Communications in
Mathematical

Physics

© Springer-Verlag 1990

Commun. Math. Phys. 129, 481-509 (1990)

Integration on the n"™ Power of a Hyperbolic Space
in Terms of Invariants Under Diagonal Action
of Isometries (Lorentz Transformations)

Bent Fuglede
Matematisk Institut, Kgbenhavns Universitet, Universitetsparken 5, DK-2100 K@#benhavn ¢, Denmark

Abstract. The integral of a function over the n’th power of hyperbolic
d-dimensional space H is decomposed into integration along each orbit under
diagonal action on H" of the isometry group G on H, followed by integration
over the orbit space, parametrized in terms of a complete set of invariants. The
Jacobian entering in this last integral is expressed explicitly in terms of certain
determinants. When viewing H as a half-hyperboloid in R?*?, G is induced by
the homogeneous Lorentz group O'(1,d) acting on R?*1.
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Introduction

We shall consider a problem which enters in connection with the study of tensor
products of certain representations of the Poincaré group and the Lorentz group.
These particular representations occur for example in the study of a free scalar
quantum field in Fock space, see e.g. Bogoliubov, Logunov and Todorov [1].
The problem is to give an explicit formula for the decomposition of an integral
over the n'™ power of hyperbolic d-dimensional space into integrals along the orbits
under diagonal action of the isometry group G on that space followed by an
integral over the orbit space, parametrized in terms of a complete set of invariants.
It can be shown that there is an integral formula of this kind in the case of
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isometric action on any Riemannian manifold. Our main purpose, however, is to
determine explicitly the relevant measure du on the orbit space via the stated
parametrization. For n > 1 this measure seems to be known explicitly only in the
simple case n =2, cf. [1, Sect. 8.2]. In the present paper we shall treat the case of
an arbitrary number of “particles” n.

The explicit determination of the stated measure du does not seem to be
facilitated appreciably by drawing on the general integral formula alluded to above.
We have therefore preferred to give a self-contained presentation, including a
discussion of the invariant theory of the diagonal action in question (Theorem 1.1).

It turns out that the orbit space is a smooth manifold also in the non-trivial
case n>d + 1 (Theorem 1.2). This result is not essential for the determination of
the measure du in suitable local coordinates (Theorem 2 and 3), but it enters
naturally in a unified and permutation invariant presentation (Theorem 4).

Taking, e.g., d = 3 we use the well-known representation of hyperbolic 3-space
as the half-hyperboloid

H = {(xy,%3,%3,%4)€R*|x} —x3 —x] —x2 =1, x; >0},

endowed with its natural hyperbolic Riemannian metric as induced by the
pseudo-Riemannian metric — dx} + dx3 + dx3 + dx3 on R*, and the corresponding
volume measure dH. The isometry group G is then induced by the homogeneous
Lorentz group O'(1, 3) acting on R*. The corresponding diagonal action on H" is
defined by

9(P1;---,Pa) =(9P1,---,gPn)s  9€G, 1)

as (py,...,p,) ranges over H". For this action we obviously have the invariants
a;; = coshdist (p;, p;) = p;'pjs )

where p,,...,p,€H denote the positions of the n particles, dist denotes hyperbolic
distance, and p;-p; is the Lorentz inner product of p; and p; as vectors in R*. This
set of invariants is complete. Since a; = 1 and a;; = a;; (2 1), it suffices to let i < j,
but even so there are relations among the a;; if n> 4.

Let H’, denote the open subset of H” consisting of all n-tuples of maximal rank

tk (py,...,p,) =r:=min{n,4}. 3)

Then H™\ H, has measure 0 with respect to the product measure dH" on H". To
each n-tuple (p,,...,p,)e H} we assign the symmetric n x n matrix 4 = (a;;) given
by (2). The range of the mapping (p;,..., p,)— A is the class &7, , of all symmetric
n x n matrices A = (a;;) with a; = 1, a;; 2 1, positivity index: ind . 4 = 1, and rank:
rk A =r from (3). The pre-image of each Ae.«, , is an orbit under diagonal action
of G on H; this expresses the completeness of the set of invariants (2). The diagonal
action is bijective on each fibre if and only if n > 4. When n < 3 one must factor
out from G the orthogonal group O(4 — n) in order to obtain bijective action on
the fibres. (Theorem 1.1.)

The matrix class ., 4, thus representing the space of orbits in H" under diagonal
action of G, is a (real-)analytic manifold of dimension

N=(@r—1)(n—1r)
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(=3n—6 if n>2) embedded in the Euclidean space .#, (= R""~Y/2) of qll
symmetric n x n matrices with diagonal entries 1. When n <4, ,Q/,,,‘, is simply an
open set in ./, but when n > 4 the manifold <, , has codimension (n — 3)(n — 4)
in ./ ,; this codimension is the number of relations between the invariants a;;,i < j.
(Theorem 1.2))

The main result may now be stated as follows, using a suitable normalization
(see Sect. 1) of the invariant measure on G (Theorems 2, 3, and 4).

Theorem. There exists a unique positive measure du on the N-dimensional manifold
& 4 (representing the orbit space) with the property that, for any integrable function
fon H",

J i = Idu(A)ff(gpl(A) - gp.(A))dg,

n 4
where A—(p,(A),...,p.(A4)) denotes an arbitrary selection of n-tuples of points of H
such that, for any A = (a;;)€ 4,

Pi(A)’Pj(A) = G;;.
For n £4,du is given as follows in terms of Lebesgue measure dA on the open set
A4t
du=c,|det A|®~"2d}, di=dA=[]day. 4)

i<j
In the present case of d =3 space dimensions we have (denoting by w, the “surface
area of the unit sphere” in R¥)

ci=1, c,=w3=4n, c3=w;0,=8n% c4=w;0,0,= 1612

For nz 4, du is given as follows when using as local coordinates in the manifold
o, 4 the entries to the right of the diagonal in the first 3 rows of matrices Ae A, 4:

"l;[ LRV ldetAa kl

da:j, ©)

where

411 Gy G133 Ay

dz1 Qzp Q43 Ay
A3;k =

a3y dzp; 433 Az

Ay Ox2 Gz Gix

with ay, = Gy, G = 1.

The measure du of the theorem is of course invariant under simultaneous
permutation of rows and columns of matrices A of class &, , (corresponding to
permutation of the particles p,,.. ., p,). Note that the two expressions for du coalesce
if n =4, and that, in any case, only determinants of order r = min {n,4} occur. For
n=2 we obtain du =4n./1 — a?, da, ,, in agreement with [1, Sect. 8.2]. Forn=3
we get du = 8n2dA = 8n’da,,da, da,;.

The key to this result is the determination in Lemma 2.1 of the hyperbolic
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volume element dH(p) in a half-space H* in H (and similarly in lower dimensions),
using as parameters for the variable point p = p, the numbers a;, = p;'p,, where
pi,i=1,2,3, denote 3 prescribed points of the bounding hyperplane dH*:

dH(p) = da,,day,day,,

1
/ldet A]

the symmetric matrix A of class &/, 4 having the entries
a;=pip; (j=1,...,4).

A further ingredient in the case n <4 is the following known formula (and its
lower-dimensional analogues), entering in the proof of Lemma 2.2:

N/ |det 4]
e, A3=(a)ij=1,2,3
ldCtA3| 3 ()1123

where g, denotes the hyperbolic distance between p=p, and the hyperbolic
hyperplane through p,, p,, ;.

The rest of the proof of the above theorem is largely a matter of putting things
together, using Fubini’s theorem, invariance of Haar measure, and performing
induction with respect to n. Actually, the whole analysis will be carried out in
arbitrary dimension d =1,2,... in place of d =3 as above.

In Sect. 5 we mention the completely analogous case in which the hyperbolic
d-space H in R?*! is replaced by the unit sphere S in R‘*!. And in Sect. 6 we
treat the intermediate case where H is replaced by Euclidean d-space E (endowed
of course with the group of Euclidean isometries). In this latter case the invariant
parameters a;; = a;; are defined in terms of Euclidean distance, dist, by

sinh g, =

a;j= $dist (p;, Pj)zs

cf. Menger [4] and Schoenberg [5]. In (4) and (5) above, each determinant should
be replaced, in the Euclidean case, by the sum of all its minors.

1. Parametrization in the Hyperbolic Case

As a model of d-dimensional hyperbolic space H = H, (d = 1) we shall take the
upper sheet of the hyperboloid in R**! with equation x-x = 1:

H={xeR"*!|xx=1, x,; >0},

where
d+1
Xy=X1J1 —kz X1 Vi
=2

is the Lorentz inner product of two vectors X = (xq,...,Xg+q)and y=(yy,..., Va+1)
of R¥*1. For x, yeH we have
x+y = coshdist(x, y),

where dist refers to hyperbolic distance.
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In this model a hyperbolic k-plane is the intersection (if non-empty) of H and
a(k + 1)-dimensional linear subspace of R?* !, Points of H are said to be independent
if they are linearly independent as vectors in R?*?,

The group G of isometries of H is induced by the Lorentz group 0'(1,d), that
is, the linear self-mappings of R** ! which preserve x-x and map the upper light-cone
{xeR**!|xx =0 A x; >0} onto itself.

For any peH consider the fixed-point subgroup

G[p]l={geGlgp = p}.

Then G[p]=~O0(d) (clear for p=(1,0,...,0), and hence for any peH via a
transformation from G). The mapping which takes a left coset gG[p] into gp is a
bijection of G/G[p] onto H.

More generally we consider for any independent points p,,...,p,eH the
following subgroup of G (isomorphic to O(d + 1 —k) if k > 1):

Gpy»--., 2 )=1{9€Glgp, = p1,-- ., GPx = Pi}- (6)

On every compact subgroup of G we use normalized Haar measure (total
mass equals 1). On G itself (which is likewise unimodular) we normalize Haar
measure so that the above bijection G/G[p] — H becomes measure preserving for
one and hence for any choice of pe H. The invariant measure on H in question is
the volume measure derived in the usual way from the (hyperbolic) Riemannian
metric on H, which is induced by — ds?, where

d+1

ds? =dx?— Y dx}
k=2

is the pseudo-riemannian Lorentz metric on R?*?.
The surface area of the Euclidean unit sphere in R* is denoted by

272
TRy
and we write @y =1 and
By = Wy _ 1 Dy 7

(This number @, arises as the total mass of Haar measure on O(k) in an alternative
and geometrically perhaps more natural normalization of that measure, in view
of the fact that the homogeneous space O(k)/O(k — 1) can be identified with the
unit sphere in R)

Definition 1. For any neN we denote by 7, the class of all symmetric matrices
A=(a;), i, j=1,...,n, for which a; =1, a;; 20, and

ind, A=1, ind_A=n-1,
and hence rk A = n. Replacing the condition ind_ A =n—1 by
ind_ A=min{n—1,d},

we obtain instead a class which we denote by &/, 4. ;.
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Thus o, 4., =4/, if n=d+ 1. Here ind,,ind_, and rk stand for positivity
index, negativity index, and rank, respectively. For brevity write
r=min{n,d + 1}. (8)
For any Aes/,,,, we clearly have tkA=r and a;;=1, the latter because
aua;;—a}; <0 as a consequence of ind, 4 =1.

1] =
Any principal k x k submatrix B of a matrix A4 of class &/, is of class «/,. In
fact,ind . B = 1 because the diagonal entries of B are 1, and ind _ B = k — 1 because
a hyperplane of negativity for 4 intersects R* (< R") in a hyperplane of R* or in
all of R,
For any Ae«/, we clearly have

(—1)y""*det4 >0, 9)
and hence a;a;; — a? <0, that is

a;>1 for i#j. (10)
Lemma 1. Consider a matrix Aes/,. In order that the bordered (n+ 1) x (n+ 1)

matrix
X1

A
A(x):=< . x), x=|: |eR",
x 1
x”
be of class o, ., it is necessary and sufficient that x belongs to the solid, open
half-hyperboloid
H'(A) = {xeR"|(— 1)"det A(x) >0 and x >0}
={xeR"|x'A"'x>1 and x > 0},
where x >0 means x; >0 for i=1,...,n; and superscript t denotes transposition.
Proof. An elementary calculation shows that, for any n x n matrix A4,
det A(x)=(1 —x'A"*x)det 4,

whence the two expressions for J#'(A) represent the same set in view of (9). If
A(x)esf,,, then each x;> 1 by (10), and (— 1)" det A(x) >0 by (9). Conversely,
this latter inequality implies ind_ A(x)=n since the alternative ind_ A(x)=
n—1(=ind_ A) would lead to the contradiction (— 1) ' det A(x)>0. MW

The boundary 0.#°(A) is one of the sheets of a hyperboloid centered at 0 and
having the tangent hyperplane x; = 1 at the point a;e 3¢ (A4) given by the i'® column
of A (recall that a;=1). It can be shown that the half-hyperboloid 9.¢°(A4) is
characterized by these properties.

Corollary. In order that a symmetric n x n matrix A =(a;;) with entries >0 and
diagonal entries = 1 be of class <, it is necessary and sufficient that

(— 1)} 1det A, >0, k=1,...,n

where A, denotes the submatrix of A formed by its first k rows columns.
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Let H), denote the subset of H" consisting of all n-tuples (p,,...,p,) of points
of H = H, of full rank, that is,

tk(py,...,p,) =r(=min{n,d + 1}).

If n<d+ 1, H, consists of all independent n-tuples (py,...,p,) of points of H.
We proceed to show how the matrices of class <7, ;. serve as invariants of
H’, under diagonal action of G. In terms of the (d + 1) x (d + 1) matrix

E=E,, ,=diag(l,—1,...,—1)

we associate with each n-tuple (py, ..., p,)e H} (identified with the (d 4+ 1) x n matrix
P =(p;;) having p,,...,p, as columns) its “hyperbolic Gramian”

A=PEP
with entries (invariant under diagonal action of G)
a;;=p;'p;= coshdist(p;, p;) 2 1, (11)

where dist denotes hyperbolic distance in H. In particular, a; = 1.

The former part of the following theorem implies that the set of invariants (11)
is complete: Every function f(p,,..., p,), defined on H}, and invariant under diagonal
action of G, is a function of the invariants p;-p;, i < j. (See also the corollary to
Theorem 1.2.)

Theorem 1.1. For any n the map (py,...,p,)—(Di'Pj)ij=1....,n IS a surjection of HY
onto L, 4. 1. Each fibre (= pre-image of some Aesl, . ,) is an orbit in H, under
diagonal action of G, cf. (1).

If n=d+ 1, the diagonal action of G is bijective on each fibre. If n<d, the
diagonal action of G/O(d + 1 — n) is bijective on each fibre.

Proof. We begin by showing that the symmetric matrix A = P'EP is of class o/, 4. ,
for any P =(py,...,p,)e HY. Consider first the case n =2 d + 1, i.e.,r =d + 1 (cf. (8)),
and write

E,, =diag(l,-1,...,-1,0,...,0)

with r — 1 entries — 1 and n —r diagonal entries 0. If P =(p,,...,p,) belongs to
H’, we may adjoin n— r further rows to P so as to obtain a non-singular n x n
matrix U. Clearly

A=PEP=UE,,U

hasind, A=ind, E,,=1,ind_A=ind_E,,=r—1=min{n—1,d}, and so A€, 4+,
invoking also (11). The case n < d + 1, where r = n, reduces immediately to the case
n=d+ 1 because we may assume via a Lorentz transformation that p,,...,p, lie
inthex,,..., x,-spacein R**! and hence equally well on the hyperboloid H,, _ , in R".

Conversely, if Aeo/, 4.1, the above argument may be reversed. In the case
n=d+ 1 there is a non-singular n x n matrix U such that U'E, ,U = A, and we
merely have to cancel the last n —r rows of U to be left with a (d + 1) x n matrix
P=(py,...,p,) satisfying p; p; = a;;. Since a;; = 1, each p; belongs to H U(— H); and
since a;;> 0, p,,...,p, all lic on the same sheet H or — H. If they are on — H just
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replace P by — P. The case n<d+ 1 reduces to the case n=d+1 via the
identification of R" with a subspace of R?*! as above.

Next we note that the pre-image of any Ae#, 4., under the map P— P'EP
of H} onto &, ,,, is an orbit in H}, under diagonal action of G (or just of
G/0(d + 1 —n) if n £d, cf. below). This expresses the well known property that the
hyperbolic space H, is n-point homogeneous for every neN. For any two n-tuples
(pys-..,pn) and (qy,...,q,) in H} we must show that there exists geG satisfying
gp;=gq,for j=1,...,nif (and only if) p; p; = q;-q; for all i, j=1,...,n. First choose
h,e€G so that h,p, = q,, next (if r > 1) h,eG[q,] (= O(d)) so that h,h,p, = q,, etc.,
and finally h,eG[q,,...,q,_,] so that g:=h,h,_, ---h, takes p, to gq,. We have now
achieved thatgp; =g forj=1,...,r.fn<d + 1,ie,n=r,wearedone. Ifn>d + 1,
then r=d+ 1, and geG, as constructed, satisfies automatically the remaining
conditions gp; =gq;, j=d +2,...,n in view of the unique determination of a point
q of H from the numbers q-q; when g;, j=1,...,d + 1 are given independent points
of H.

As to the bijective action on fibres, suppose that the n-tuples (py,...,p,)eH}
and (q,,...,9,)€H} belong to the same fibre, and that, e.g., p,,...,p, are inde-
pendent, hence likewise q;,...,q,. Choose geG so that gp;=gq; for j=1,...,n
(possible as shown above). For any jeG we then have gp; = q; for j <r (and hence
for all j <n) if and only § belongs to the coset gG[p,,...,p,]. cf. (6). f n=d + 1
then G[p,,...,p,] = {id}, and the action of G itself is therefore bijective on each
fibre. If n<d we must factor out the fixed point subgroup G[p,,...,p,]=
O(d + 1 —n) in order to obtain bijective action on the fibres. H

Remark 1. In the case n<d + 1 it is easy to impose on (p,,...,p,)EH} suitable
additional conditions designed to make (p,, ..., p,) depend uniquely and analytically
(even algebraically) on Ae.«/, 4, (= «,). One may require for example (in addition
to each p; being in H) that the coordinates p;; of p; satisfy p;; =0 for i> j and
p;; > 0. (This is well known from linear algebra and also geometrically obvious.)
This particular choice begins as follows:

p11=15
Pi2=0a12, P2=+/[1,2] if n>1,
P13 =053, Da3=1(a23—ay,0:3)//[1,2], p33=+/[1,2,3]1/{/[1,2]

if n> 2, whereby we write, for brevity,
[L,...,k]=(—1)}""! det(a;;); j=1,..kx (>0)

It is easy to write down a scheme that permits a recursive determination of the
explicit expression for p,,...,p, as functions of Aes/,, n<d + 1.

We denote (for n<d+1) by ¢,.o/,—H, the above particular analytic
right inverse (= analytic selection in the fibres) of the map H}, — </, given by
(P15---sPa)—(Di'Pj); j<n- Clearly @, is an analytic diffeomorphism of </, onto a
submanifold of H’, of dimension 3n(n — 1).

Returning to the case n arbitrary we denote by .#, the in(n — 1)-dimensional
Euclidean space of all symmetric n x n matrices with diagonal entries 1, and we
endow .#, with the obvious Euclidean metric and analytic structure.
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Theorem 1.2. &/, ;. is a (real-)analytic submanifold of M, of dimension
N=(r—1)(n—4%r), r=min{nd+1}. (12)

Proof. For n<d+ 1 this is obvious because &/, ;. =/, is then an open set in
M ,. In the case n>d + 1 we shall specify below suitable local coordinates for
o, 4+1 among the entries g;;. Let i; <--- <i,,, denote d + 1 distinct subscripts
among 1,...,n, and consider any map

c{l o n\{igse e sigyg 2 {igs g )

A matrix Aes, 4, is said to be of class &Z(i;,...,i54;0) if
(— 1)*det(a;))

and for each ke{l,...,n}\{ij,...,iz41},

>0,

Li=it,..., id+1

(—l)ddet(aij)i,j=i1 ..... ®.eovvias k> 05

the “hat” over (k) indicating that this number among i,, ..., i, should be omitted.
The first of these two conditions means that, if (p,,...,p,) is in the fibre of A
(cf. Theorem 1.1), then the (d + 1)-tuple (p;,,...,p;,,,) is independent; and the last
condition translates similarly. The classes &/(iy,...,i;+;2) are relatively open
subsets of .7, 4., and form together a covering of &/, ., because a non-zero
vector p, cannot belong to every subspace of R?*! which is spanned by d among
d + 1 given linearly independent vectors p;,...,p;,, ,-

As local coordinates for &, 4., in & (i;,...,i44 ;1) We take the entr/i\es ay, i<k,
such that either i,ke{i,,..., iz} or else k¢{iy,...,iz+,} and ie{iy,..., uk),...,iz4 1}
The number of these entries is

ldd+1)+dn—d—1)=dn—3d+1))=N.

For the proof that .7(i,...,is, ;) is an analytic manifold and that the stated
entries do serve as local coordinates we consider the typical case

Gpseeesige)=01,...,d+ 1),
where we are given a map 1:{d +2,...,n} > {l,...,d + 1}. In this case we write
briefly /(1) for «/(1,...,d + 1;1). Let J denote the set (ordered in some fixed
way) of those N ordered pair/s\ (i, k) for which eiﬁher i,ke{l,...,d+ 1} or else
ke{d+2,...,n} and ie{l,...,u(k),...,d + 1}. Let /(z) denote the open set in R"
consisting of all N-tuples A = (a; ) 1es for which the (d + 1) x (d + 1) submatrix
Zd+ 1= (aij)i,j§d+1
and the n — (d + 1) analogous submatrices
@i, @ariio k=d+2,...,n,

all belong to <7, .
Consider the restriction map, or projection, n:.#,— R" defined by

n(A) = (aik)(i,k)ej, A= (aik)i,kgne'/%n'
If Ae</(1) then m(A) is the N-tuple of local coordinates of A as specified
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albove. Clearly A1) = (1). We proceed to show that n(#(1)) = (i). For any
A = (ay) i nes €4 (1) we define, using the notation of Remark 1,

(P1s---sPa+1) = Qux 1(Za+1)EHi+l

in terms of the above submatrix A,, . Then det(p,,...,ps+;)>0. For each
k=d+2,...,nand each sign ¢, = 1 for —1 there is a unique point p,(g,) of H such
that

Piple) =ay, i= 1,...,@,...,(1
and further that
e det(py,..., Py -+ -»Pa+1sPule)) > 0.
For each (n —d — 1)-tuple
e=(8442,-.-,8)€{l, —1}" 7471
we have thus defined altogether a mapping (p(s):ﬁ(z)—vH',:= by
@A) = (P1s- > Pas1-Pas2(Eas 2 Palen), A€ ).

When composed with the analytic mapy:H} -, 4., (< .#,) from Theorem 1.1,
given by ¥(py,...,p,) = (pi'P)); j<n> this leads to the map

Yo ole): (1) — ()
having the projection 7 as left inverse:
moyop(e) =

and so indeed n(£(1)) = (i)

Next we show that each of the maps ¢(e): A1) Hi(<(RIHY) is analytic.
According to Remark 1, (p,...,Pa+1) = @a+ (444 ,) depends analytically on A, ,
and hence on Ae</(1), and so it remains to establish the analyticity of the map
A pe) (=pi, for brevity) for any fixed ke{d+2,...,n} and g = +1. It is
convenient to write

PN

,...,uk),....,d + 1,k)=(z(1),...,t(d + 1)).

With any Ae./(1) we have associated in the definition of /(1) the “submatrix”
B= (bij)i,j§d+ 1= (ar(i),r(j))i,j§d+ 1€ g41-
Invoking once more Remark 1, we write
Q15594+ 1) = Pa+1(B)s

which depends analytically on B and hence on A and satisfies

4i'q; = bij = Ay),1) = Pegyy Puiyy BISd+ 1.
Consequently, there exists a unique isometry geG such that

gqj=pt(j)’ j=1,...,d+1,

whence det g =¢,, the sign of det (p,;), ..., Pya+1))- Ifey... ., €54, denote the columns
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of the (d + 1) x (d + 1) unit matrix, we note (cf. Remark 1) for h=1,...,d that e,
is a linear combination of q,..., g, with coefficients that are analytic functions of
the b;; with i,j < h(<d), hence of the a;; with i,j <d + 1. Viewing g as a Lorentz
transformation of R?*!, it follows that ge, is the corresponding linear combination
of the gq; =p,;, j=1,...,d. Since py,...,p,+, are analytic functions of Aypq, 0
are therefore the first d columns ge,, h < d, of the Lorentz matrix g. Each entry of
the last column of g is plus or minus a minor which is a polynomial in the entries
of the first d columns (because g'= Eg~'E and det g = ¢,), in particular an analytic
function of Ad+ , for Aeaf(t)) We conclude that indeed p,(&,) = px = Do+ 1) = 94a+1
depends analytically on Ae./(1), that is, on the proposed local coordinates of
Aesd ().

Each of the analytic maps ¥ @(e):27(1) - (1) is injective and has a relatively
closed range because of the continuous left inverse n. The ranges of these maps
corresponding to distinct (n —d — 1)-tuples ¢ are disjoint. To see this, choose
ke{d+2,...,n} and note that p 4, pi(1) # p,)'Px(— 1) because the bisecting hyper-
plane

{xeR"py(1)-x = py(—1)-x}

contains, hence equals, the hyperplane spanned linearly by p,,.. ,f,(k\), -sDa+1>
and this latter hyperplane does not contain p,,. Summing up, /() is the union
of the 2"~?~1 disjoint, relatively closed ranges (y° (0(8))(42/(1)) each of which is
therefore open in /(). It thus suffices to show that each such range is an analytic
manifold, embedded in .#, and admitting the entries of A =n(A) as local
coordinates of Ae(y°p(e))((1)). But this is clear because the map ° ¢(e) defined
on <Z(i) is analytic and has the analytic left inverse z. W

As a corollary we have the following result, somewhat in the spirit of Hall and
Wightman [3], though dealing with real-analytic functions and altogether more
elementary.

Corollary. Every analytic function f which is defined in the open subset H', of full
measure in H" and is invariant under diagonal action of G has the form

f(pl,"'apn)=f((pi.pj)i,j=1 ..... )

for a unique and analytic function f defined on the manifold s, 4 .

If n<d+ 1 we have in fact f = fog,, with ¢, as defined in Remark 1. And if
n>d + 1 we similarly have f = fo@(¢)om in each of the 2" 9~ ! relatively open sets
Yo o(e)((1)), ee{l, — 1}"~971, and their analogues, which together cover </, a+1s
cf. the proof of Theorem 1.2. Clearly 1 is well defined globally on A par1 By S =foy
because f is constant on each orbit, that is, on each fibre of the map y: Hy = &/, 44,
from Theorem 1.1.

2. Integration in the Hyperbolic Case with n <d + 1

We proceed to establish, for the case n < d + 1, the formula (suitably interpreted)

dH" = —2%_|det A|9~"2d Adg

Dgt1-n
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in terms of the mapping (p,,...,p,)—A = (p;'p;) of H}, onto </, and the diagonal
action of G/O(d + 1 — n), cf. Theorem 1.1. The notation is as follows (see (7) as to the
constants @,):

dH" refers to the product measure on H". Note that H"\ H}, has measure 0.
dA refers to Lebesgue measure on the Euclidean space .#,(= R""~1/2) of
all n x n symmetric matrices 4 = (a;;) with a; = 1:

dA = l_[ daij.

i<j
(Forn=1, #,= of,={1} has measure 1.)
dg refers to Haar measure on G, normalized as described in Sect. 1, and also
to the induced invariant measure on G/O(d + 1 — n).
A complete formulation of the indicated result is given in the following theorem.

Theorem 2. Suppose 1 <n<d+ 1. For any integrable function f on H" we have

~

[ fdH" = =4 [ |det A“~"2d4 [ f(gp(A)dg,
Hr ¢

Dg+1-n o,
where

p(A) = (pl(A)9 [EXR} pn(A))a A= (aij)edm
denotes an arbitrary selection of n-tuples of points of H such that
pi(A)pj(A)=a;, ij=1,...,n,
¢f. Theorem 1.1, and where we write (conforming with (1))

gp(A) = (gp,(A);. .., gpa(A)).

Remark 2.1. In view of the last statement in Theorem 1.1 it is more instructive
to rewrite the inner integral in the above formula as follows:

[ fgp(A)dg= |  f(Gp(A))dg,
G G/G{p(4)]
where

GLp(A)]:= GLp,(A),...,p(A)](= O + 1 — n))
denotes the subgroup of G consisting of those geG which leave p(A4),...,p,(A4)
fixed, while §=gG[p(A4)] stands for a left coset in G modulo G[p(4)], and
gp(A):= gp(A).

Remark 2.2. 1t is clear from the beginning that the inner integral on the right in
the formula of Theorem 2 is independent of the particular choice of p(A4). In fact,
if g(4)=(q,(A),...,q,(A)) is another such choice, we have q;(4) = g(A4)p;(A4) for
some g(A)eG, cf. Theorem 1.1, whence the assertion by invariance of dg.

Remark 2.3. For n=1 the integration over <7, drops out and the formula reduces
to | fdH = { f(gp)dyg for any peH. This equation is obvious in view of the chosen
B G

normalization of Haar measure dg on G, cf. Sect. 1.
For the proof of Theorem 2 we prepare two lemmas.
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Lemma 2.1. For any integrable function f on H and any prescribed d-tuple of
independent points p,,...,p, of H we have for e =1 or —1,

1
HL f(p)dH(p) = _f f(Pd+1(A))’\/—,dT—A'da1,d+1"‘dad,dﬂ,

H(4y)
where H* denotes the hyperbolic half-space
H* =H*(p,,...,p):={peH|edet(p,,...,ps, p) >0},

while A, is the matrix (a;;) = (pi'P;) j<a Of class o, and H(A,) denotes the solid,
open half-hyperboloid in R? consisting all points (a; 4+ 1,-..,844+ 1) SUch that (writing
Ag41,i=0;q+1 and a4, 441 = 1) the bordered matrix

A(aij)i,j§d+1

is of class o4+ (¢f. Lemma 1). For each such d-tuple (a; 441,...,844+1) in A (A),
Pa+1(A) denotes the unique point of H* for which

PiPar1(A)=a;441, i=1,...,d.

Proof. For each (a; 41 4,...,8444+1)€ 4 (4,) the bordered matrix 4 =(a;;); j<q+1€
4+ has, by Theorem 1.1, the form g;;= g;"q; for some independent (d + 1)-
tuple (q,,...,94+1) of points of H. Because ¢;°q; = p;'p; = a;; for i,j <d we may
arrange via a transformation from G that g;=p; for i<d, and further, if
necessary, by reflection in the hyperbolic hyperplane passing through p,,...,p,
that q,,,€H"; and then p,,,(A):=q,+, is uniquely determined. The smooth
mapping (@ 4+1,---,a44+ 1) Pa+1(A) is a bijection of A'(4,) onto H™ because
each point p,, € H™ together with the given points p,,..., p, determine a unique
matrix A =(a;;); j<a+, Of class o/, such that p,,; = py,(A).

In the rest of the proof we write, for brevity, p, ; for p,. {(A4). By differentiation
of p;'Pa+1 = a; 4+, We obtain (since p,,...,p, are fixed)

. 9Pa+1 -5

; = i<d+1,j<d. (13)
08441

When combined with p;p,,; =a; 4+, and a4 4+, = 1, this leads to the following
relation between (d + 1) x (d + 1) matrices:

Lo 0 a4
OP4+1 OPa+1 ) : : :
PrE secney 5 = J:= ) ’

<aa1,d+1 0a44+1 Pa+1 0 1 ag444

where E=E,,, =diag(l, —1,..., —1) while the columns of P are p;,...,ps41.
Equivalently,
OPa+1 OPa+1 ) -

ey ,D =Q:=E/P) 1. (14
(aal,d+1 084,441 at ¢ )

The pseudo-riemanninan metric

—ds? = —dx? +dxi+ - +dx2,,
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on R?*! induces the hyperbolic Riemannian metric do? on H and in particular
on the hyperbolic half-space H™, the image of #'(4,) under the diffeomorphism
(@1.4415--+>0a4+1)X =DPa+1=Da+1(A) whose differential dx =dp,, eRI*! is
given in coordinates by

d
dx,=dpy a1 = ‘Zﬁ djdaj .y, k=d+1,

according to (14). We thus find

d 2 d+1 d 2
do? = —< Y q1;4a;4.4 1) + 3y < qkjdaj,d+1)
=1 =2\ =1

M=

= 1(_qliqu+ Q22+ + Gav1,i9a+1,))8% 4+ 140,441

<
1]

Il
:Ma’

(= "ij)dai,a+ ldaj,d+ 1>

i 1

<
n

where
ri=4qr4;=4qiEq;, Lj<d, (15)

in terms of the first d columns q,,...,q, of Q, cf. (14). The last column of Q is
Gi+1=Pa+1, and we have from (13) with i=d + 1,

op .
‘Ia+1"1j=Pa+1'ﬁdi=0, j=d.
i+ 1

Finally, g4+ 1°qa+1 = Pa+1°Pa+1 = 1, and consequently (r;;) from (15) extends to the
bordered matrix

Fip 0 T O

t = .°d:). . = : :
QEQ_(q: q})l,]§d+1 Fai Taa 0
0o .- 0 1

It follows that
det (r;;) = det (Q'EQ) = (—1)(det Q)* = (—1)(det P)~? = (—1)*|det A| !

in view of the last equation in (14) together with det J=1 and P'EP = A, viz.
Di'Dj= Qyj. ] o

For the volume element in H* we therefore have the following expression in
terms of the parameters a; 441,-..,844+1:

1

Jidet(r;)lday gy q--dag g4y =Tlet—A'da1,a+1“‘daa,a+1- u

Lemma 2.2. Suppose 2<n<d+ 1. For any integrable function f on H and any
prescribed (n — 1)-tuple of independent points p,,...,p,— of H we have (cf. (6))

d d-n/2  n-1
[fdH=wp,, [ 1%t [daw | SO 4

d+1-n)2
H J(’(A,l_l)Idet Ap—y | A GIp1,. -, Pn-1l
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where
Ay = (aij)i,j§n—1 =(Pi'Pj)i,j§n—1-
The domain of integration A '(A,_,) in the outer integral is the solid, open

half-hyperboloid in R"~*' consisting of all points (ay,,...,0,-1,)€RY ! such that
(writing a,; = a;, and a,, = 1) the bordered matrix

A, = (aij)i,j= 1,...,n

is of class o/ ,. For each such (ay,,...,a,-1,)€X (A,-1), Ps(A,) denotes any point of
H such that

pi'pn(An)zain, i=1,'..,n—1.

Remark 2.4. For n=2 we have A,_; = (1), and the half-hyperboloid #'(4,_,) is
simply the interval 1 <a;, <oo. For any a,, (=a,,) in this interval we have

1

A"=<a a;2>eﬂn, and p,(4,) denotes any point of the hyperbolic sphere
21

centered at p, and of hyperbolic radius p given by cosh p =a,,. The integral

over G[p,] in the formula is the mean value of f over the stated hyperbolic

sphere.

Proof of Lemma 2.2. As in Remark 2.2 it is clear that the inner integral on
the right in the above formula is independent of the choice of p,(4,). In fact,
if q,(4,) denotes another such choice, we have gq,(4,) = h(A4,)p,(A4,) for some
h(A,)eG[py,---,Ps—1], by Theorem 1.1. It is known that the hyperbolic distance
o(p,) between a point p,e H and the hyperbolic (n — 2)-plane H nspan(py,...,Ps-1)
through p,,...,p,_, is given by

|det 4,12

sinhg(p,) = W’

where A4, now denotes the extension of 4,_, by the entries a,; = a;, = p;'p, and of
course a,, = 1. For the case d = 3 this formula is found, e.g., in Fenchel [2, (17), p.
168].

Via a transformation from G we may arrange that the n—1 given points
Pis-.-»Pn—1€H all lie in the x,,...,x,_-space of R?*! and that their determinant
then is positive. Furthermore, for each n-tuple (a,,...,a,-1,)€# (4,-,) we may
choose p,(4,) in the x,,...,x,-space of R?*! so that the n'* coordinate p,,(A4,) of
p.(A,) is positive. In fact, replacing p,,...,p,-; by gp;,...,gp,— for some gegG,
and accordingly p,(A4) by gp,(4), transforms the formula in Lemma 2.2 into the
similar formula for the function p— (g~ p).

Via the natural identification of the x,,..., x,-space of R?*! with R", and hence
of the part of H in the x,,..., x,~space with H,_;, we may now apply Lemma 2.1
(writing n — 1 for d there) to ¢ =1, the above (n — 1)-tuple (p;,...,p,-1), and the
function

pu—f(hp,)sinh®* ' ~"o(p,)
on H,_, (< H) for fixed heG[p,,...,p,1]- The hyperbolic half-space H* in H,_,
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in our application of Lemma 2.1 is
H:—l = {pneHn—lldet(pl’“"pn)> 0} = {anHn-l‘pnn >0}’

that is, those p,eH,_, for which the last coordinate is >0. The matrix 4,e%/,
and the point p,(4,)eH, _, serve as the matrix and the point denoted, in Lemma
2.1, by 4 and p,, ,(A), respectively. We obtain

[ f(hp)sinh®** ™" o(p,)dH,_(p,)

Hn—l
|det 4, \@+1-m2 1 a1
IR ' T,
m{_o det 4, 4| Jldet 4, il-:[l

from which the stated result follows after multiplication by dh and integration over
G[py,..-»Ps—1]), while inverting the order of integrations. In fact, the orbit of
p.(4,) under the action of the transformations heG[p,,...,p,-1] is a hyperbolic
(d + 1 — n)-sphere of radius g(p,(4,)). This sphere is situated in the hyperbolic
(d + 2 — n)-plane passing through p,(4,) and perpendicular to the hyperbolic
(n—2)-plane H,_, through p,,...,p,_;, the centre of the sphere being the
(hyperbolic) projection of p,(A4,) on H,_,. And the hyperbolic, or Riemannian,
surface measure on this sphere G[p,,...,Pn—1]1Pu(A,) 1S @44 5 —, sinh?* 17" o(p,(A))
times the image of normalized Haar measure dh on G[p,,...,p,— 1= 0(d+ 2 —n)
under the map h—hp,(A4,), whence the result. W

Proof of Theorem 2. As to the trivial case n = 1 see Remark 2.3. Let therefore n = 2,
and take

p(A) = (p1(A),..., Pa(A)) = @u(A),

cf. Remark 1. Apply Lemma 2.2 to the function p,— f(py,...,Pn—1,P,) On H for
n—1 given, independent points p,,...,p,-, of H yields

F(pla'-'>pn—l): =i!;f(p1,"'9pn—1)dH(pn)=wd+2—n

ldetA l(d—n)/l n—1
= —-n dain (P PR apn— 3 hpn(An))dh (16)
J((A{_l)ldet A, @tz il=_[1 G(m,..j.,p,._l]f ! !
in the notation of Lemma 2.2, cf. (6). Suppose the theorem holds with n—1 in
place of n, and apply it to the function F in (16) and the (n — 1)-tuple (p,(A,- 1), ..,
Pn—1(A4,-1)= @,_1(A4,_,)) described in Remark 1 (taking n— 1 in place of n and
writing A,_, in place of 4). We obtain

[ fdH"= | FdH""!
Hn Hn-1

=2 [ |detA,_ |12 [] day|F(go,- (A, ))dg.  (17)

wd+2_”&’n—1 i<j<n

(In the case n=2 the integration over </, _,(=./, ={1}) drops out and (17)
becomes, by Remark 2.3, | fdH*= [ FdH = | F(gp,)dg, valid for any p,eH, e.g.
H2 H G

for p, =(1,0,...,0) as in Remark 1.)
G[pl(An—l),“'>pn—1(An—1)]=Gn—19
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where G,_, denotes the subgroup of G consisting of all geG such that gx = x for
every xe H having its last d + 2 — n coordinates x,,...,x;,, equal to 0. Note that
G,_, does not depend on 4, _;.
With a view at (17) we now take for (p,,...,p,—,) in (16) the (n — 1)-tuple
9Pn-1(An-1) = (9P1(Ap=1)s- ;9P 1(4,-1))

(cf. Remark 1) for given geG and A,_; =(a;j);j<n—1€%,—;. Note that then
gpi(A,-1)'9pj(A,-1) = ay, i=1,...,n—1, as it should be. In place of p,(4,) in (16)
take gp,(4,), where p,(A,) was specified in the beginning of the proof with reference
to Remark 1, and so

((pn—- 1(An— 1)5 pn(An)) = (pn(An)
We thus comply with the requirement
gpi(An— 1)‘gpn(An) =ay, i=1...,n—1
Because G[gp;(A,-1),--->9Pu-1(44-1)1=9G,_ 19", we now obtain

F _1(4,_
©gr7n (9@n-1( 1)

det An d-n)/2 n—1
= .f [ | ],__,[1 dain j f(g(pn— 1(An— 1)’ hgpn(An))dh

= d+1-n)2
H(Ay—1) |det 4, [ " 9Gn-19""

|det 4 |(d—n)/2 n—1 - . 7
= z — dai,, h n— An— y h "A" d s
x(A{_,)|dCtAn—1|(d+1 n)/2 il=—[1 G.‘. f(g (P 1( 1)9 P( ))
noting also that ¢,_,(4,-{)= ﬁ(p,,_ (A,-1) whenﬁeG,,_ 1, and that Haar measure
dh on gG,_,g" ! is the image of Haar measure dh on G,_, under the conjugation
h=ghg™ 1.
In the rest of the proof we prefer to write 4 in place of 4,. By the continuity
of ¢, the integrand

f(ghe,— 1(A,-1),ghp,(A,)) = f(ghe,(A))

in the above integral over G, _, is a measurable function of (g, h, A)eG x G,_1xA,.
When integrating F(go,-(4,-,)) over G to obtain the inner integral in (17) we
may therefore invert the order of integrations so as to obtain from the above

|detA|("""/2 n—1
Fgp,_1(4,-1))dg= .
Dg42-n !; (G@n-1(4s-1))dg I(A-‘;_l) |det A, _,[@¥ 172 i1=_[1 da,,,(j;f(g(p,,(A))dg
(18)

n-1

by right invariance of Haar measure dg on the unimodular group G, together with
the normalization of Haar measure dh on the compact group G,_; = O(d + 2 — n)
(with d +2 —n < d since n = 2).

Finally insert (18) in (17) and interchange integrations. This leads to the
formula stated in the theorem (with p(4) = ¢,(4)) when we note that &;,,_,=
Wy42-_n®ys 1 -n according to (7) and further that

n—1
l—[ dau l_[ dai,, = 1_[ dau = dA. .
i=1

i<j<n i<j<n
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3. Integration in the Hyperbolic Case with n>d + 1

In this section we use, as parameters for H” modulo diagonal action of G, the
entries to the right of the diagonal in the first d rows of matrices of class &, 4+ 1,
noting that this gives the correct number

N=dn—1dd+1)
of degrees of freedom, cf. (12), where now r=d + 1.

Definition 3.1. When n>d + 1 we denote by &/, the class of all d x n matrices
A = (a;;) such that, writing

the bordered (d + 1) x (d + 1) matrix
Ag=A@yks. -, ag)

(cf. Lemma 1) is of class «/,, foreach k=d+1,...,n.

According to Lemma 1 this means that 4, should be of class &/, and that, for
each k as stated, (ay,...,ay) should belong to the solid, open half-hyperboloid
A(A,) in R 1t follows that

a;=1, a;>1 for i#j (i=1,...,dj=1,...,n)

Definition 3.2. For each (n —d — 1)-tuple e = (¢, ,,...,¢,) of numbers 1 or — 1 let
H"(¢) denote the set of all n-tuples (p,,...,p,)eH" such that the numbers
gdet(py,...,pasDi), k=d+2,...,n, are all #0 and have the same sign as
det(py,...,Pa+1), likewise supposed # 0. Further write

A= () H")

eefl,—1m—d-1
={(py,...,pn)eH"|det (py,...,ps, ;) #0 for k=d +1,...,n}.

In geometric terms, (py,...,p,)e H"(¢) means that p,,, and p, lie on the same
side of the (hyperbolic) hyperplane in H passing through p,,...,p, (supposed
independent) if ¢, = 1, and on opposite sides if ¢, = — 1 (k=d +2,...,n).

These 2" 47! sets H"(¢) are disjoint, and each of them is open and invariant
under diagonal action of G. For n=d + 1 it is understood that (with ¢ empty)
He*'(g) = H4* ! = A%*! = the set of independent (d + 1)-tuples of points of H.

Lemma 3. Suppose n>d + 1 and ee{1, — 1}" 4~ 1. The map

(P1s---s P (Pi'Pji<a, j<n

is then a surjection of H"(g) onto o/ 4 ,. Each fibre is an orbit in H"(¢) under diagonal
action of G, and this action is bijective on each fibre.

Proof. For n=d+ 1, this reduces trivially to Theorem 1.1 because H*(¢)
equals H4*! and o/, 4+, can be identified with «/,,,. For n>d + 1 and any
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k=d+1,...,n,apply Theorem 1.1 (withd + 1 in place of n) to the matrix 4,, e, ,
(cf. Definition 3.1). This leads to an independent (d + 1)-tuple (py,..., ps, p,)eHL™?
satisfying

prpj=a; for i j=1,...,d,
pipk=ay for i=1,...,d

By Theorem 1.1 applied to n=d each fibre of the map (py,...,p,)—(p;'p;) of
H? onto &/, is an orbit under diagonal action of G, and this allows us to
choose the (d + 1)-tuple (py, ..., s pr)eHL' ! in the fibre of Ay, in such a way that
(P1,---»>pg) is the same d-tuple for all k=d + 1,...,n. Next, if, for some k>d + 1,
g.det(py,..., P4 D) has the opposite sign of det(p,,...,ps+ 1), We replace p, by its
image under the (hyperbolic) reflection of H in the hyperplane in H passing through
P1,-.-»Dg; this change does not affect the value of p;'p, (= ay), i=1,...,d. We have
thus proved that the map H"(¢)— &/, , is surjective. The remaining assertions are
likewise easily derived from Theorem 1.1 applied ton=d+1. B

We proceed to establish, for the case n = d + 1, the following formula (suitably
interpreted), valid in each of the sets H"(e):

" 1

dH" =& ——

d"=l;1+1 Vldet Ay,

in terms of the mapping (py,...,p,)>A = (p;'p;) of H"(¢) on </, , described in
Lemma 3, and the diagonal action of G. The notation is as follows.

dH" refers again to the product measure on H". Note that H"\ H" has measure 0.

dA refers to Lebesgue measure on the space (= Ri"~(1/24@+1)y of ]l d x n

matrices A = (a;;) such that a; =1 and a; =aq;;for i, j=1,...,d:
dA= [] da

i<d i<jsn

dAdg

ije

dg refers to Haar measure on G, normalized as described in Sect. 1.
A precise formulation of the indicated result is given in the following theorem
(recall Definitions 3.1 and 3.2).

Theorem 3. Let & =(g;4,,...,¢,)€{l, — 1}"~%~ be given. For any integrable function
f on H"(¢) we have

z 1
dH" = B
H'.!'(e)f H ©d Jy;‘;n =l:[+ 1 \/mdA if(gl’(A))dg,

=

where
p(A) =(pi(A),...,p(A)eH"(e), A=(a;)eA ixn
denotes an arbitrary selection of n-tuples in H"(¢) such that
Pi(A)'Pj(A) = a;; for i<d, j<n,
cf. Lemma 3, and where we write

gp(4) =(gp,(A),...,gp.(A)).
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Remark 3.1. Once p;(A),...,ps+1(A) have been selected in H subject to py(A4)-
pj(A)=a;;for i<d, j<d+ 1, the remaining points p,(A4) are uniquely determined
by the remaining conditions p;(A4) p,(A4) = a;, for i £d,d + 2 < k < n because of the
requirement that p(4)e H"(¢).

Remark 3.2. 1t is clear from the beginning that the inner integral on the right in
the formula of Theorem 3 is independent of the particular choice of p(4). In fact,
if g(4) =(q,(A),...,q,(A4)) is another such choice (again in H"(¢)) then we have
q;(A) = g(A)p(A), i=1,...,n, for some g(4)eG, cf. Lemma 3.

Proof of Theorem 3. In the case n=d + 1, Theorems 2 and 3 coalesce because
H** ()= Hi*!, @ =1, and &, 4+, may be identified with o, ;.

In the remaining case n>d+ 1 we suppose that the theorem holds with n
replaced by n— 1. We make a measurable selection (e.g. as in Remark 1) of
(d + 1)-tuples

(Py(B),..,Pas1(B)eH" !, B=(by)eyss, (19)
so that
pi(B)'pi(B)=b; for i,j=1,...,d+1
For any A = (a;))e.;«, define in terms of (19)
p(A)=plAga+1), j=1,...,d+1,

noting that A,.,,,€%/,,,, and extend this uniquely (Remark 3.1) to a likewise
measurable selection of n-tuples

p(A)=(p1(A),...,p,(A)eH"E), A=(a;)eyxn
of the kind stated in the theorem. Replacing n by n—1 (=d + 1) and ¢ by
E=(E442>--»8n—1)E{l, — 1} 7472
we obtain a similar unique measurable selection of (n — 1)-tuples
P(A)=(ps(A),....pp-1(A)eH" @), A ixu-1).
In view of the uniqueness of the performed extension we have
pj(A)=pfA) for j=1,...,n—1 (20)

whenever A is obtained from A by adjoining an additional n™ column.
By the inductive hypothesis we may apply the formula of the theorem to the
following function F of (n — 1)-tuples of class H" ™ 1(&):

F(pl""’pn—l):: 5 f(plr--’pn—l’pn)dH(pn)’ (21)

H(pi,..., Pd+13€n)

where we integrate over the hyperbolic half-space

det(pl,---,Pa,Pn) }
€, >0 R 22
det(py,...,Pa+1) .

H(pl’-”>pd+l;8n)= {pneH
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the set of all p,eH such that (p,,...,p,)eH"(¢). This leads to
| fdH"= [ FdH""!

e H" @)

n—1 1
=d; | —————dd I F(gp(A))dg, (23)

Syxp-p k=41 IdetAde
where
gp(A):=(gp,(A),...,gps-1(A)).
Inserting (21) in the inner integral on the right in (23) gives for any Ze&ldx(,,_l,,

{ F(gp(A))dg = [ dg ) f(gp(A), p,)dH(p,)

Hgpy(A)... .gpg + 1 (A)en)

=[dg ) f(gp(4), gp,)dH(p,) (24)

G H(py(A),...p4+ 1(A)en)

after performing the substitution p,—gp, in the inner integral.

We now apply Lemma 2.1 to the inner integral in the last expression in (24),
with p,(A),..., ps(A) playing the role of the d prescribed, independent points of H.
Take ¢ =¢, if det (pl(;i),...,p“ I(Z)) > 0; otherwise take e = —¢,. Then H* from
Lemma 2.1 becomes

T = H(pl(;i)a ~osPa+ I(Z),Bn)
in the notation (22). For any point
(aln’ LERE) adn)e‘%/(zd)

and associated matrix Ae/,,, obtained by adjoining (a,,,...,a,,) to A as an
additional n'"® column, it follows from (22) and (20) that p,(4)eH™* because
n—1=d+1 and

(pl(‘z)a LEEE) pn— 1 (Z)’ pn(A)) = (pl (A), (RN pn -1 (A)’ pn(A))GH"(S)

Altogether, p,(A4) may serve as the point of H* denoted by p, . ,(A4) in Lemma 2.1.
The inner integral at the end of (24) therefore equals

1 ~ d
——=——— f(gp(A),gp,(4)) || day,= | —F———
N Héne= e

in view of (20). Inserting this in (24) and inverting the order of integrations leads to

1
ﬂ da,, I f(gp(A4))dg.

Fgp(A)dg= [ ——=
[ Flgp(4)dg x;ﬁd)\/m'—

Finally, the stated formula of the theorem arises from this when inserted in (23).
In fact, when A4 ranges over &/, x -y and for each such A the point @yps--esQyy)
ranges over J'(A,), then A as defined above ranges over &,;, according to
Definition 3.1, and we have

Ag=A4 Ag=Az for k=d+1,..,n—1,

f(gp(A)) H da;,
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and
_d
dA=dA 1_[ da,,. W1
i=1

Corollary. Let p(A) =(p,(A),...,p.(A))eH", Ae 4 ;« ,, denote any selection such that
Pi(A)'Pj(A) =a;; for isd, j<n,

and
det(py(A),...,pa(A), pr(4)) >0 for k=d+1,...,n
For any
e= (8442, 8 )€{l, — 1}" 7471
write

p(A, 8) = (pl(A)a [REX) pd+ I(A)’ pd+ Z(A’ 8)9 ey pn(A’ 8))’
where, for k=d+2,...,n,
p(A) if g=1
hAp(A) if &=-—1,

h(A) denoting reflection of H in the hyperbolic hyperplane in H passing through
p1(A),...,ps(A). For any integrable function f on H" we then have

pk(A’ 8) = {

=06 ] ———a (gp(A4, €))dg.
jf d"’qu":l;le (j;ee{l,—-lz)n—d—lfgp

In fact, for any ¢ as stated and any Ae.</,,, we have p(4,e)e H"(¢), and
pi(4, 3)'1’,’(1‘1’ €)= Pi(A)'pj(A) = a;; for i<d, j=n
From Theorem 3, with p(4,¢) in place of p(A), we therefore obtain

dH"= & -
o’ PR Ny \/|d Agal

and it only remains to sum over all ee{1, —1}"7¢7 1%,

————dA t[;f (9p(A, €))dg,

4. A Unified and Perturbation Invariant Form of the Result
in the Hyperbolic Case

When n > d + 1 the parameter space &/, , used in Sect. 3 reflects a choice of d + 1
among the n points p,e H. To obtain a unified formulation of the result valid for
all n, and permutation invariant also for n > d + 1, we must use the full manifold
A p.a+1 (cf. Definition 1 and Theorems 1.1 and 1.2) of dimension

dim&/, ., =N=dn—3dd+1) (=dim</,y,)
and of codimension (in .#,, the symmetric n x n matrices with diagonal entries 1)
codim, 4., =%(n—d)(n—1—d).
Those matrices Ae«, 4., for which each principal (d + 1) x (d + 1) submatrix of



Lorentz Transformations 503

the form
(@i jeit,....ap kK=d+1,...,n,

is non-singular constitute the image &imd“ of A" under the map from
Theorem 1.1, cf. Definition 3.2. This image .MA,,,,,H is a (relatively) open subset
of &, 441, and the rest of &/, 4., has measure 0 with respect to the Riemannian
volume measure dA on &, 4., induced by the Euclidean metric on ./#,,.

As local coordinates in J,,,dﬂ we may use the entries to the right of the
diagonal in the matrices of class &,,, cf. Definition 3.1. This follows from the
proof of Theorem 1.2 where we may now take (i;,...,i;+1)=(1,...,d+1) and
ky=d+1forallk=d+2,...,n

Consider now the restriction map, or projection,

A yar1> A axn

consisting in deleting the last n—d rows of matrices A of class 7, 4. ,. This
map is 2" 9" !-to-one. In fact, for each Aeo/,;., and each e=(g;4,,...,&,)€
{1, — 1}"7%"1 there exists, by Lemma 3, an n-tuple (p,,..., P.)eH"(¢), uniquely
determined up to diagonal action of G, such that the n x n matrix A=(pip ;) of class
d,, 4+ has A4 as a submatrix formed by the first d rows. Two such matrices A
corresponding to the same Ae</,;.,, but to different choices of ¢, are distinct
because the associated n-tuples (py,-..,p,) are not on the same fibre for the map
from Theorem 1.1, by the invariance of each H"(¢) under diagonal action of G, cf.
Definition 3.2 and subsequent comments.

In view of the above observations, Theorems 2 and 3 admit the following
unified formulation, valid for any number n of “particles” and symmetric in these.

Theorem 4. There exists a unique positive measure du on the N-dimensional manifold
A, 4+1 such that, for any integrable function f on H",

JSaH" = | du(4) [ f(gps(A)..... gp.(4))dg,
" Ana+1

where A—(p;(A),...,p,(A)) denotes an arbitrary selection of n-tuples of points of H
such that, for any A =(a;;)€L 441,

pi(A)'pj(A).:aU

This measure du is invariant under simultaneous permutation of rows and columns
of matrices A of class o, 44 1.

In the case n < d + 1,du is given as follows in terms of Lebesgue measure dA on
the open set o, 441 =, in My

|det A|“~"2d), di=dA= Hda

a)d+1 -n i<j

dp=—

In the case n=d+ 1,du is given as follows on the open submanifold 4, .,
of A, 441, using the above local coordinates a,J, igdi<j<n,

du=a, ] ———— I day 25)

k=d+1 /|detA“| <d
<j=n
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Here the principal (d+ 1) x (d + 1) submAatrices Ay of Ats.szi,,,,,+l are as specified
in Definition 3.1. Moreover, (s, 4+ 1\ Ay q+1) =0, by definition.

Proof. The above measure du has the property asserted in the theorem in either
case n<d+1or n>d+ 1, according to Theorem 2 and Theorem 3, respectively.
Conversely, let du denote any positive measure on ./, 4, , With the stated property.
Choose a Borel set I = G of finite Haar measure ¢ > 0, and consider, for any Borel
set &f < &, 441, the following subset of HY:

E={(gps(A),...,gp,(A)|geTl’, Aed}.
The indicator function f of E then satisfies

1 if geI' and Ae&/
0 otherwise

f(gpi(A),....gpa(A)) = {

because the map (g, A)—(gp1(A),. .., gp.(4)) of I" x o into H} is injective according
to Theorem 1.1. Consequently,
J SaH" = duf f(opi(A)..... 9p.(ADdg = cu(st),
n o

showing that du is indeed uniquely determined. W

Remark 4. The formula (25) for du in the case n>d + 1 extends to certain other
local coordinate systems, €.g. those considered in the proof of Theorem 1.2. In the
notation of that proof we have in the open subset &/ (iy, ..., i4+1; ?) of full du-measure
in 441,

. T 1
dp=d; [] ——=]lda;

k=d+1 /|det A(K)|
where

A(k) —_ {(a‘.l L,j=i1,..., id+1 fOI‘ k = d + 1

while []da;; is taken over all couples (i, j), i < j, with either i, je{i,...,i;4,} or
else j¢{iy,...,ig+1} and i€{iy,..., iz J\{2())}.

The stated formula for du can be obtained as in the proof of Theorem 3, or
alternatively by determining the Jacobian for the transition from the above system
of local coordinates to the particular system (a;;);<4,i< <, used in Theorem 3.

As a consequence of the above one finds (for any n) that du has an analytic
density du/di (> 0) with respect to the N-dimensional volume measure 4 on the
manifold <, ;. ;. Writing this density in the form

du__o,
i /D)’

we have found above in the case n=d + 1 that D(4) = (— 1)*det 4 for Aest, 4.,
(= .,4,), in agreement with Theorem 2. Whenn=d + 2, &, ;. has codimension
1 in #,, and D(A4) turns out to be the sum of the squares of all the n(n —1)/2
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non-principal minors in 4, or equally well the sum of all products of two distinct
principal minors in A.

For n—d > 2 the expression for D(A) becomes increasingly complicated. For
example, in the case d = 1, n = 4, D(A) is minus the sum of all “non-cyclic” products
of 3 distinct principal 2 x 2 subdeterminants 1 — a (< 0), a cyclic product meaning
one of the form

(1—a2)(1—a2)(1—a2) with i<j<k

It therefore seems preferable to leave the Riemannian volume measure A on &, 4, ¢
aside and stick to the above measure dpu itself, using for example one of its
expressions stated above in terms of local parameters a;; when it comes to
computations.

5. The Spherical Case

In this short section we consider, instead of the hyperbolic d-space H, the unit
sphere S in R**! given by

S={xeR¥*|xx=1}

in terms of the Euclidean inner product x-y. Accordingly, G shall now denote the
isometry group O(d + 1) of S. The hyperbolic functions cosh, sinh are of course
now replaced by cos, sin.

We denote in this section by ., the class of all positive n x n matrices with 1
in the diagonal. In Lemma 1 the solid open half-hyperboloid #(A4) is now replaced
by the solid open ellipsoid

H(A) = {xeR"|det A(x) >0} = {xeR"|x'4 " 'x < 1}.

Each point x of J#'(A) satisfies |x;| < 1 for i=1,...,n. The boundary 0. (A) is the
unique ellipsoid centered at 0, passing through the columns a; of 4, and having
the tangent hyperplane x;=1 at a;,i=1,...,n.

Theorem 5. With the above changes (and their obvious consequences) all the results
of Sects. 1 through 4 carry over to the spherical case when we replace throughout H
by the unit sphere S.

It is understood here that Haar measure dg on G is normalized (in analogy
with Sect. 1) so that it induces the usual surface measure dS on S of total mass
w,4+1, when S is identified with G/G[p]. In this normalization the total mass of
dg is

I dg= w444
G
because Haar measure on G[p] (= O(d)) is taken throughout to have total mass

1. However, in the present spherical case it is more consistent to normalize the
Haar measure also on G = O(d + 1) so that j dg = 1. With this latter normalization
G

the constant @&, occurring in Sects. 2,3, and 4 should be replaced throughout the
present section by @, (= w,4,Ds)-
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6. The Euclidean Case

In this final section we replace the hyperbolic d-space H by Euclidean d-space E,
for which R? serves as a model. Accordingly, G now denotes the group of Euclidean
isometries of E. Naturally, E = R? is endowed with the Euclidean distance |x — y|
and with the standard inner product x-y. Haar measure dg on G is normalized so
that it induces Lebesgue measure dE on E when E is identified with G/G[p]. If g
is written in the standard way

gp=up+v, ucO(d), veRY,

then dg = dudv.
For any n x n matrix A = (a;;) the sum of its n> minors will be called the derived
determinant of A and denoted by det’ A. Thus

A e
=—d
s=0 et<e‘ 0>,

where the column e and the row e' have the n entries 1.
When a; = 0 for all i we associate with A the following (n — 1) x (n — 1) matrix

, d
det A = E:g‘det (aij + S)

bijj=a;—a,—a,;, i,j#n. (26)

It follows that det(A4 +s)=det A + sdet B (4 + s having the entries a;;+s) and
hence

det’' A =detB. 27

Similarly if n in (26) is replaced by any index 1,...,n— 1.

In this section &/, denotes the class of all symmetric n x n matrices 4 = (a;;)
with a; =0, a;; > 0, such that the restriction of the quadratic form ) ag;;x;x; to the
hyperplane x, + --- + x, = 0 is negative definite.

Replacing here “negative definite” by negative semidefinite and of rank r — 1, cf.
(8), we obtain the class to be denoted now by &, .. With x;,...,x,_, as
parameters for the above hyperplane, these last two conditions for A to be of class
o, 4+ translate into the same properties of the associated (n — 1) x (n — 1) matrix

B, cf. (26), that is,
ind, B=0, ind_B=r—1 (=min{n—1,d}).

In the case n < d + 1, that is r = n, we may write ./, in place of &, 4.
We obtain counterparts to the results of Sect. 1 when we replace the map
(P1»--->Pa)—(p; p;) considered there by the mapping

(P1,~..,Pn)""(%lpi“l’j|2)i,j=1 ,,,,, n

of the set E?, of all n-tuples of points of E = R? spanning an affine space of maximal
dimension r — 1 into the symmetric n x n matrices. The fact that this mapping
takes Ej, onto our new class &/, ;. is well known, cf. Schoenberg [4]. The rest
of these counterparts to the statements in Theorems 1.1 and 1.2 are established
mutatis mutandis.
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In place of Lemma 1 we have in the Euclidean case the following lemma related
to a result of Menger [3, p. 133].

Lemma 6. Consider a matrix Aesf,. In order that the bordered (n+ 1) x (n+ 1)
matrix

A o
X . n
A(x)=<x, 0>, x=[ : [eR",
x’l
be of class </, it is necessary and sufficient that x belongs to the solid, open
paraboloid
H(A) = {xeR"|(— 1)"det’ A(x) >0} = R";.
Proof. With A we associate, as above, a symmetric (n — 1) x (n — 1) matrix, now
called — B, where B = (b;;); j=,,.. . is defined this time by

bij:ail +ay;— a;j, i,j=2,...,n.
With A(x) we similarly associate the symmetric n x n matrix — B(x), where
B(x) = (b;j(X));,j=2,...,n+1 1S given by
b;;
b,](x)= di1+x1—xi fOr i=2’.”,n, ]=n+1

for i,j=2,...,n

2x, for i,j=n+1.

Then B is positive definite (because Ae./,). Similarly, A(x) is of class &/, if and

only if x =0 and B(x) is positive definite. The latter condition (which implies

2x, > 0) translates into det B(x) > 0, that is, (— 1)" det’ A(x) > 0, by use of (27):
(— I)"det’ A(x) = (— 1)"det(— B(x)) = det B(x).

By the observation after (27), (— 1)"det’ A(x) > 0 implies x > 0, and so " (4) = R",.
To see that #"(A) is a paraboloid we perform the substitution

Vi =2xq,
Vvi=a,+x,—x;, for i=2,...,n (28)
whereby
Y2
B ¥ .
B(X)=<~ >’ j = . >
¥ n Y
Yn
and hence

det B(x) = (y; — "B~ 'y)det B,

showing that (— 1)"det’ A(x) (= det B(x)) > 0 holds if and only if y, > " B~ !j. This
condition means that (y,,..., y,) should belong to a certain open, solid paraboloid
in R", that is, x should belong to the image of that paraboloid under the inverse
of the substitution (28). W
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The axis of the paraboloid #'(A) is parallel to the vector (1,..., 1); this appears
from the above proof. The boundary 0.#°(A4) is the unique paraboloid (surface)
passing through the columns a; of A and having at g, the tangent hyperplane x; = 0.

Theorem 6. With the above changes (and their obvious consequences) all the major
results in Sects. 1 through 4 (in particular the theorems) carry over to the Euclidean
case when we replace throughout H by E (=R?), p;'p; by 3Ip;— p;|?, (linearly)
independent by affinely independent, and determinants det A by the associated derived
determinants det’ A.

(See however the last paragraph of the present section as to the quite different
use of determinants to specify a half-space. Also note that the expressions for D(A4)
in Remark 4 do not carry over in general.)

Proof. The counterparts to the remaining Theorems 2, 3, and 4 could be obtained
by a limit procedure from the hyperbolic or the spherical case. We prefer, however,
a direct approach. The key is the counterpart to Lemma 2.1, obtained by making
the following change in the proof of that lemma. (Note that n=d + 1 now.)
By differentiation of 4|p; — ps+ 11> = a; 4+, for fixed py,...,p; we get
da; g1 =(Pa+1—P:) dPa+1-

The d x d Jacobian matrix (0a; 4+,/0pj4+,) thus has the rows p,;,; —p;, and its
determinant therefore has the absolute value

JIdet B| = /| det’ 4]

on account of (26), (27) and the calculation

(Pa+1“Pi)'(Pd+1—Pj)=%|Pd+1_Pi‘2+%lpa+1—Pj|2‘%|(Pa+1—Pi)—(Pd+1—Pj)|2
=Qig+1 T dar1,j— A

= —b;.
For the inverse map(a; 441,...,844+1)—>Pa+, the absolute value of the Jacobian

determinant is therefore 1/,/|det’ 4|.

The proof of the counterpart to Lemma 2.2 begins with the observation that,
for n affinely independent points p,,...,p,, the Euclidean distance g(p,) between
p, and the affine span of p,,...,p,- is given by

|det’ 4,]
|det/ An— 1 l

(29)

o(p) =

in terms of the matrix A,=G|p;—p;|*); <. of class &, and the submatrix
An—1=4pi—Pj|*)ij<n-1- And this is because the (n — 1)-dimensional volume V of
the Euclidean simplex with vertices p,,...,p, is expressed in terms of the
edge-lengths |p; — p;| by the well-known formula

1
=(n—_1—)!\/ 'det, Anl

In fact, (n — 1)!V is the absolute value of the determinant with columns p; — p,,
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i=1,...,n—1, and hence
((n — D!V)? = det ((p; — pn) (p; — pn)) = det (— B) = (—1)" " 'det’ 4,

cf. (29), (26), and (27) above. Thus we merely have to replace sinh g(p,) by o(p,) in
the rest of the proof of Lemma 2.2.

From this point on the proofs in Sects. 2, 3 and 4 carry over mutatis mutandis.
Note that, in Sect. 3, H"(¢) should be replaced by E"(¢), the set of all n-tuples
(v1,...,p,) of points of E such that, for each k=d +2,...,n, the (d + 1)-tuple
(p1,.--,Pas D) is affinely independent, and oriented like (py,...,ps+,) (likewise
supposed affinely independent) if ¢, = 1, but with the opposite orientation if g, = — 1.
Similarly, in the corollary at the end of Sect. 3, the positivity of certain determinants
should now be replaced by the positive orientation of the (d+ 1)-tuples in
question. W
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