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Abstract. The integral of a function over the rc'th power of hyperbolic
d-dimensional space H is decomposed into integration along each orbit under
diagonal action on Hn of the isometry group G on H, followed by integration
over the orbit space, parametrized in terms of a complete set of invariants. The
Jacobian entering in this last integral is expressed explicitly in terms of certain
determinants. When viewing H as a half-hyperboloid in Rd+ *, G is induced by
the homogeneous Lorentz group θ\\,d) acting on Ud+1.
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Introduction

We shall consider a problem which enters in connection with the study of tensor
products of certain representations of the Poincare group and the Lorentz group.
These particular representations occur for example in the study of a free scalar
quantum field in Fock space, see e.g. Bogoliubov, Logunov and Todorov [1].

The problem is to give an explicit formula for the decomposition of an integral
over the nth power of hyperbolic d-dimensional space into integrals along the orbits
under diagonal action of the isometry group G on that space followed by an
integral over the orbit space, parametrized in terms of a complete set of invariants.

It can be shown that there is an integral formula of this kind in the case of
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isometric action on any Riemannian manifold. Our main purpose, however, is to
determine explicitly the relevant measure dμ on the orbit space via the stated
parametrization. For n > 1 this measure seems to be known explicitly only in the
simple case n = 2, cf. [1, Sect. 8.2]. In the present paper we shall treat the case of
an arbitrary number of "particles" n.

The explicit determination of the stated measure dμ does not seem to be
facilitated appreciably by drawing on the general integral formula alluded to above.
We have therefore preferred to give a self-contained presentation, including a
discussion of the invariant theory of the diagonal action in question (Theorem 1.1).

It turns out that the orbit space is a smooth manifold also in the non-trivial
case n>d+l (Theorem 1.2). This result is not essential for the determination of
the measure dμ in suitable local coordinates (Theorem 2 and 3), but it enters
naturally in a unified and permutation invariant presentation (Theorem 4).

Taking, e.g., rf = 3we use the well-known representation of hyperbolic 3-space
as the half-hyperboloid

endowed with its natural hyperbolic Riemannian metric as induced by the
pseudo-Riemannian metric — dx\ + dx\ + dx\ + dx\ on 1R4, and the corresponding
volume measure dH. The isometry group G is then induced by the homogeneous
Lorentz group Oτ(l,3) acting on [R4. The corresponding diagonal action on Hn is
defined by

as (Pi,...,pn) ranges over Hn. For this action we obviously have the invariants

fl0. = cosh dist (ph pj) = pϊpj, (2)

where px,...,pneH denote the positions of the n particles, dist denotes hyperbolic
distance, and pf p7 is the Lorentz inner product of pt and p} as vectors in IR4. This
set of invariants is complete. Since au = 1 and aβ = atj (§; 1), it suffices to let i < j ,
but even so there are relations among the a(j if n > 4.

Let Hn^ denote the open subset of Hn consisting of all n-tuples of maximal rank

rk(pu...,pn) = r:= min {n, 4}. (3)

Then Hn\HΊ has measure 0 with respect to the product measure dHn on Hn. To
each n-tuple (p 1 ?...,p n)eH\ we assign the symmetric n x n matrix A = (αί7 ) given
by (2). The range of the mapping ( p l 5 . . . ,pn)\-+A is the class sίnΛ of all symmetric
nx n matrices A = (αo ) with aa = 1, a{j ^ 1, positivity index: ind+ A = 1, and rank:
rk A = r from (3). The pre-image of each AesrfnA is an orbit under diagonal action
of G on i/^; this expresses the completeness of the set of invariants (2). The diagonal
action is bijective on each fibre if and only if n ̂  4. When n ̂  3 one must factor
out from G the orthogonal group 0(4 — n) in order to obtain bijective action on
the fibres. (Theorem 1.1.)

The matrix class stnA, thus representing the space of orbits in Hn under diagonal
action of G, is a (real-)analytic manifold of dimension
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( = 3 n - 6 if n>2) embedded in the Euclidean space Jίn ( ^ nni"-1)l2) of all
symmetric n x n matrices with diagonal entries 1. When n g 4, s/nA is simply an
open set in Jtn, but when n > 4 the manifold $inA has codimension ^(n — 3)(n — 4)
in Jtn\ this codimension is the number of relations between the invariants aip i < j .
(Theorem 1.2.)

The main result may now be stated as follows, using a suitable normalization
(see Sect. 1) of the invariant measure on G (Theorems 2, 3, and 4).

Theorem. There exists a unique positive measure dμ on the N-dimensional manifold
stfnΛ (representing the orbit space) with the property that, for any integrable function
fonHn,

f fdH"= J

where A\->(pί(A)9... ,pn(A)) denotes an arbitrary selection ofn-tuples of points ofH
such that, for any A = (

pi(A) pj(A) = aij.

For n^4,dμ is given as follows in terms ofLebesgue measure dλ on the open set

= dA = Y\daij. (4)

In the present case ofd = 3 space dimensions we have (denoting by ωk the "surface
area of the unit sphere" in Uk)

x = 1, c2 = ω 3 = 4π, c 3 = = 16π2.

For n ^ 4, dμ is given as follows when using as local coordinates in the manifold

nΛ the entries to the right of the diagonal in the first 3 rows of matrices

1
Π

i^3

(5)

where

a2ί

aί2

a22

uk2

023

033

0fc3

02/c

03k

with aik = akh akk=\.
The measure dμ of the theorem is of course invariant under simultaneous

permutation of rows and columns of matrices A of class s/nΛ (corresponding to
permutation of the particles p x , . . . , pn). Note that the two expressions for dμ coalesce
if n = 4, and that, in any case, only determinants of order r = min {n, 4} occur. For
n = 2 we obtain dμ = 4 π χ / l -a\2da12, in agreement with [1, Sect. 8.2]. For n = 3
we get dμ = Sπ2dA = &π2daί2da13da23.

The key to this result is the determination in Lemma 2.1 of the hyperbolic
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volume element dH{p) in a half-space H + in H (and similarly in lower dimensions),
using as parameters for the variable point p = p4 the numbers ai4 = pi p4r, where
Pi,ί= 1,2,3, denote 3 prescribed points of the bounding hyperplane dH+:

y/\detA\

the symmetric matrix A of class «a/4t4 having the entries

A further ingredient in the case n ̂  4 is the following known formula (and its
lower-dimensional analogues), entering in the proof of Lemma 2.2:

J\dctA\
s i n h ρ 4 =

 v , A 3 = ( α f j ) i J = l f 2 f 3 ,

where ρ 4 denotes the hyperbolic distance between p = p 4 and the hyperbolic
hyperplane through pl9p29P3

The rest of the proof of the above theorem is largely a matter of putting things
together, using Fubini's theorem, invariance of Haar measure, and performing
induction with respect to n. Actually, the whole analysis will be carried out in
arbitrary dimension d = 1,2,... in place of d = 3 as above.

In Sect. 5 we mention the completely analogous case in which the hyperbolic
d-space H in Ud+ί is replaced by the unit sphere S in Md+ί. And in Sect. 6 we
treat the intermediate case where H is replaced by Euclidean d-space E (endowed
of course with the group of Euclidean isometries). In this latter case the invariant
parameters atj = a^ are defined in terms of Euclidean distance, dist, by

cf. Menger [4] and Schoenberg [5], In (4) and (5) above, each determinant should
be replaced, in the Euclidean case, by the sum of all its minors.

1. Parametrization in the Hyperbolic Case

As a model of d-dimensional hyperbolic space H = Hd (d^ 1) we shall take the
upper sheet of the hyperboloid in Ud+1 with equation x x = 1:

where

d+l

- £ xkyk

is the Lorentz inner product of two vectors x = (x t,..., xd + x) and y = (y ί,..., yd +!)
of Ud+ί. For x,yeH we have

x-y = cosh dist {x,y),

where dist refers to hyperbolic distance.
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In this model a hyperbolic fc-plane is the intersection (if non-empty) of H and
a (k + l)-dimensional linear subspace of Ud+ ί. Points of H are said to be independent
if they are linearly independent as vectors in Ud+1.

The group G of isometries of H is induced by the Lorentz group Oτ(l,d), that
is, the linear self-mappings of Ud + ί which preserve xx and map the upper light-cone

1 | x x = 0 Λ x 1 > 0 } onto itself.
For any peH consider the fixed-point subgroup

Then G[p] = O(d) (clear for p = (l,0,...,0), and hence for any peH via a
transformation from G). The mapping which takes a left coset gG[p] into gp is a
bijection of G/G[p] onto H.

More generally we consider for any independent points pl9...9pkeH the
following subgroup of G (isomorphic to O(d + 1 - k) if k ^ 1):

GlPu - > P J •= {geG \gpx = pu..., gpk = pk}. (6)

On every compact subgroup of G we use normalized Haar measure (total
mass equals 1). On G itself (which is likewise unimodular) we normalize Haar
measure so that the above bijection GIG{jί\ ->iί becomes measure preserving for
one and hence for any choice of peH. The invariant measure on H in question is
the volume measure derived in the usual way from the (hyperbolic) Riemannian
metric on //, which is induced by — ds2, where

d+l

ds2 = dx\-Σ dx2

k = 2

is the pseudo-riemannian Lorentz metric on Ud+1.
The surface area of the Euclidean unit sphere in Uk is denoted by

_ 2πkl2

and we write ώ 0 = 1 and

ώk = ωkωk-1 •• ω 1 . (7)

(This number ώk arises as the total mass of Haar measure on O(k) in an alternative
and geometrically perhaps more natural normalization of that measure, in view
of the fact that the homogeneous space O(k)/O(k - 1) can be identified with the
unit sphere in Uk.)

Definition 1. For any neN we denote by s/n the class of all symmetric matrices

A = (αo ), i, j = 1,..., π, for which aH = 1, aυ ^ 0, and

ind+ Λ = l9 ind_ A = n—1,

and hence rk A = n. Replacing the condition ind_ A = n— 1 by

ind _ A = min {n — 1, d},

we obtain instead a class which we denote by s^n4+ι.
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Thus s/nJ+1 =<$/„ if n^d+ 1. Here ind + ,ind_, and rk stand for positivity
index, negativity index, and rank, respectively. For brevity write

r = m i n { M + l } . (8)

For any Aes/nd+1 we clearly have rkA = r and αi7 ̂ l , the latter because
auan — afj :§ 0 as a consequence of ind+ A = l.

Any principal k x k submatrix B of a matrix A of class sίn is of class s/k. In
fact, ind+ B ^ 1 because the diagonal entries of £ are 1, and ind_ B ^ k — 1 because
a hyperplane of negativity for A intersects Uk ( c Rn) in a hyperplane of R* or in
all of Mk.

For any ^ G J / W we clearly have

0, (9)

and hence aitan — afj < 0, that is

aij>l for iφj. (10)

Lemma 1. Consider a matrix Aes/n. In order that the bordered (n + 1) x (n + 1)
matrix

&β of class s/n + l9 it is necessary and sufficient that x belongs to the solid, open
half-hyperboloid

- l)ndet A(x) >0andx>0}

= {x€Un\xtA'1x>\ andx>0},

where x>0 means xt>0 for i = 1,...,n; and superscript t denotes transposition.

Proof An elementary calculation shows that, for any n x n matrix A,

whence the two expressions for jf(A) represent the same set in view of (9). If
A(x)e^n + 1 then each x, > 1 by (10), and ( - l)n detA(x)>0 by (9). Conversely,
this latter inequality implies ind _A(x) = n since the alternative ind_X(x) =
n — 1 ( = ind_ A) would lead to the contradiction (— 1)Λ~x det A(x) > 0. •

The boundary d$Γ(A) is one of the sheets of a hyperboloid centered at 0 and
having the tangent hyperplane xt = 1 at the point aiedc/f{Λ) given by the ith column
of A (recall that au = 1). It can be shown that the half-hyperboloid dJf(A) is
characterized by these properties.

Corollary. In order that a symmetric nxn matrix A = (αf</ ) with entries > 0 and
diagonal entries — 1 be of class s/n it is necessary and sufficient that

where Ak denotes the submatrix of A formed by its first k rows columns.
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L e t HI d e n o t e t h e s u b s e t of Hn c o n s i s t i n g of all n-tuples {pl9...,pπ) of p o i n t s

of H = Hd oifull rank, that is,

rk (/?!,..., pn) = r( = min {n, d + 1}).

If n S d + 1, H* c o n s i s t s of all independent n-tuples (pl9.. .,/?„) of points of H.
We proceed to show how the matrices of class s^nd+1 serve as invariants of

H\ under diagonal action of G. In terms of the (d 4-1) x (d + 1) matrix

we associate with each n-tuple (px,..., pn)eH\ (identified with the (d + 1) x n matrix
P = (p^ having pί9... ,pn as columns) its "hyperbolic Gramian"

A = PΈP

with entries (invariant under diagonal action of G)

<*ij = Pi'Pj = cosh dist(phpj)^ 1, (11)

where dist denotes hyperbolic distance in H. In particular, au=l.

The former part of the following theorem implies that the set of invariants (11)
is complete: Every function f(px,..., pn\ defined on Hn# and invariant under diagonal
action of G, is a function of the invariants Pi'Pp ί < j . (See also the corollary to
Theorem 1.2.)

Theorem 1.1. For any n the map (Pi,...,pn)^(Pi'Pj)ij=i,...,n ί 5 a surjectίon of H^
onto s#ntd+ί. Each fibre { — pre-image of some Aestfnjd+1) is an orbit in H\ under
diagonal action of G, cf. (1).

// H ̂  d + 1, the diagonal action of G is bijectίve on each fibre. If n^d, the
diagonal action of G/O(d + 1 — ri) is bijective on each fibre.

Proof We begin by showing that the symmetric matrix A = PΈP is of class s^nd+1

for any P = (pί9..., pn)eH%. Consider first the case n^d+ 1, i.e., r = d+ 1 (cf. (8)),
and write

with r — 1 entries — 1 and n — r diagonal entries 0. If P = (pl9.. .,/?„) belongs to
Hn^ we may adjoin n — r further rows to P so as to obtain a non-singular n x n
matrix U. Clearly

A = PEP = UΈn,rU

has i n d + X = i n d + £ π > r = l , ind_X=ind_£ π > r = r— 1 =min{n — l,d}, and so Aes/ntd+l9

invoking also (11). The case n ^ r f + 1 , where r = n, reduces immediately to the case
n = d + 1 because we may assume via a Lorentz transformation that pί9...,pn lie
in the x!,.. ., xn-space in Ud +1 and hence equally well on the hyperboloid Hn _ x in W.

Conversely, if A e j / M + 1 , the above argument may be reversed. In the case
n^d + 1 there is a non-singular n xn matrix U such that UΈ^U = A, and we
merely have to cancel the last n — r rows of U to be left with a ( i + l ) x n matrix
P = (px,..., pn) satisfying pt pj = atj. Since au = 1, each pt belongs to H u (— if); and
since au > 0, pί9... ,/?„ all lie on the same sheet if or — H. If they are on — H just
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replace P by — P. The case n ^ d + 1 reduces to the case n = d + 1 via the
identification of (R" with a subspace of (Rd+1 as above.

Next we note that the pre-image of any Λes/Λtd+ί under the map P\-^PιEP
of H^ onto ^/ntd+ι is an orbit in H\ under diagonal action of G (or just of
G/O(d + 1 — n) if n ^ d, cf. below). This expresses the well known property that the
hyperbolic space Hd is rc-point homogeneous for every neN. For any two n-tuples
(Pi,...,pπ) and (g l 9 . . . 9 g j in H^ we must show that there exists geG satisfying
gPj = q 3 for j = 1,..., n if (and only if) p^pj = qt-qj for all /, j = 1,..., n. First choose
^ e G so that hίpi =qί9 next (if r > 1) /i 2 ^G[^ 1 ] ( ^ O(d)) so that h2h1p2 = #2> e t c >
and finally / ^ e G ^ , . . . , #,._!] so that g:= hrhr-ί~ hί takes pr to gr. We have now
achieved that gpj = q} for j = 1,..., r. If n ^ d + 1, i.e., n = r, we are done. If n > d + 1,
then r = d + l , and geG, as constructed, satisfies automatically the remaining
conditions gpj = qj9 j = d + 2,..., n in view of the unique determination of a point
qoϊ H from the numbers q q} when ^ , j = 1,..., d + 1 are given independent points
of if.

As to the bijective action on fibres, suppose that the n-tuples (pί9...9pn)sH\
and (qί,...,qn)eH* belong to the same fibre, and that, e.g., pι,...,pr are inde-
pendent, hence likewise ql9...,qr. Choose geG so that gpj = qj for y ' = l , . . . , n
(possible as shown above). For any geG we then have gp 3 = q3-for j^r (and hence
for all j ^ ή) if and only g belongs to the coset ^ G [ p 1 ? . . . ,pΓ]. cf. (6). If n ^ d + 1
then GQ?!,...,/?,.] = {id}, and the action of G itself is therefore bijective on each
fibre. If n^d we must factor out the fixed point subgroup G[pl9...,pnJl^
O(d + 1 — n) in order to obtain bijective action on the fibres. •

Remark 1. In the case n^d+ 1 it is easy to impose on (Pi,...,p n)eH1 suitable
additional conditions designed to make (pi9..., pr) depend uniquely and analytically
(even algebraically) on Aestn%ά+1 ( = s/n). One may require for example (in addition
to each p} being in H) that the coordinates ptj of Pj satisfy ptj = 0 for i > j and
Pjj > 0. (This is well known from linear algebra and also geometrically obvious.)
This particular choice begins as follows:

Pl3 = *13> P23 = («23 ~ «12«13Vx/Π^], P33 =

if π > 2, whereby we write, for brevity,

It is easy to write down a scheme that permits a recursive determination of the
explicit expression for pί9... ,pn as functions of Aestfn, n ^ d + 1.

We denote (for n ^ r f + 1 ) by φn\srfn^>H\ the above particular analytic
right inverse ( = analytic selection in the fibres) of the map H\ -• s/n given by
(Pi9.",pn)t->{pϊPj)ij£H. Clearly φn is an analytic diffeomorphism of s#n onto a
submanifold of H\ of dimension \n{n — 1).

Returning to the case n arbitrary we denote by Jίn the \n(n — l)-dimensional
Euclidean space of all symmetric nxn matrices with diagonal entries 1, and we
endow Jίn with the obvious Euclidean metric and analytic structure.
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Theorem 1.2. s^nd+ι is a (real-)analytic submanifold of Jin of dimension

N = (r-\)(n-±r\ r = m i n { M + l } . (12)

Proof. For n ̂  d + 1 this is obvious because sίn%d + χ = srfn is then an open set in
Jίn. In the case n>d+ 1 we shall specify below suitable local coordinates for
j / n t d + 1 among the entries a^. Let iί < ••• <id+1 denote d+\ distinct subscripts
among 1,..., n, and consider any map

A matrix Aesrfnd+1 is said to be of class &f(il9...9id+1\ι) if

( - l ) « d e t ( α u ) u = 1 , , . . . , ί i i + 1 > 0 ,

and for each fce{l,...,n}\{il9...,id+1},

the "hat" over ι(k) indicating that this number among il9...9id + 1 should be omitted.
The first of these two conditions means that, if ( p l 5 . . . , p n ) is in the fibre of A
(cf. Theorem 1.1), then the (d+ 1)-tuple ( p / l ? . . . , p ί d + 1 ) is independent; and the last
condition translates similarly. The classes s/(il9...,id+ι;ι) are relatively open
subsets of s/Ktd+ί and form together a covering of s/Λtd+ι because a non-zero
vector pk cannot belong to every subspace of Ud + 1 which is spanned by d among
d-\-1 given linearly independent vectors p l l , . . . , p l d + 1 .

As local coordinates for srfn,d+1 in s/(iί9..., id+ι',ι) we take the entries aik, i < ίc,
s u c h t h a t e i t h e r i,ke{iu...Jd + 1} o r e l s e kφ{il9...9id+ι} a n d ie{iί9...9ι(k)9...,id+ι}.

The number of these entries is

For the proof that s/(il9...9id+1;ι) is an analytic manifold and that the stated
entries do serve as local coordinates we consider the typical case

where we are given a map ι:{d + 2 , . . . ,n}->{ l , . . . ,d+ 1}. In this case we write
briefly s/(ι) for sf(l9...,d+ l i). Let J denote the set (ordered in some fixed
way) of those N ordered pairs (ΐ,fc) for which either i , fce{ l , . . . ,d+l} or else
ke{d + 2,...,n} and /e{l,...,/(&),...,</+ 1}. Let J / ( / ) denote the open set in RN

consisting of all iV-tuples A = (aik)iitk)eJ for which the (d + 1) x (d + 1) submatrix

and the n — (d + 1) analogous submatrices

k = d + 29...9n9

all belong to stfd+1.
Consider the restriction map, or projection, π\Jln->RN defined by

= (Λίk)(£,fc)ej, A = [aik)Uk^n

If Aesrf{i) then π(A) is the N-tuple of local coordinates of A as specified
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above. Clearly π(A(ι)) cz jj(ι). We proceed to show that π(s/(ή) = <$?(ι). For any
A = (#ifc)(i,fc)€j£ (̂0 we define, using the notation of Remark 1,

in terms of the above submatrix Ad+1. Then det(pu...ipd+ί)>0. For each
k = d + 2,...,n and each sign εk = 1 for - 1 there is a unique point pk(εk) of H such
that

and further that

ε k det(p l 9 . . .9pik)9... ,pd +i,pk(εk)) > 0.

For each (n — d— l)-tuple

ε = ( ε d + 2 , . . . , ε π ) e { l , - i r - d - 1

we have thus defined altogether a mapping φ(ε)\A(i)-^Hr!¥ by

φ(ε){A) = ( P i , . . . , p d + 1 ,Pd + 2(βd+2λ >P«(O),

When composed with the analytic mapι/f:iί£->e£/M+1 (<^Jΐn) from Theorem 1.1,
given by ψ(pl9...,pn) = (pϊPj)iJύn9 this leads to the map

having the projection π as left inverse:

π°φ°φ(ε) = id,

and so indeed π(sί(i)) = stf(ί).
Next we show that each of the maps φ(ε):s7(ι)^Hl(c:(Ud+1)n) is analytic.

According to Remark 1, (p x , . . . ,p d + x) = φd+ ι(Ad+ί) depends analytically on Ad+ι

and hence on Άes7{ι), and so it remains to establish the analyticity of the map
A^Pkih) ( = Pk> f°Γ brevity) for any fixed ke{d + 2,...,n} and εk= ± 1 . It is
convenient to write

With any Aesrf(i) we have associated in the definition of J/(Z) the "submatrix"

B = (bij)i,j^d+l = (aτ(i),τ(j))ij^d

Invoking once more Remark 1, we write

which depends analytically on B and hence on A and satisfies

q. q. = bu = aτ(i)Mj) = pτ(i) p τ 0 ) , ij ^ rf + 1.

Consequently, there exists a unique isometry #eG such that

whence det ̂ r = εfc, the sign of det ( p τ ( 1 ) , . . . , pτ(d+ ί)).Jfeί....,ed+1 denote the columns
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of the (d + 1) x (d + 1) unit matrix, we note (cf. Remark 1) for h = 1,..., d that eh

is a linear combination of qγ,..., qh with coefficients that are analytic functions of
the bij with ij ^h(-^d), hence of the αι7 with ij ^ d + 1. Viewing g as a Lorentz
transformation of Rd + \ it follows that geh is the corresponding linear combination
of the gqj = pτU), j = 1,...,d. Since Pi,. .,pd+i are analytic functions oΐ Άd+l9 so
are therefore the first d columns geh,h^ d, of the Lorentz matrix g. Each entry of
the last column of g is plus or minus a minor which is a polynomial in the entries
of the first d columns (because g% = Eg~1E and det g = εk\ in particular an analytic
function oΐΛd+1 for Aestf(ή). We conclude that indeed pk(εk) = pk = pτ(d+i) = 9Qd+1
depends analytically on Aesrf{ι\ that is, on the proposed local coordinates of
Aes/(ή.

Each of the analytic maps φ°φ(ε):sί(ι)-+<stf(ι) is injective and has a relatively
closed range because of the continuous left inverse π. The ranges of these maps
corresponding to distinct (n — d— l)-tuples ε are disjoint. To see this, choose
ke{d + 2,..., ή] and note that pι(k)'Pk(\) Φ Pι{k)'Pk{-ϊ) because the bisecting hyper-
plane

contains, hence equals, the hyperplane spanned linearly by Pi , . . . , £,<*),...,/
and this latter hyperplane does not contain pι{k). Summing up, srf(i) is the union
of the 2n~d~i disjoint, relatively closed ranges (φ ° φ(ε))(s?(ι)\ each of which is
therefore open in s/(ι). It thus suffices to show that each such range is an analytic
manifold, embedded in Jtn and admitting the entries of A = π(A) as local
coordinates of Ae(φ°φ(ε))(^(ι)). But this is clear because the map^°φ(ε) defined
on s/(ι) is analytic and has the analytic left inverse π. •

As a corollary we have the following result, somewhat in the spirit of Hall and
Wightman [3], though dealing with real-analytic functions and altogether more
elementary.

Corollary. Every analytic function f which is defined in the open subset H^ of full
measure in Hn and is invariant under diagonal action of G has the form

for a unique and analytic function f defined on the manifold s/Λtd + 1.
If n ̂  d + 1 we have in fact / = / ° ( p r t , with φn as defined in Remark 1. And if

n > d 4-1 we similarly have f = foφ(ε)°πin each of the 2n"d"x relatively open sets
φ°φ(ε)(j/(0), εe{l, — l}w~d~\ and their analogues, which together cover ^ M + 1 ,
cf. the proof of Theorem 1.2. Clearly / i s well defined globally on s/nJ+1 by/ —f°φ
because / is constant on each orbit, that is, on each fibre of the map φ:H\^> srfnΛ + ί

from Theorem 1.1.

2. Integration in the Hyperbolic Case with n ^

We proceed to establish, for the case n ̂  d + 1, the formula (suitably interpreted)

dHn= ωd \det A\{d~n)/2dAdg
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in terms of the mapping (P l,... ,pn)h-+A = (P i P</) of H% onto stn and the diagonal
action of G/O{d + 1 - n), cf. Theorem 1.1. The notation is as follows (see (7) as to the
constants ώk):

dHn refers to the product measure on H". Note that Hn\H\ has measure 0.
dA refers to Lebesgue measure on the Euclidean space Jtn{ = Un{n~ί)/2) of

all n x n symmetric matrices A = (αy) with % = 1:

dA = Π daΨ

(For n = 1, Jίn = «B/Λ = {1} has measure 1.)
dg refers to Haar measure on G, normalized as described in Sect. 1, and also

to the induced invariant measure on G/O(d + 1 - n).
A complete formulation of the indicated result is given in the following theorem.

Theorem 2. Suppose 1 ^ n ^ d + 1. For any integrable function f on Hn we have

J
vv/zere

P(Λ) = (P l(A),...,Λ K

denotes an arbitrary selection ofn-tuples of points of H such that

Pi(A)'Pj(A) = aij9 ij = 1,..., n,

cf Theorem 1.1, and where we write (conforming with (/))

gp(A) = (gp1(Al...,gpn(A)).

Remark 2.1. In view of the last statement in Theorem 1.1 it is more instructive
to rewrite the inner integral in the above formula as follows:

ff(gp(A))dg= J f(gp(A))dg,
G G/G[p(A)]

where

denotes the subgroup of G consisting of those geG which leave p1(A)9...,pn(A)
fixed, while g = gG\_p{A)'] stands for a left coset in G modulo G\_p{A)\ and

Remark 2.2. It is clear from the beginning that the inner integral on the right in
the formula of Theorem 2 is independent of the particular choice of p(A). In fact,
if q(A) = (q1(A\...9qn(A)) is another such choice, we have qi{A) = g(A)pi(A) for
some g(A)eG, cf. Theorem 1.1, whence the assertion by in variance of dg.

Remark 2.3. For n = 1 the integration over stfn drops out and the formula reduces
to J fdH = J f(gp)dg for any peH. This equation is obvious in view of the chosen

H G

normalization of Haar measure dg on G, cf. Sect. 1.
For the proof of Theorem 2 we prepare two lemmas.
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Lemma 2.1. For any integrable function f on H and any prescribed d-tuple of
independent points pl9...9pd of H we have for ε = 1 or — 1,

f f(p)dH(p)= J

where H+ denotes the hyperbolic half-space

H+=H+(pu...,Pd):={peH\εdet(Pl,...9pd,p)>0},

while Ad is the matrix (aij) = (pi pj)iJ<d of class srf d, and tf{Ad) denotes the solid,

open half-hyperboloid in Ud consisting all points (alfd+1,...9 add+1) such that (writing
ad+i,i = ai,d+i and ^a+i,d+i = 1) the bordered matrix

is of class stfd+1 (cf. Lemma 1). For each such d-tuple [ald+ ί9...9 ad,d+ι) in
pd+ί(A) denotes the unique point of H+ for which

Proof For each (a1J+ί,...9adfd+1)GJ>Γ(Ad) the bordered matrix A=(aij)Ujύd+ιe
<s/d+1 has, by Theorem 1.1, the form aij = qi qj for some independent (d+1)-
tuple (tfi,...,tfd+i) °f points of H. Because qcq^ — Pi'Pj = ̂ ij for Uj^d we may
arrange via a transformation from G that qi = Pi for irgd, and further, if
necessary, by reflection in the hyperbolic hyperplane passing through pί9...9pd

that qd + 1eH + ; and then pd+1(A):=qd+1 is uniquely determined. The smooth
mapping (α M + 1 , . . . ,α d d + 1 )H->p d + 1 (/ l ) is a bijection of X*(Ad) onto H+ because
each point pd+1eH+ together with the given points pl9...9pd determine a unique
matrix A=(aij)iJ^d+ί of class s/d+1 such that pd+1 =pd+1(A).

In the rest of the proof we write, for brevity, pd +ιΐoτ pd+ι (A). By differentiation
of Pi'Pd+i= di,d+ι we obtain (since pί9...9pd are fixed)

δ iί (13)

When combined with Pi'Pd+ι= cii,d+ι and ad+ltd+ί = l9 this leads to the following
relation between (d + 1) x (d + 1) matrices:

ptf

w h e r e E = Ed+1 = d i a g ( l , - 1 , . . . , - 1 ) w h i l e t h e c o l u m n s of P a r e pl9...9pd+χ.
E q u i v a l e n t l y ,

]Pd+i dPd+ι
pd+1 ) = Q:=E(Pr1J (14)

The pseudo-riemanninan metric

xd+ι
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on Ud+1 induces the hyperbolic Riemannian metric dσ2 on H and in particular
on the hyperbolic half-space H+, the image of Jf(Ad) under the diffeomorphism

(aι,d+i> >ad,d+i)ι-+x = Pd + ι =Pd+ΛA) whose differential dx = dpd+1eUd+1 is
given in coordinates by

d

dxk = dpkfd+! = Σ qkjdahd+19 k^d+1,

according to (14). We thus find

/ d \2 d+l/ d \

dσ2= -( Σ qυdald+1 + Σ Σ 4kjdahd+ί
\7=1 / k=2\j=l J

d

d
= Σ (-rij)daifd+1dau+u

where

rij = qi'qj = qtiEqp ij^d, (15)

in terms of the first d columns ql9...,qd of Q, cf. (14). The last column of Q is
=pd+1, and we have from (13) with i = d + 1,

Finally, qd+ιmqd+i=pd+impd+i=:l, and consequently (r/7 ) from (15) extends to the
bordered matrix

Ί i ••• rld 0\

... r 0

o ... o 1/

It follows that

det (r y ) = det (β 'Eβ) = ( - l)d(det β ) 2 = ( - l)d(det P ) " 2 = ( - l)d | det A \~x

in view of the last equation in (14) together with det J = 1 and PtEP = A, viz.

For the volume element in H+ we therefore have the following expression in
terms of the parameters aίtd + ί9..., adyd + x :

1

Lemma 2.2. Suppose 2 ̂  n ̂  d + 1. For any integrable function f on H and any
prescribed (n— l)-tuple of independent points p 1 , . . . , p π _ 1 of H we have (cf. (6))

ί
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where

An-1 =(aij)i,jϊn-l =(PϊPj)iJZn-l-

The domain of integration $C(An_^) in the outer integral is the solid, open
half-hyperboloid in IR""1 consisting of all points (α l n,...,απ_ l π)G[R"+~1 such that
(writing ani = ain and ann = 1) the bordered matrix

is of class srfn. For each such (aίn9..., αM_ 1>w)e tf(An_ x), pn(Λn) denotes any point of
H such that

Remark 2.4. For n = 2 we have An_1 = (1), and the half-hyperboloid C/f(An_^) is
simply the interval I < α 1 2 < o o . For any aί2 (=a21) in this interval we have

An = l 1 2 ) G J / Π , and pn(An) denotes any point of the hyperbolic sphere

centered at px and of hyperbolic radius p given by cosh p = a12. The integral
over G\_px~] in the formula is the mean value of / over the stated hyperbolic
sphere.

Proof of Lemma 2.2. As in Remark 2.2 it is clear that the inner integral on
the right in the above formula is independent of the choice of pn(An). In fact,
if qn(An) denotes another such choice, we have qn(An) = h(An)pn(An) for some
h(An)eG[pί9...9pn-ι\ by Theorem 1.1. It is known that the hyperbolic distance
ρ(pn) between a point pneH and the hyperbolic (n — 2)-plane Hn span (pλ,..., pn_ x)
through Pi , . . . , A, -1 is given by

where An now denotes the extension oϊ An_ι by the entries ani = ain = Pi'pn and of
course ann = ί. For the case d = 3 this formula is found, e.g., in Fenchel [2, (17), p.
168].

Via a transformation from G we may arrange that the n—\ given points
p!,...,pn-ieH all lie in the xί9...9xn_x-space of Ud +1 and that their determinant
then is positive. Furthermore, for each n-tuple (aln,...9an-lr)eCtif(An_1) we may
choose pn(An) in the x^-.^x^-space of Ud+1 so that the nth coordinate pnn(An) of
pn(An) is positive. In fact, replacing Pi, . . . ,p π _i by gpl9...,gpn-i for some geG,
and accordingly pn(A) by gpn{A\ transforms the formula in Lemma 2.2 into the
similar formula for the function p^-^/(^~1p)•

Via the natural identification of the xx,..., xw-space of Ud+ x with Rπ, and hence
of the part of H in the xx,..., xπ-space with //„_ 1, we may now apply Lemma 2.1
(writing n—ί for d there) to ε = 1, the above (n— l)-tuple (Pi,...,p,,-i), and the
function

on Hn_1(czH) for fixed heG^p^^.^Pn^^]. The hyperbolic half-space i ί + in
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in our application of Lemma 2.1 is

that is, those pneHn-1 for which the last coordinate is >0. The matrix
and the point pn(An)eH*-1 serve as the matrix and the point denoted, in Lemma
2.1, by A and pd + 1(A\ respectively. We obtain

f

from which the stated result follows after multiplication by dh and integration over
G[pi,. . . ,p,,-i], while inverting the order of integrations. In fact, the orbit of
pn(An) under the action of the transformations heG[pί9...,pn-ί~] is a hyperbolic
(d + 1 — rc)-sphere of radius ρ(pn(An)). This sphere is situated in the hyperbolic
(d + 2 — n)-plane passing through pπ(AM) and perpendicular to the hyperbolic
(n — 2)-plane Hn-2 through pί9...9pn_1, the centre of the sphere being the
(hyperbolic) projection of pn(An) on H π _ 2 . And the hyperbolic, or Riemannian,
surface measure on this sphere G[p 1,...,pn_ 1]p r t(An) is ω d + 2 - π sinh d + 1"Mρ(pπ(^))
times the image of normalized Haar measure dh on G [ p x , . . . , pπ_ J = O(d + 2 — n)
under the map h\-^hpn(An), whence the result. •

Proof of Theorem 2. As to the trivial case n = 1 see Remark 2.3. Let therefore n ^ 2,
and take

cf. Remark 1. Apply Lemma 2.2 to the function pMι-^/(Pi,...,pπ-i,pπ) on H for
n — 1 given, independent points P i , . . . , pΛ-1 of H yields

F(p i, . . . , pn _ ! ) : = J /(p i, . . . , pπ _ i )d/ί(pπ) = ωd + 2 _ „

I d e t Λ K d ~ M ) / 2 Λ - 1

ί ..,' " L l - ^ Π ^ ί fiPu.- Pn-uhpMnm (16)

in the notation of Lemma 2.2, cf. (6). Suppose the theorem holds with n — 1 in
place of π, and apply it to the function F in (16) and the (n — 1)-tuple (p t (^ n _ t ) , . . . ,
p π _ 1 (^ π _ 1 ) = φπ_1(Aπ_1)) described in Remark 1 (taking n— 1 in place of n and
writing y4π_x in place of A). We obtain

f fdHn= J

J Idet/l^j ^ 1 - " " 2 Π da^Figφ^Mn-iVdg. (17)

(In the case « = 2 the integration over s/n^1( = s/1 = {ί}) drops out and (17)
becomes, by Remark 2.3, J /d i ί 2 = j FdH = J Figpjdg, valid for any p ^ H , e.g.

H2 H G

for p x = (1,0,..., 0) as in Remark 1.)
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where Gπ_ x denotes the subgroup of G consisting of all geG such that gx = x for
every xeH having its last d + 2 — n coordinates xn9...9xd+1 equal to 0. Note that
Gn-X does not depend on An_ί.

With a view at (17) we now take for ( p i , . . . , p n - i ) in (16) the (n— l)-tuple

(cf. Remark 1) for given geG and An_1=(αij)Uj^n_1esrfn-ι. Note that then
9Pi(An-i)'9PMn-i) = αin9 ί = 1,...,n - 1, as it should be. In place of pn(An) in (16)
take gpn(An), where pn(An) was specified in the beginning of the proof with reference
to Remark 1, and so

We thus comply with the requirement

9Pi(An-iygpn(An) = αin9 f = l , . . . , w - l .

Because Glgp1(An.1\...9gpn.1(An-iΏ=9Gn-ιg~\ we now obtain

= J lΛLΛ "i(d+1-n)/2 Π da* _ J f{gφn-Mn-i\hgpn(An))dh

noting also that φn _ x (An _ x) = Λφπ _ x (An _ x) when h e Gn _ x, and that Haar measure
dh on gGn-ίg~1 is the image of Haar measure d/ί on Gn_1 under the conjugation

In the rest of the proof we prefer to write A in place of An. By the continuity
of φn the integrand

in the above integral over Gw_ x is a measurable function of (g9 h9A)eG x Gπ_ x x stfn.
When integrating F(^φπ_1(y4π_1)) over G to obtain the inner integral in (17) we
may therefore invert the order of integrations so as to obtain from the above

1 Idetv4|(d~π)/2 w ~ 1

\F(gφn_ί(An_1))dg= f — — ,(d+1.n)/2 Π dαin$ f(gφn(A))dg
ωd + 2-nG jr{An_i)\UetAn_1\

y

 ί = i G

(18)

by right invariance of Haar measure dg on the unimodular group G, together with
the normalization of Haar measure dh on the compact group Gπ_ ί ^ 0(d + 2 — ή)
(with d + 2-n^d since n ^ 2).

Finally insert (18) in (17) and interchange integrations. This leads to the
formula stated in the theorem (with p(A) = φn(A)) when we note that ώd+2-n =

-nώd+ι-n according to (7) and further that

dαi}"γ\dαut= Π dαu = dA. •
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3. Integration in the Hyperbolic Case with n^.d+1

In this section we use, as parameters for Hn modulo diagonal action of G, the
entries to the right of the diagonal in the first d rows of matrices of class s/nd+l9

noting that this gives the correct number

of degrees of freedom, cf. (12), where now r = d + 1.

Definition 3.1. When n ^ d + 1 we denote by <stfdXn the class of all d x n matrices

A = (ciij) such that, writing

: -

<*di •*• add

the bordered (d + 1) x {d + 1) matrix

(cf. Lemma 1) is of class j/d+ι for each k = d+l9...9n.
According to Lemma 1 this means that Ad should be of class stA and that, for

each k as stated, (aίk,...,adk) should belong to the solid, open half-hyperboloid
Jf(Ad) in Ud. It follows that

aa=l, aiS>\ for iφj (i= l,...,d; ; = l,...,w).

Definition 3.2. For each (n — d— l)-tuple ε = (εd+2,..., εn) of numbers 1 or — 1 let
Hn(ε) denote the set of all n-tuples (pl9...,pn)eHn such that the numbers
εkdet(pu...,pd9pk\ k = d + 2,...,n, are all T^O and have the same sign as
det(p ! , . . . ,p d + 1 ) , likewise supposed # 0 . Further write

Hn = (J H"(e)
1 1

In geometric terms, (pl9...9pn)eHn(ε) means that pd+ί and /?Λ lie on the same
side of the (hyperbolic) hyperplane in H passing through Pι,...9pd (supposed
independent) if εk = 1, and on opposite sides if εk — — 1 (fe = d + 2,..., n).

These 2π~d~1 sets //w(ε) are disjoint, and each of them is open and invariant
under diagonal action of G. For n = d + 1 it is understood that (with ε empty)
Hd+1{ε) = H%+ x = Hd+ x = the set of independent (d + l)-tuples of points of H.

Lemma 3. Suppose n^d-i-1 and εe{l, — \}n~d~ι. The map

is then a surjection ofHn(ε) onto <srfdXn. Each fibre is an orbit in Hn(ε) under diagonal
action of G9 and this action is bijective on each fibre.

Proof. For n = d+l9 this reduces trivially to Theorem 1.1 because Hd+1(ε)
equals Hi+1 and s^dx(d+1) can be identified with stά+x. For n>d+l and any
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k = d + 1,... ,n, apply Theorem 1.1 (with d + 1 in place of n) to the matrix Ad;kes/d+1

(cf. Definition 3.1). This leads to an independent (d+ l)-tuple (Pi,. . . ,P
satisfying

pi'Pj = aij for ij=l9...,d,

By Theorem 1.1 applied to n = d each fibre of the map (Pi,-.,Pd)*-*(Pi'Pj) of
H^ onto s/d is an orbit under diagonal action of G, and this allows us to
choose the (d + l)-tuple ( p 1 ? . . . ,pd,pfc)e/ίί|.+ * in the fibre of Λd;k in such a way that
(Pi J >Pd) i s the same d-tuple for all k = d + 1,..., n. Next, if, for some k > d + 1,
εfcdetίp^. .jp^Pfc) has the opposite sign of d e t ( p l 5 . . . , p d + 1 ) , we replace pk by its
image under the (hyperbolic) reflection of H in the hyperplane in H passing through
Pi, . . . ,p d ; this change does not affect the value of pf pfc ( = aik\ i = 1,..., d. We have
thus proved that the map Hn(ε)\-^jtfdXn is surjective. The remaining assertions are
likewise easily derived from Theorem 1.1 applied to n = d + 1. •

We proceed to establish, for the case n ^ d + 1, the following formula (suitably
interpreted), valid in each of the sets Hn(ε):

dHn = ώd Π , 1 dAdg

V y i d t ^ J
in terms of the mapping (pl9...,pn)\-^A = {Pi'Pj) of Hn(ε) on jtfdXn described in
Lemma 3, and the diagonal action of G. The notation is as follows.

dHn refers again to the product measure on Hn. Note that Hn\Hn has measure 0.
dA refers to Lebesgue measure on the space (^udn~il/2)did + 1)) of all d x n

matrices A = (αι7) such that au = 1 and aβ = atj for i, j = 1,..., d:

dg refers to Haar measure on G, normalized as described in Sect. 1.
A precise formulation of the indicated result is given in the following theorem

(recall Definitions 3.1 and 3.2).

Theorem3. Leίε = (ε d+ 2,...,εn)e{l, — \γ~d~ι be given. For any integr able function
f on Hn(ε) we have

J fdW = ώd f Π /, * dA$f(gp(A))dg,
H»(ε) ^dxnk=d+i ^/\detAd.k\ G

where

p(A) = (Pί(A\ , Pn(A))eHn(ε\ A = ( f l y )e^ d x „,

denotes an arbitrary selection ofn-tuples in Hn(ε) such that

pi(A)'pj(A) = aij for i^d, g n ,

cf Lemma 3, and where we write
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Remark 3.1. Once p1(A),...,pd+1(A) have been selected in H subject to Pi(A)-
Pj(A) = dij for i S d, j ' ^ d + 1, the remaining points pk(A) are uniquely determined
by the remaining conditions Pi(A) pk(A) = aik for i' :g d9 d + 2 g /c ̂  n because of the
requirement that

Remark 3.2. It is clear from the beginning that the inner integral on the right in
the formula of Theorem 3 is independent of the particular choice of p(A). In fact,
if q(A) = (q1(A)9...9qn{A)) is another such choice (again in Hn(ε)) then we have
q^A) = g(A)Pi(A\ i = 1,...,n, for some g(A)eG, cf. Lemma 3.

Proof of Theorem 3. In the case n = d + 1, Theorems 2 and 3 coalesce because
Hd+1(ε) = Hl+\ ώ0 = 1, and sfdx{d+ί) may be identified with s/d+1.

In the remaining case n > d + 1 we suppose that the theorem holds with n
replaced by n — 1. We make a measurable selection (e.g. as in Remark 1) of
(d + 1)-tuples

j U (19)

so that

PtiBypjW^bij for U = l , . . . , d + 1 .

For any Λ = (aii)es^dXn define in terms of (19)

P/04) = Pj(Ad;d+1)> ./ = 1,..., d + 1,

noting that i4 d . d + 1 6^/ l H . 1 , and extend this uniquely (Remark 3.1) to a likewise
measurable selection of n-tuples

p(A) = (Pl(A\ • , pn(A))eHn(ε), A = (aij)esίd x n9

of the kind stated in the theorem. Replacing n b y n — l ( ^ d - h l ) and ε by

we obtain a similar unique measurable selection of (n — l)-tuples

In view of the uniqueness of the performed extension we have

Pj(A) = Pj(A) for J = 1 , . . . , H - 1 (20)

whenever A is obtained from A by adjoining an additional nth column.
By the inductive hypothesis we may apply the formula of the theorem to the

following function F of (n — l)-tuples of class H"'1^):

F(pu...9pn.1):= j f(pl9...9pn-l9pn)dH(pn)9 (21)
H(pι,...,pd+i;εn)

where we integrate over the hyperbolic half-space

H(pl9...9pd+1;en) =

det(Pl,...,^)
Hdet(pl9...,Pd+1)

 r '



Lorentz Transformations 501

the set of all pneH such that (pl9...,pn)eHn(ε). This leads to

J fdHn= f
H»(e)

^ $ F(gp(A))dg, (23)
^ χ ( n - i ) f c = d + 1 y/\detAd;k\ G

where

Inserting (21) in the inner integral on the right in (23) gives for any Ae£/dx{n_1)9

J F(gp(A))dg = \ dg f f(gp(A), pn)dH{pn)
G G H(gPί(A),..,gpd+ί(A);εn)

= \dg J f(gp(A\gpn)dH(pn) (24)
G H(Pι(A),...,pd+i(A);εn)

after performing the substitution pn^gpn in the inner integral.
We now apply Lemma 2.1 to the inner integral in the last expression in (24),

with pγ(λ\.. .,pd(A) playing the role of the d prescribed, independent points of H.
Take ε = εn if det{pι(A\... ,pd+ X(A)) > 0; otherwise take ε = — εn. Then H+ from
Lemma 2.1 becomes

H+=H(Pi(Al...,pd+ί(A),εn)

in the notation (22). For any point

(aln,...,adn)eJf(Ad)

and associated matrix AejrfdXn obtained by adjoining (aln,...,adn) to A as an
additional n th column, it follows from (22) and (20) that pn(A)eH+ because
n - 1 ̂  d + 1 and

Altogether, pn(A) may serve as the point of H+ denoted by pd + χ(A) in Lemma 2.1.
The inner integral at the end of (24) therefore equals

ί J——f{gp{A\gpn{A))t\dain= f _L_^/(gp(yl)) f[ dain

in view of (20). Inserting this in (24) and inverting the order of integrations leads to

$F(gp(A))dg= J * f\ dain$ f(gp(A))dg.
G a / \ d e t A \ i i G

Finally, the stated formula of the theorem arises from this when inserted in (23).
In fact, when A ranges over ^dx{n-ί) and for each such A the point {aln,...9adn)
ranges over tf(Ad\ then A as defined above ranges over <stfdXn according to
Definition 3.1, and we have

Ad = Ad, Ad;k = Ad;k for k = d+ l , . . . , n - 1 ,



502 B. Fuglede

and

dA = dλ]\ dain. •
ί = l

Corollary. Let p(A) = (p^A),..., pn(A))eHn, Aes/d x „, denote any selection such that

pi(A)'pj(A) = aij for i^d, j^n,

and

det(Pl(A),...,pd(AlPk(A))>0 for fc = d + l , . . . , n .

For any

s = (sd+2,...9εn)e{l-iY~d~1

write

p(A, ε) = (px(A)9... 9pd + 1(Alpd+2(A, ε),.. .,pn(A9ε)),

where, for k = d + 2,..., ft,

Pk(Λ'ε)-\h(A)pk(A) if * = - l ,

h(A) denoting reflection of H in the hyperbolic hyperplane in H passing through
p1{A\...,pd(A). For any integr able function f on Hn we then have

\fdW = ώd I Π 7 | * dA\ Σ f(9P(A,ε))dg.

In fact, for any ε as stated and any AejtfdXn, we have p(A,ε)eHn(ε), and

Pi(A, ε)-pj(A9 ε) = Pi(A) pj(A) = ai} for i £d9 jύ n.

From Theorem 3, with p(A, ε) in place of p(A\ we therefore obtain

f fdHn = ώd f Π / 1 dA$f(gp(A,ε))dg,
π«(ε) ^dxnk=d+i ^/|detAd ; f c | G

and it only remains to sum over all εe{l, - I}"" 4*" 1.

4. A Unified and Perturbation Invariant Form of the Result
in the Hyperbolic Case

When n > d + 1 the parameter space stά x „ used in Sect. 3 reflects a choice of d + 1
among the n points PieH. TO obtain a unified formulation of the result valid for
all n, and permutation invariant also for n > d + 1, we must use the full manifold
^n,d+i (cf Definition 1 and Theorems 1.1 and 1.2) of dimension

+ 1 = N = dn-\d(d + 1) ( = dim s/dXn)

and of codimension (in Jίn9 the symmetric n x n matrices with diagonal entries 1)

codim stfntd+i = i(ft — d)(n — 1—d).

Those matrices A€jt/ntd+1 for which each principal (d + 1) x (d + 1) submatrix of
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the form

K )u6{i,....d.*}» k = d+l,...,n,

is non-singular constitute the image s£n4+1 of Hn under the map from
Theorem 1.1, cf. Definition 3.2. This image s/Htd+1 is a (relatively) open subset
of s/Λtd+u and the rest of Λ / M + 1 has measure 0 with respect to the Riemannian
volume measure dλ on s/ntd+ί induced by the Euclidean metric on Jίn.

As local coordinates in £?n,d+ί we may use the entries to the right of the
diagonal in the matrices of class ^/dXn, cf. Definition 3.1. This follows from the
proof of Theorem 1.2 where we may now take (iι,...,id+1) = (l,...,d + 1) and

) = d+lforal lJfc = d + 2,...,n.
Consider now the restriction map, or projection,

consisting in deleting the last n — d rows of matrices A of class Λ / M + 1 . This
map is 2n~d~Mo-one. In fact, for each Aes/dXn and each ε = (ε d + 2 , . . . , ε j e
{1, — l} w ~ d " 1 there exists, by Lemma 3, an n-tuple (pί,...,pn)eHn(ε), uniquely
determined up to diagonal action of G, such that the n x n matrix A = (Pi'Pj) of class
j / M + 1 has A as a submatrix formed by the first d rows. Two such matrices A
corresponding to the same Aes/dXn, but to different choices of ε, are distinct
because the associated n-tuples (Pi,.. ,pn) are not on the same fibre for the map
from Theorem 1.1, by the invariance of each Hn(ε) under diagonal action of G, cf.
Definition 3.2 and subsequent comments.

In view of the above observations, Theorems 2 and 3 admit the following
unified formulation, valid for any number n of "particles" and symmetric in these.

Theorem 4. There exists a unique positive measure dμ on the N-dimensional manifold
J / M + 1 such that, for any integrable function f on Hn,

\fdHn = \ dμ(A)lf{gPι(A),...>0Pn(A))dg>

where A\-^(p1(A\.. .,pn(A)) denotes an arbitrary selection ofn-tuples of points ofH
such that, for any A = (aij)

This measure dμ is invariant under simultaneous permutation of rows and columns
of matrices A of class ts/Λtd+ί.

In the case n^d+l,dμis given as follows in terms ofLebesgue measure dλ on
the open set ^ n d + 1 = s/n in Jίn\

dμ = . ω* I det A | ( d " n ) / 2 dλ, dλ = dA = \\ datJ.
ωd+ί~n i<j

(25)

In the case n^zd+ \,dμ is given as follows on the open submanifold
of ^ntd+!, using the above local coordinates aip i ^d,i< j ^ n,
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Here the principal (d + 1) x (d+ 1) submatrices Ad;k of Aes/Λtd+1 are as specified
in Definition 3.1. Moreover, μ(^nj+ι\sinid+1) = 0, by definition.

Proof The above measure dμ has the property asserted in the theorem in either
case n ^ r f + 1 or n > d + 1, according to Theorem 2 and Theorem 3, respectively.
Conversely, let dμ denote any positive measure on sin>dJr ± with the stated property.
Choose a Borel set Γ a G of finite Haar measure c> 0, and consider, for any Borel
set si c sintd+1, the following subset of H\\

E = {{gPl(A)9...9gpH(A))\θeΓ9Aesf}.

The indicator function f of E then satisfies

1 if geΓ and Aesi

because the map (g, A)\-^(gp1(A)9..., gpn(A)) oϊΓ x si into H\ is injective according
to Theorem 1.1. Consequently,

Γ=μμ$f{gPl{A\. .,9Pn{A))dg~ij.
showing that dμ is indeed uniquely determined. •

Remark 4. The formula (25) for dμ in the case n > d + 1 extends to certain other
local coordinate systems, e.g. those considered in the proof of Theorem 1.2. In the
notation of that proof we have in the open subset si(il9. ..Jd + i' >1) of full dμ-measure

dμ = ώd

where

ij)ij=iί,...,id+ί f o r fc = d - f l

whi le J7df ly is t a k e n o v e r all c o u p l e s (i,j), i<j, w i t h e i t h e r i,je{iί,...Jd+1} o r

else jφ{ίu...Jd+1} and ie{iu...Jd+1}\{ι(j)}.
The stated formula for dμ can be obtained as in the proof of Theorem 3, or

alternatively by determining the Jacobian for the transition from the above system
of local coordinates to the particular system (aij)i^dJ<j^n used in Theorem 3.

As a consequence of the above one finds (for any n) that dμ has an analytic
density dμ/dλ ( > 0) with respect to the ΛΓ-dimensional volume measure λ on the
manifold sin%d+1. Writing this density in the form

dμ _ ώd

dλ~ JD{A)

we have found above in the case n = d+\ that D(A) = ( - \)ddetA for Aesin,d+ x

( = sid+1\in agreement with Theorem 2. When n = d + 2, siKtd +1 has codimension
1 in Jίn9 and D(^) turns out to be the sum of the squares of all the n(n — l)/2
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non-principal minors in A, or equally well the sum of all products of two distinct
principal minors in A.

For n — d>2 the expression for D(A) becomes increasingly complicated. For
example, in the case d= 1,« = 4, D(A) is minus the sum of all "non-cyclic" products
of 3 distinct principal 2 x 2 subdeterminants 1 — afj ( ^ 0), a cyclic product meaning
one of the form

(l-afj)(l-a%)(l-ait) with i<j<k.

It therefore seems preferable to leave the Riemannian volume measure λ on ^njd+ί

aside and stick to the above measure dμ itself, using for example one of its
expressions stated above in terms of local parameters atj when it comes to
computations.

5. The Spherical Case

In this short section we consider, instead of the hyperbolic d-space //, the unit
sphere S in Ud+1 given by

S={xeRd+1\x-x=l}

in terms of the Euclidean inner product x-y. Accordingly, G shall now denote the
isometry group O(d+ 1) of S. The hyperbolic functions cosh, sinh are of course
now replaced by cos, sin.

We denote in this section by srfn the class of all positive n xn matrices with 1
in the diagonal. In Lemma 1 the solid open half-hyperboloid J^(A) is now replaced
by the solid open ellipsoid

Each point x of C/C(A) satisfies |x f | < 1 for i = 1,..., n. The boundary dJt(A) is the
unique ellipsoid centered at 0, passing through the columns a x of A, and having
the tangent hyperplane x{ = 1 at ai9 i = 1,..., n.

Theorem 5. With the above changes (and their obvious consequences) all the results
of Sects. 1 through 4 carry over to the spherical case when we replace throughout H
by the unit sphere S.

It is understood here that Haar measure dg on G is normalized (in analogy
with Sect. 1) so that it induces the usual surface measure dS on S of total mass
ωd+1, when S is identified with G/G\_p~\. In this normalization the total mass of
dg is

j dg = ωd+ί
G

because Haar measure on G[p] ( ^ O(d)) is taken throughout to have total mass
1. However, in the present spherical case it is more consistent to normalize the
Haar measure also on G = O(d + 1) so that J dg = 1. With this latter normalization

G

the constant ώd occurring in Sects. 2,3, and 4 should be replaced throughout the
present section by cod+ι( = ωd+ιώd).
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6. The Euclidean Case

In this final section we replace the hyperbolic d-space H by Euclidean d-space E,
for which Ud serves as a model. Accordingly, G now denotes the group of Euclidean
isometries of E. Naturally, E = Ud is endowed with the Euclidean distance \x — y\
and with the standard inner product x-y. Haar measure dg on G is normalized so
that it induces Lebesgue measure dE on E when E is identified with G/G[p~\. If g
is written in the standard way

gp = up + v, ueθ{d\ veUd,

then dg = dudv.
For any nxn matrix A = (αo ) the sum of its n2 minors will be called the derived

determinant of A and denoted by det' A. Thus

det' A = —
ds

= - d e t
s = O

A e

e% 0

where the column e and the row eι have the n entries 1.
When au = 0 for all i we associate with A the following (n — 1) x (n — 1) matrix

fcu = α ϋ ~ α " ~ anp U j Φ n. (26)

It follows that det (A + 5) = det A + s det B (A + s having the entries α o + s) and
hence

det'Λ = det A (27)

Similarly if n in (26) is replaced by any index 1,..., n — 1.
In this section stn denotes the class of all symmetric nxn matrices A = (α/7 )

with an = 0, au ^ 0, such that the restriction of the quadratic form YΛaijxixJ to the
hyperplane xί + — h xn = 0 is negative definite.

Replacing here "negative definite" by negative semίdefinite and of rank r — 1, cf.
(8), we obtain the class to be denoted now by s/Ktd+i. With x l J . . . ,x I I _ 1 as
parameters for the above hyperplane, these last two conditions for A to be of class
<s*n,d+i translate into the same properties of the associated (n - 1) x (n - 1) matrix
J5, cf. (26), that is,

i n d + β = 0, i n d _ £ = r - l ( = min{n- l,d}).

In the case n S d + 1, that is r = n, we may write sin in place of srfnj + 1.

We obtain counterparts to the results of Sect. 1 when we replace the map

(Pn'-iPn^iPi'Pj) considered there by the mapping

of the set ££ of all π-tuples of points of E = Ud spanning an affΐne space of maximal
dimension r — 1 into the symmetric nxn matrices. The fact that this mapping
takes E\ onto our new class s^nd+1 is well known, cf. Schoenberg [4]. The rest
of these counterparts to the statements in Theorems 1.1 and 1.2 are established
mutatis mutandis.
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In place of Lemma 1 we have in the Euclidean case the following lemma related
to a result of Menger [3, p. 133].

Lemma 6. Consider a matrix Aes/n. In order that the bordered (n + 1) x (n + 1)
matrix

\ eR",

xn

be of class srfn + 1 it is necessary and sufficient that x belongs to the solid, open
paraboloid

JΓ(A) = {xeR" | (- l)ndet'A(x) >0} c Un

+.

Proof With A we associate, as above, a symmetric (n — 1) x (n — 1) matrix, now

called — J5, where B = {bij)Uj=2,...,n is defined this time by

bij = an + aXJ - aij9 i9 j = 2 , . . . , n.

With A(x) we similarly associate the symmetric n x n matrix — B(x\ where

B(x) = (bij(x))ij=2,...,n + i i s given by

( bij for ί, = 2,..., n

aiί-hxί-xi for ί = 2 , . . . , n , j = n+l

2x1 for i,j = n+ 1.

Then B is positive definite (because Aestfn). Similarly, A(x) is of class s/n+1 if and
only if x ^ 0 and B(x) is positive definite. The latter condition (which implies
2xx > 0) translates into det B(x) > 0, that is, ( - l)w det' A(x) > 0, by use of (27):

( - 1)" det' A(x) = (-l)n det ( - B(x)) = det B(x).
By the observation after (27), ( - 1)" det' A(x) > 0 implies x > 0, and so Jf(A) a Un

+.
To see that Jf(A) is a paraboloid we perform the substitution

y± = 2xl9

yi = an+x1-xi, for i = 2,...,n, (28)

whereby

and hence

det B(x) = (yι-ytB~1y) det B,

showing that ( - \f det' A{x) ( = det β(x)) > 0 holds if and only if yί > fB~ ιy. This
condition means that (yl9...,yn) should belong to a certain open, solid paraboloid
in (Rn, that is, x should belong to the image of that paraboloid under the inverse
of the substitution (28). •
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The axis of the paraboloid X(A) is parallel to the vector (1 , . . . , 1); this appears
from the above proof. The boundary dJf(A) is the unique paraboloid (surface)
passing through the columns at of A and having at at the tangent hyperplane xf = 0.

Theorem 6. With the above changes (and their obvious consequences) all the major
results in Sects. 1 through 4 (in particular the theorems) carry over to the Euclidean
case when we replace throughout H by E (=Ud), pi-pj by ̂ \Pi~ Pj\2> (linearly)
independent by affinely independent, and determinants det A by the associated derived
determinants det' A.

(See however the last paragraph of the present section as to the quite different
use of determinants to specify a half-space. Also note that the expressions for D(A)
in Remark 4 do not carry over in general.)

Proof. The counterparts to the remaining Theorems 2,3, and 4 could be obtained
by a limit procedure from the hyperbolic or the spherical case. We prefer, however,
a direct approach. The key is the counterpart to Lemma 2.1, obtained by making
the following change in the proof of that lemma. (Note that n = d + 1 now.)

By differentiation oΐ^\pi-pd+1\
2 = aUd+x for fixed px,...,pd we get

daiyd+1 =(pd+1 ~Pi)'dpd+1.

The d x d Jacobian matrix (daid+1/dpjfd+1) thus has the rows pd+ι —pi9 and its
determinant therefore has the absolute value

= > / | d e t ' i 4 |

on account of (26), (27) and the calculation

(Pd+i-Pi)iPd+i~Pj)=l\Pd+i-Pi\2+l\Pd+i-Pj\2-l\(Pd+i-Pi)-(Pd+i-Pj)\2

= -bij. (29)

For the inverse m2ίp(altd+l9...9adtd+1)\-*pd+1 the absolute value of the Jacobian

determinant is therefore l/^/\detr A\.

The proof of the counterpart to Lemma 2.2 begins with the observation that,
for n affinely independent points Pi , . . . ,p n , the Euclidean distance ρ(pn) between
pn and the affine span of pι,..., pπ_ x is given by

, , Idet'AJ

in terms of the matrix An — (\\pi — Pj\2\j^n of class srfn and the submatrix
An-1 = (2Pi — Pj\\jzn-i A n < l this is because the (n — l)-dimensional volume V of
the Euclidean simplex with vertices Pi,...,pn is expressed in terms of the
edge-lengths \pt — pj\ by the well-known formula

In fact, ( n - 1)!F is the absolute value of the determinant with columns pf — pn,
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i = 1,..., n — 1, and hence

«n - 1)\V)2 = dettfp, - pn) (Pj-pn)) = det(-B) = (-1)"" Met'Λ,

cf. (29), (26), and (27) above. Thus we merely have to replace sinh ρ(pn) by ρ(pn) in
the rest of the proof of Lemma 2.2.

From this point on the proofs in Sects. 2, 3 and 4 carry over mutatis mutandis.
Note that, in Sect. 3, Hn(ε) should be replaced by En{ε\ the set of all n-tuples
(Pii'->Pn) °f points of E such that, for each /c = d + 2,...,w, the (d + 1)-tuple
(Pi>*->PdiPk) is afϊlnely independent, and oriented like (Pi,...,Pd+i) (likewise
supposed affϊnely independent) if εk = 1, but with the opposite orientation if εk = — 1.
Similarly, in the corollary at the end of Sect. 3, the positivity of certain determinants
should now be replaced by the positive orientation of the (d + l)-tuples in
question. •
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