of a conjecture due to MacPherson.

1. Introduction

Let M be a Kahler manifold of complex dimension m and denote by Ωp>q(M)
and Ω$q(M) the space of smooth complex valued forms of type (p, q) on M
and the subspace of forms with compact support, respectively. The Dolbeault
complex

0 -> Ω$°(M) Λ Λ β£w(Λί) -> 0 (1.1)

is well known to be elliptic. If M is compact the cohomology, H°> *(M), is finite
and the index,

χ ( M ) : = Σ ( - l ) « d i m ί ί * « ( M ) , (1.2)
q>0

is called the arithmetic genus of M (cf. [H]). If M is not compact one can use
the Hubert space structure induced by the metric to define

:= fωeΩp>q(M) \ ίωΛ*ω<oo, ίδωΛ*aω<oo\. (1.3)
^ M M J '

Here the Hodge * operator on real forms is extended as an antilinear map. This
leads to another complex

0 -> Ω*°(M) Λ Λ Ω^(M) - , 0, (1.4)

the cohomology of which is called the L2-δ-cohomology, H^*(M). It is natural

to ask for conditions on M which ensure the finiteness of H^ (M). If this is
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guaranteed one wants to compute the cohomology groups or at least the index
of the complex (1.4),

χ(2)(M) := £ ( - l ) « dimH$(M), (1.5)
q>0

which we refer to as the I? -arithmetic genus of M. A particularly interesting
case arises if M is the nonsingular locus of an algebraic variety equipped with
the Fubini-Study metric. In this case MacPherson conjectured [McP] that for a
suitable resolution M of M

χ ( 2 )(M) = χ(M). (1.6)

To attack this problem it is convenient to reformulate it as an index problem
for a single elliptic operator. If dr denotes the formal adjoint of 8 then we define

D : = H a ' : φ Ω j 2 p ( M ) ^ 0 Ω o

w l ( M ) . (1.7)
P>0 p>0

It is easy to see that D is elliptic. We define a closed extension of D as follows:

denote by A^P(M) the completion of Ω^(M) under the Hubert norm and by

Dp the maximal closed extension of d as an operator in A°>P(M) with values in

A°>P+1(M). Then we put

D :
p>0 p>0

(ω0, co2? . . . ) | - > (D0ω0 + D*ω2, . . . )• (1-8)

It is then easy to see that D is a Fredholm operator if and only if the L?-d-
cohomology is finite, and in this case

mdD=χ{2)(M).

It is reasonable to expect that an index formula for D will have an interior
contribution (suitably regularized) as in the compact case plus certain contri-
butions from the singularities. Therefore, there is no a priori reason why (1.6)
should be true. On the other hand, since D will in general possess many closed
extensions there may be a closed extension different from D with index equal to
χ(M) for suitable M. The purpose of this note is to illustrate this phenomenon in
the simplest case when M is an algebraic curve. Our main results (Theorems 3.1,
4.1, 4.2 below) will show that for curves all closed extensions of D are Fredholm
operators and that the index of the minimal extension, D, equals in fact χ(M),
where M is the resolution of M. D, however, is the maximal extension of D which
has a larger index if M is singular. Thus (1.6) is false as stated and it remains to
be seen what a correct substitute could be in general. In the curve case at least
we should replace the left-hand side of (1.6) by indϊ> = indδmin.

The incorrectness of MacPherson's conjecture has been observed before by
Pardon [P]. He also gave a sheaf theoretic formula for indD = i n d δ m a x which is
equivalent to our Theorem 4.2.

Our approach does not use sheaf theoretic methods at all and is purely
analytic. It relies entirely on the analysis of regular singular operators developed
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by R. Seeley and the first author, in the general form given in [B]. It is conceivable
that a suitable extension of our methods will be able to handle more general
cases.

2. Algebraic Curves

An algebraic curve M is a one-dimensional subvariety of CP n . We assume that
M is irreducible. Via the resolution process we can always think of M as the
image of a nonconstant holomorphic map

π : M - > C P " , (2.1)

where M i s a compact Riemann surface. If Σ denotes the singular locus of M
then Σ = π{q e M \ dπ(q) = 0} U {p e M | $π-ι(p) > 1}, and Σ is a finite set.
For p G Σ let π~ι{p) = {qu •••, Qr(p)} Then we can find neighborhoods U of p
and ϋi of q\ such that

and for i φ j
UiΠUj=φ, π(Ui)Ππ(Uj) = {p}.

It follows that π maps Ut := Uϊ\{qi} biholomorphically to U* := π{Όt) and

Thus M decomposes near p into r(p) branches. We introduce a convenient
parametrization of each branch as follows. Near q e π~1(Σ) choose a holomorphic
chart (U, ψ) with ψ(U) = Dε := [z e (C | \z\ < ε} for some ε > 0, and near p
choose homogeneous coordinates [Zo, ..., Zn] in C P n such that p = [1, 0, ..., 0],
Then we have

π oψ-\z) = [1, Pγ{zl ..., PΠ(z)], z G DB9 (2.2)

with Pj holomorphic in Dε. Moreover, by change of coordinates we may assume
that for some k, 1 < k < n,

Pί(z) = 0, 1 < i < k - 1,

J>N,

where 1 < Nk < AΓfc+1 < < AΓn. Put N(q) := Nk and call

N(p) := Σ Nfa) (2.4)

the multiplicity of p. As an example, consider the zero set, M, of the homogeneous
polynomial

F ( Z o , Z i , Z 2 ) = Z o Z 2

2 - Z 1

3
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in (CP2. The only singular point is p = [1, 0, 0] and the resolution is given by

M = <EP\ π([Z0, Zi]) = [Zo

3, Z0Z
2, Z\\.

Thus r{p) = 1, Nip) = 2.
The Fubini-Study metric on <EPn induces a Kahler metric on M\Σ, hence a

Kahler metric on D* := Dε\{0} via π o \p~ι. If Wj = Z, /Zo, 1 < i < n, are local
holomorphic coordinates for C P " near p = [1, 0, ..., 0] then the Fubini-Study
metric is given by the positive (1, l)-form

(2.5)

For simplicity, denote the induced (1, l)-form on M\Σ also by ω; note that ω is
the volume form. Writing

ω : = ( π o φ ι)*ω =: ^-—^hdz Adz, (2.6)
2

one calculates that

ft(z, z) = iV(^)2 |z|2 i v (^-2 + O(|z|2Ar(ί j)) (2.7)

3. The δ-Operator

For m = 1 the Dolbeault complex (1.1) becomes

0 -> Ω^iM\Σ) Λ ΩlΛiM\Σ) -» 0 (3.1)

and 3 coincides with the operator D in (1.7). To investigate the Fredholm
properties of d using the methods of [B] we have to choose a suitable normal
form of d near Σ. To do so we consider a local parametrization

ιp = πoψ-i :D* ->£/*, φ-^O) = q e π'^Σ), (3.2)

of some branch of M near p £ Z, as in Sect. 2, and we want a suitable unitary
transformation for

d : Ωo' (C/*) —> Ωo' (C/*).

We transform first to the space L2(D*, dx Λ rfy) using the maps

[with /i defined in (2.7)] and

O'°(Γ>

| and

•Ω0'1

(t/

9 / H+ (/l-1/2

f°V€Ω0°>;

(1/

• ) .

(3.3a)

(3.3b)
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We compute
r

w~ι Λ*(/

u*
= / (h~1\f\2)oψ~1ω= h~ι\f\2ψ*ω

ψ(D*) D*

= [\f\2dxΛdy

and

Wfdz\\2

ΩoΛ{uΊ = [fdzΛ*fdz = j\f\2\dz\2ω

u* u*

= ί\foψ\2h-1ώ= [\foψ\2dxΛdy.

Thus Φo and Φ\ are unitary, and for / e ΩQ'°(D*) = Cff{D*) we obtain, since ψ
is holomorphic,

:= Φ1~dΦof = Φιd(ψ-ι)*(h-ί/2f)

*= ψ
yuz j

(3.4)

To bring this to a "regular singular" form we use a further transformation. From
(2.7) we have with h{ e C°°([0, ε] x S1)

h(r9 φ)1 / 2 = NrN~ι + rNh\(r, φ), (3.5)

where N := N(q). We introduce for ε small

χi : (0, ε) x S1 3 (r, φ) ι-> (x(r), φ) e (0, εN(^) x Sι, x(r) = rN ( i ) . (3.6)

We write δ := εN^. Denoting by χ2 the diίfeomorphism defining polar coordi-
nates,

X2 : (0, ε)xSι ^ Dε* ,

we obtain a diίfeomorphism

X'^XioχT1
 : ( 0 , « ) X S U D ; ,

Clearly,

Φ2 : Cg°((O, (5) x 51) 3 f ι-» (detDχ-1)172/ o χ"1 G C5°(D*)

is unitary. To compute

D2 :=2e~y/~ϊφΦ21DιΦ2 (3.7)
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we need d on functions in polar coordinates (r, φ),

1 = ̂ + ^ 4
and the relation

detDχ- 1 (z)=ΛΓ|z | J V - 2 . (3.9)

Then we find for / € q°((0, δ) x S1) s Q°((0, <5), C 0 0 ^ 1 ) ) , computing in polar

coordinates (r, φ) in D*,

, φ) = U + ^-dΛ (VNrN'2-ιh(r, φ)-χ/2f(x{r), φ))

r^Hr, <?ΓI/2fV, ψ)

= : (detDχ-ψ2(r, φ) [ β o f ' l of1

+ b o χ 1VZϊj- ° X * + c o χ ιf o χ ι (r, φ)

or

D2f(x, φ)= Uj-+ bλί-ίj- + c/ j (x, φ). (3.10)

Next we have to compute the asymptotic behavior of the coefficients α, b, c as
x —> 0. Using (3.5) we obtain

α(x, φ) = Nx^'Xhix1'*, φ)~1/2 = : 1 + x 1 / % ( x 1 / ^ , φ), (3.11a)

6(x, φ) = x~1/iV/z(x1/N, φ ) " 1 / 2 = N ^ x " 1 +x 1 / J V - 1 6i(x 1 / N , φ), (3.11b)

coX-
l(r, ψ) =: rι-N'2^:(rN/2-1N-1rι-N+rN<2-ι+2-Nh2(r, φ))

thus
c(x, φ) = - i x - 1

 +χ1/iv-ici(χi/iv) φ)

where au bu a e C°°([0, ε] x S1).
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We are now in the position to apply the results of [B]. For each p e Σ we
choose neighborhoods Up9 Upi as above and we put

U :=\JUΪ> M i =M\U.
peΣ

Putting together the unitary transformations (3.10) for all Upi we write R :=

Σ r(p) and denote by S^ the disjoint union of R copies of Sι. Then the operator
pel

(3.7) acts in H := L2([0, δ]9 L2(S{

R)) with domain Cg°((0, 5), C°°(S£)), and we can
write it in the form

D2 = : Bγ{x)dx + x-^So + Si(x)). (3.12)

Here

2*i(x) is multiplication by α(x, •) in each L2(Sι), (3.13)

peΣ
qen~l{p)

^ - i , (3.14)

= T δ φ + x 1 / i vci(x 1 / i v, φ) on each L2(Sι). (3.15)

With Hi := H1(Sp)i the Sobolev space of order 1, So is self-adjoint with domain
Hi, and the assumption (3.1) in [B] is satisfied for 17* and the isometries
constructed above. From (3.11b,c) we obtain (3.6b) in [B], with δ = I/A/", which
we need since — \ e spec^o Using (3.11a) we verify loc. cit. (3.6b, c) with the
same δ. The remaining assumptions are obviously satisfied.

Theorem 3.1. All closed extensions of d, with domain in A°>°(M) and range in
AOil(M), are Fredholm operators. With dm[n and dmax denoting the minimal and
maximal extension, respectively, the closed extensions correspond bijectively to the
subspaces of the finite dimensional space

W :=@(dmax)/@(dmin). (3.16)

Ifdy is the closed extension corresponding to V a W then

ind dv = ind 5m i n + dim V . (3.17)

Proof In view of the preceding discussion this follows from Theorem 3.4 in [B].
Note that with π : ^ ( δ m a x ) -» W the canonical projection we have 3f(dγ) =
π~ι(V) and dv = dmax \ @{dv). D

4. The Index Formula

We shall now follow the outline in [B, Sect. 4] to compute the index of dm{n and

^max

Theorem 4.1
ind am i n = χ(M).
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Proof. We would like to apply [B, Theorem 4.2] but the assumption (4.1), i.e.
§ι(x) = 0, Bι(x) = I near x = δ, is not necessarily satisfied. To achieve this we
choose φ e C£° (R) with 0<(/><l,</> = l i n a neighborhood of 1, and φ(x)=0 if
x £ ( |, \). Then we deform /z1//2, simultaneously on all branches near all singular
points, by putting locally near q (on U2&)

ht{r, φ)1/2 :=(1 - φ{r/ε))h{r, φ) 1 / 2 + φ{r/ε) (th(r, φ)1'1

+ (l-t)N(q)rN{q)-1), te [0, 1]. (4.1)

This defines a family of operators, Dt) on @(dmin) which is continuous in view of
(3.4). On the other hand, the arguments of Sect. 3 show that all operators Dt are
Fredholm so

ind <9min = ind D{ = ind Do. (4.2)

Thus we obtain the situation required in loc. cit. where we have

0 0 (4.3)
peΣ qeπ~ι(p)

acting in the direct sum of R = Σ r(p) copies of L2(S{). Clearly,
peΣ

spec So = U {N(qΓlk-l/2\keZ}. (4.4)
peΣ

qeπ~ι{p)

Thus spec So is symmetric with respect to the origin and the η -functions ηs0

vanishes identically. Furthermore, it is readily seen that

i d i m k e r S o + £ dim ker (So - s) = £ (N(q)-ί)/2. (4.5)
-l/2<s<0 peΣ

qeπ~ι(p)

To compute the last ingredient of the index formula we need to know the
"index form" ωDo. Now changing h to ho in (4.1) amounts to a conformal change
of the original metric. The new metric is also Kahler so we can compute ω#0

by heat equation methods. The local version of the Atiyah-Singer index theorem
in this case (cf. [Gi, Theorem 3.6.10]) gives (with T'M the holomorphic tangent
bundle)

= l;Ci(T'M).

It is well known that (cf. e.g. [G+H])

where Ko is the Gauβ curvature and ωo the volume form of M for the metric
with conformal factor ho. So we end up with

(4.6)
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Now we derive from [B, Theorem 4.2] and (4.2), (4.5), (4.6),

-\ [ 1 v^
inddmin = (4π) / K$(DQ — - > (N(q) — 1). (4.7)

J 2 *—'
qen~l(p)

It remains to evaluate the integral on the right-hand side in (4.7) which we do
using the GauB-Bonnet Theorem for surfaces with boundary (cf. e.g. [dC, p. 274]).
It follows that

/

I 1 v—i ί

ô&>o = ~Xe(Mι) — — V / Kn, (4.8)
2 ^ ^ J

qeπ~ι(p)

where χe denotes the Euler characteristic and κg the geodesic curvature of cq.

Computing κg in polar coordinates on D* (cf. [dC, p. 252]) we find

hence

(An)'1 ί Koωo = ^χe(Mι) + \z Σ N(P) ( 4 9 )
Ml

Now we observe that

= l-χe{M) = \ \χe(M) + Σ(r(p) ~ 1)
L pel

peΣ

qeπ-ι(Σ) J

= ind 3min,

Where we have used (4.9) and (4.7) for the last equality. The proof if com-
plete. D

Theorem 4.2.

indθmax = χ(M)+ £ (N(q)-l).
peΣ

q£π-ι{p)

Proof. In view of Theorem 3.1, in order to calculate indδ m a x it is enough to
determine the dimension of W, the space of boundary conditions. To do so, we
only have to observe that

Wmin) = ^max
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and that our method applies to df as well. In fact, since all our transformations
are unitary it is easily checked that —df satisfies the assumptions of [B, Theorem
4.2] with

ω_-d> = - ω - d ,

pel qeπ-^ip)

Thus we obtain from loc. cit. Theorem 4.2,

ind(-<9max) = i n d ( - ^ i n ) * = - i n d ( - ^ i n )

\ ί 1 v̂
= — / ω_-d, — - dim ker SO — ^ dim ker (So - s)

LMi 0<s<l/2 J

= / ω~d — - (dim ker So + V dim ker (So — s)

M, -l/2<S<0

+ ^ dim ker (So-5)

M<l/2

= indδ m i n + ^ dim ker (So-s) . D (4.10)

Remark. Formula (4.10) always holds under the assumptions of [B, Theorem
4.2], by the arguments given above.

Acknowledgement. The first author is indebted to the VW-Stiftung for support during the preparation
of this work.

References

[B] Brϋning, J.: L2-index theorems on certain complete manifolds. To appear in J. Differ. Geom.
[dC] doCarmo, M.: Differential geometry of curves and surfaces. Englewood Cliffs, NJ: Prentice

Hall 1976
[Gi] Gilkey, P.: Invariance theory, the heat equation, and the Atiyah-Singer index theorem.

Wilmington, DE: Publish or Perish 1984
[G+H] Griffiths, P., Harris, J.: Principles of algebraic geometry. New York: Wiley 1978
[H] Hirzebruch, F.: Neue topologische Methoden in der algebraischen Geometrie. Berlin, Gottin-

gen, Heidelberg: Springer 1956
[McP] MacPherson, R.: Global questions in the topology of singular spaces. Proceedings of the

International Congress of Mathematicians, August 16-24, 1983, Warszawa, Vol.1, pp. 213-
235. Warszawa: Polish Scientific Publishers 1984

[P] Pardon, W : The L2-5-cohomology of an algebraic surface (to appear)

Communicated by A. Connes

Received July 27, 1989




