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Abstract. In this paper we will study the nonlinear Schrodinger equations:
iOu+tAu=ul*u, (t,x)eR x R?,
u(0,x) = ¢(x), xeR.. (%)

It is shown that the solutions of (*) exist and are analytic in space variables
for teR\{0} if ¢(x) (e H*"*"*(R")) decay exponentially as [x[— oo and n > 2.

1. Introduction and Results
We consider the nonlinear Schrédinger equations
0+ LAu=ul?u, (1,x)eR x R%, (1.1)
u(0,x) = p(x), xeR.. (1.2)

There are many works on the global existence of solutions to (1.1)-(1.2) in
appropriate Sobolev spaces (see [2-5,8,10-13], and references cited therein).
Furthermore it is known that (1.1)-(1.2) have a smoothing property that the
solutions become smooth for t # 0 even if their initial data are not smooth. More
precisely, in [7] it was shown that all solutions of (1.1)—(1.2) are smooth for t #0
provided that the initial data in H"21* 1-2(R") decay sufficiently rapidly as | x| — co.
Our aim of this paper is twofold. One is to show that if the initial data ¢ are
analytic and sufficiently small in an appropriate norm, then the solutions of
(1.1)—(1.2) exist globally in time and are analytic in space variables. The other is
to show that if the initial data ¢ in H*"**(R") decay exponentially as |x|— oo
and are sufficiently small in an appropriate norm, then the solutions of (1.1)—(1.2)
exist globally in time and are analytic in space variables for teR\{0}.
We give notation and function spaces used in this paper.

Notation and Function Spaces. We let L’(R}) = { f(x); f(x) is measurable on R,
i/p

|f(x)|L"(R;) < oo}, where If(x)lz,"(nz) = ( ,f |f(x)|"dx> if1<p<ooand lf(x)'Lm(lR';) =
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ess.sup {|f(x); xeR2} if p= o0, and we let H™P(R?) = { f(x) eL”(R")' Lf () gmoany =
ILF 7 A+ 1EPY™2F f10) | pany < 00}, where meR™, [¢|* = Z &, F11©=

{ e ™ f(x)dx (or f(£)) is the Fourier transform of f(x) and [F g](x)=

Ry

1
@R{ e*°g(&)d¢ is the inverse Fourier transform of g(¢), respectively. We denote
the L*(R")-scalar product by (-,-). For each r>0 we denote by S(r) the strip
{—r<Imz;<r;1<j<n}in C" For xeR", if a complex-valued function f(x) has
an analytic continuation to S(r), then we denote this by the same letter f(z), and
if g(z) is an analytic function on S(r), then we denote the restriction of g(z) to the
real axis by g(x). We let

AL"(r) = { f(2), f(2) is analytic on S(r), | f(2)| 4.p(y <

where
L@ pee = j j |f(2)[Pdxdy
r) (-1 R
=(2r)n82‘;-) lf(Z)l”dXdy if 1= p<®©
and
|f(Z)IALx(r) sup {If(z)l ze$ r)} if p=oo,
and we let

AH™(r) = { f(2)e AL0)1 (@) gmonry = [[F T L+ 1E)"2F 1) grogry < 0}

where meR*. We note that if meN, then

H™(R}) = {f (VLR f () gmogny = Y 105 (0)| oy < 00}

lal<m

A

and

AR = {f AL Elasmr= L 102 Easriy= 3 103 sy < 0 }
where a = (ay,...,a,)e(NU{0})" is a multi-index, 0 = 03! --- 0%, 82 = 05 --- 0%, and
|a|=ay + --- + a, For any interval I of R and any Banach space B with the norm
|'|g» we let C(I; B) = {f(t); f(t) is continuous from I to B, sup {|f ()|, tel} < o0},

m
C™(I;B)= {f(t)eC(I; B); sup{ Y 1011 (1)l tel} < oo ». Constants will be denoted
j=0
by C; (j=1,2,...). If necessary, by C; (*,...,*) we denote constants depending
only on the quantities appearing in parentheses.
We now state our results in this paper.

Theorem 1. We assume that ¢(x) has an analytic continuation to S(r) and
M= Y 1022 $(2) 312, is sufficiently small, where 28 = 2§ .--z0» and n 2 2.
lal+1Bl=2n+1
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Then, there exists a unique global solution u(t,x) of (1.1)—(1.2) such that u(t, x) has
an analytic continuation to S(r) and

u(t, z)e CH(R; AH* = 12(r)) n C(R; AH?"* 1-2(r)). (1.3)

Furthermore, u(t, z) satisfies

Z |angu(t» Z)|,24L2(,-) é Cl(M)a (14)

la| +|B]£2n+1

where
JE=Jb b, JZJ=ei'z'z/z‘itazje_i'z'zfz'=zj+it@zl, |z]? = Zzz.

Theorem 2. We assume that [F ¢] (&) has an analytic continuation to S(1) and
N = Y |022[F §1(2)|4 121, is sufficiently small, where n>2. Then there

ol + 1B = 2n+1
exists a unique global solution u(t, x) of (1.1)—(1.2) such that

u(t,x)eCY(R; Hz"—l'z(RZ))r\C([R; HZ"H'Z(R;)), (1.5)
PR Y(t, &) has an analytic continuation to S(1) and
P2 F )t 2) e C(R: AH2" (1)), (1.6)

Furthermore, e"2[F u](t, z) satisfies

0228 2L FuN(t, 2) 512, S Co(N). (1.7

lal +1Bl=2n+1

The paper was inspired by the work of T. Kato and K. Masuda [9]. In [9],
they proved that if the initial function of the Korteweg—de Vries or the
Benjamin-Ono equation has an analytic continuation to S(r) and is in AL?(r),
then the solution has an analytic continuation to S(r,) and is in AL*(r,) for some
time interval which depends on the size of the initial function, where r > r,. They
obtained the above result by making use of a class of Liapunov functions involving
a parameter. Their method is useful to prove the analyticity of solutions of another
type equations such as the Euler equation, the Navier—Stokes equation, nonlinear
Schrodinger equation, etc. Thus our result of Theorem 1 is similar to the result of
T. Kato and K. Masuda. However, their result is different from ours, since their
result follows from Theorem 1 immediately in the case of (1.1)-(1.2). In fact,
¢eALX(r) implies pc AH™?(r,) for any meN provided that r, <r, therefore by
Theorem 1 we easily see that the solution of (1.1)=(1.2) is in AH™(r,) if pe AL*(r).
Moreover, Theorem 2 does not seem to be obtainable by their method which
requires the condition r; <r.

In [13], J. C. H. Simon and E. Taflin obtained the global existence theorem
of analytic solutions for more general nonlinear Schrodinger equations than
ours in three space dimensions. They proved that the solutions are analytic in a
neighbourhood of R* x R? under the conditions on the initial data @(x) such that
the support of (&) is contained in {¢eR}(a+ 1) ' <|¢| <a} and (,b(é)eC“(R3)
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We note that their conditions on the initial data ¢ are stronger than ours (see
Theorem 1).
Our results are based on the following

Lemma 1. If f(z)e AH™(r), then we have

(2,.)2Iyl _ "

@iz = E 3y L7 0+ 1) 2F f109 ey (1.8)
where y is a multi-index, |y|=y,+ -+ 7y, Qy+ D)=Q2y, + 1)!---Q2y, + 1)\, and
Y = 3 . Conversely, for a function f(x) with a finite integral (1.8) on the real
Y ye(Nu{ohn

lines, there exists an analytic extension f(z) such that f (x)=f(x) ae. on R" and
f(z2)e AH™?(r) satisfying the identity (1.8).

Proof. Lemma 1 was already obtained in [6] in the case of one space dimension.
In the case of higher dimensional space, Lemma 1 is also obtained in the same
way as in the proof of one space dimension, and so we omit it (see Lemma 1 in
[6] for details).

We give some remarks on Theorem 2.

Remark 1. From Lemma 1, we have easily
22hl

0% POy
lel +181 5 2n+1 e+l 221 5 Qy+ DU L®y

22

- |7+ 500 2
Jal + Iﬁé 2n+1 Ey: Qy+ 1 LARY

n sinh 2x;
=Y P esgrdx. (19)
el +1giS2n+ 1 gn j=1  2X;
Thus the assumption of Theorem 2 is satisfied if the right-hand side of (1.9) is
sufficiently small. Namely, Theorem 2 is valid if the initial data ¢ in H*"*1%R")
decay exponentially as | x| — oo and are sufficiently small in the sense of the norm
1.9).

Remark 2. From Lemma 1, e"#*/2(t, z)e AL*(1) shows that

. 2217l 2/
R By = X Sy OB
220 1 ilel
Lo+ l)le’[g" 1R FUN (2, X) o
- !
220
N T2y + 1)!'ny(_ Dl x)le(R;)
Q™™ .
= 5 0 )
- |e‘“"2’2‘u(t, Z)|,24L2(Itl)’
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where U(t) is the evolution operator associated with free Schrodinger equations,
and we have used the fact that U(t)x"U(— t) = e~ *I7/2(it9 )"e!*1*/2 Thus Theorem
2 implies that the solution of (1.1)-(1.2) is analytic in space variables if teR\{0}.

Remark 3. Similar result of Theorem 2 has been obtained in [1] in the case of
semi-linear heat equations.

The paper is organized as follows. In Sect. 2 we prove the theorems. In Sect. 3
we give some lemmas which are needed for that purpose.

2. Proofs of Theorems 1-2

We will prove our theorems by making use of the contraction mapping principle
in function spaces stated below.

Proof of Theorem 1. For any r > 0, we define the Banach space B,(R) by
B, (R) = {v(t, 2)€ C(R; AL*(r)); |0(2) | 5, () = Sup {10(2) |, s t€R} < 0},
where |1(2)[3,, = Y 102J%0(t, 2) |3,y For any u(t,z)e B,(R) we define the

[Bl+]BlS2n+1

operator M by

t
Mo(t, x) = U(t)p(x) — i f U(t — s)u(s, x)*i(s, x)ds
(0]
We' denote by Bf(R) the closed ball in B;(R) with radius p >0, where
1/2
p= 2( Y 10%2° (2)| ALzm> . We will prove that if p is sufficiently small,

la| +]B)<2n+1
then the mapping M is a contraction map from B{(R) into itself. We only treat
the case t > 0, since t < 0 can be treated similarly. We put u = Mv, then u satisfies

idu+ 3Au=10%5, (t,x)eR* x R, (2.1)
u(0,x) = ¢(x), xeR (2.2)

We apply 02*%J% to Eq. (2.1) to obtain
10,07 %J8u + LAGY+ By = oV + B2, 2.3)

since [id, +34,0,7°J4]=0. Multiplying both sides of (2.3) by ((2r)*"/
(2y + 1)))o7**J%4, integrating in x and taking the imaginary part, we have
1d (2r)2
2dthizm @2y + 1)
(2r)?1"
lrIsm 2y + 1)

2p)21 1/2
é( Z (2r) |6v+aJﬂv ot x)IL(R ))
izm 2y + 1)!

(5 @™ o
<MZS:M (2')’ T 1)'| (t x)|L2(|R )> (24)

| 07 = J8u(t, X)

(02 *J%%4(t, x), 02 *Ju(t, x))
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where we have used the Schwarz inequality. From (2.4)

(2r)2|vl . 1/2
( Ly il O e )

2r)2lyl 1/2
é( l 2+ '[ ;yc+axﬁ¢(x)|i24n’;)
[7[Sm

:( Z (2r)2|v| rayp2 5 1/2
+ ——|6; *J v (s, X)| ;2 n> ds.
g izEm 2y +1)! F

We let m tend to infinity and use Lemma 1 to obtain

02%u(t, 2)| 120y S 1022 D(2) ] 412y + j |02J B0 (s, 2)u(s, Z—)'ALz(,)dS-

From this it follows that

U@y 0S L 1020 g + j)w(z)&@lmds

lal +]B1£2n+1

Applying Lemma 3.2 ((3.21)) to (2.5), we have

t
P Cy (149 D)3, s
0

u(z <
[u(z)|g, ) = 2

§2+C3 p j(l-&-s) "ds.

From this we have

14
{u(z)(gl(n) é E + C4'p3'

Let vj(t, z)e B{(R) (j = 1,2) and u; = Mv; be the solution of
i0u; + 3Au; =015, (t,x)eR* x R},
uj(0,x) = ¢(x), xeR.

In the same way as in the proof of (2.5),

t - -
IUI(Z) - uz(z)IB,(t) < jlvf(z)vl(f) - U%(Z)Uz(z—)lgl(s)ds-_

(V]

We apply Lemma 3.2 ((3.22)) to (2.9) to obtain

Iul(z) - “2(Z)|B,(|R) é C5'(|1)1(Z)|§l(m + |172(z)|129,(n))

-j'(l +8)"|vy(2) — Uz(z)|B.(s)ds

< Cop?|01(2) = 02(2) |,y

(2.5)

(2.6)

2.7
2.8)

(2.9)

(2.10)
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If p is sufficiently small, then (2.6) and (2.10) imply that M is a contraction map
from Bf(R) into itself. This implies that there exists a unique global solution of
(1.1)—(1.2) satisfying (1.4). From (1.4) and (1.2) we have easily (1.3). Q.E.D.

Proof of Theorem 2. We define the Banach space B,(R) by
By(R) = {t(2, x)€ C(R; L(R); 02)] 5, = $UP {[0(2) 3 LR} < 00},
where
[(2)l5,) = )y |oze =122z, iz
laj +|B]<2n+1

We denote by B5(R) the closed ball in By(R) with radius p >0, where
1/2
p=2< Y l@jz”q@(z)]uzm> . We let vj(t,z2)e B5(R) (j = 1,2) and consider

the Scllzlgdlli;rllégirelquations (2.7)-(2.8). By the Fourier transform we have
i0,(t, &) — 3117, &) = [Fvi5,1(1,€),  (1,9)eR™ x Ry,
2,0,6)= §(), e,
from which it follows that
10" (1, &) = "I LF v25 (1, €), (2.11)
(0, &) = P(&). (2.12)

In the same way as in the proof of (2.6) and (2.10), we have by (2.11), (2.12) and
Lemma 3.2 ((3.21')—(3.22)

| (Z)IBZ(R) 2 + C7p s (] = 172),

[ul(z) - uz(z)le(R) = Cspz ‘DI(Z) - UZ(Z)IBZ(R)‘

The above inequalities show that M is a contraction map from Bj(R) into itself
provided that p is sufficiently small. This implies that there exists a unique global
solution of (1.1)—(1.2) satisfying (1.5), (1.6) and (1.7). Q.E.D.

3. Lemmas

In this section we use the following notation:

PQird,) = [] (1 +(2ird, ) = n (1+@re) 7,
Px) = [T (1 +@x)")", b=g/([ ] )
Jji=1
Qla,r) = @y for aeNuU{0},

(a +1)!
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and
(2r)2
2y+ 1!
where [s] denotes the largest integer that is not larger than s.
We first derive several L* estimates for analytic functions which are proved

by using the Gagliardo—Nirenberg—-Sobolev inequality and the L* decay estimate
of the evolution operator associated with free Schrodinger equations.

Qy,r) =

for a multi-index 7,

Lemma 3.1. 1. Let 0*f(z)e AH"* *(r). Then we have
102f(2)| 41+ () < Col Pird,)02 f (2) 4oy
b/2
( T | PQird)oxts f(z)@w,)) . 3.1)

1Bl=[n/2]+1

2. Let 3*JE27Vf(z2)e AH"?*(r), for v<min (B —5,%), s < B. Here, v<min (S — 6, )
and 6 < f mean that v; Smin(f; — 6,,;) and 6; < B; (1 £ j < n), respectively. Then
we have

1031 (@) 4.2 < Cro(@t] ™" | PQRird )02 f (@) 4 2,

5 {(rz""IP(Zirﬁx)aj"”Jf_‘"“f(z)liu(,))”/z (3.2a)
vEmin(f - d,a)

s5p (N PQird)o: 2" f(2)] gz (3:2b)

18 =[n/2]+ 1

3. We assume that e""*12§(£) has an analytic continuation to S(1) and 0%"**2§(z)
€ AH"**%(1). Then we have

(10, e~ 2 g(2) 4y .y < Colt] ™2 PRIDIO2G(2) 2

b/2
< . —[2/21+ 1 |P(2i6x)02+ﬂen|z|z/2é(z)|imm) . (3.3)

4, We assume that e"’12EP=2=Y45(¢) has an analytic continuation to S(1) and
02 vell=11228 = 5= v(7)e AH"?2(1), where v < min (B — v,a), § < . Then we have
; —i|z|?/2
|(itd,)e =17 ‘92 ap

< C1o(a)| PQi3,)2%M124(2) {4

52';3 . '%—a )(IP(2i0x)6:"“e"‘z‘zlzzﬂ_"_”ﬁ(z)liLz(I))"lz. 3.9
Bl=tm21+1 '

Proof. By Sobolev’s inequality we have with m = [n/2] + 1,

b/2
|a:f(Z)IL°°(R';) = Cu |aZf(Z)|11}?m'i")< Z |6£6;f(z)|iz(R:)> B (3-5)

1Bl=m
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and
102/ @) =@y = e ixI*2ge £ @)=@n < Cr2lt]™"2103f(2) |12

b2
< Z |J£agf(z)|1%2(n’;)>

|Bl=m

b/2
( Y |J”6“f(z)|Lz(Rn)) .

[Bl=m

(3.6)

In the same way as in the proof of (2.8) in [6], we have for g(z)e AH"*?(r),

|g(z)|L 2R = 2"2( ) Iayg(x)lL (R

= 1"1 cosh 2y,¢;14() 2de. 3.7

Ry /=1
Since
cosh2y;¢; <1+ sinh 2|y;|¢;l,

from (3.7) and Lemma 1 it follows that with C,; =(2f ),

19(2) |2y < 2" ﬂ (1 +sinh 2 y;|1€;)1g(9)1*d¢
R} j=

<2 [ I3 2E0 0 4 o yig@1de

wim1 2l
nsinh 2r| ;|
s 11
e i=1 2r[&)]
© (2 )2v

oI 11 ZO ) 1—),|fh<1+4r2a:?)“4a<é)|2dc
R j=1y,

<Cys n Z Q1)

Ry j=17;=0

=Cis 200 r)lﬁy[f Mo+ 4r2£2)”“/g}(x)lm .

i=

— (L + 4r2ED) ()12 dE

dﬁ

&y [] (1 +4r2¢2

= ClSiP(erax)g(Z)lALZ(,)' (38)
We have by (3.5), (3.8) and the equality 020 f(z) = 0 f(z),

1021 (@) =@y < Cral PQIrd 031 (2) iz
b/2
(I IZ | PQird,)o**# f(z)]ALz(,)> )
Bl=m
This shows (3.1). We have by the Taylor expansion and Lemma A (see Appendix)

PEf@) =0y (i—yy,)—yaz“f(x) -y (—j)—mx(a, B
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In the same way as in the proof of (2.8) in [6],

0@y $2°3 ( 2yy’ 100, B0y (39)
By virtue of (3.9), (3.7) and (3.8),
832 ) g, < (/2P| PRIFBIL B) 1 2) (3.10)
Similarly we have
(807 (2 oty < (/2 PRIrOIL(, B S ) Bz G.11)

where L (2, f) = L, (21, 1) +- Ly, (&, B,) is the complex conjugate of L,(, ), namely,

7 b min@ s (BN (B~ SN[\
LopB)= X > <5’>< ! ’>< ’)(—I)Vij!(?;; J(zyj)"JJﬁj v,
8;=0 vj=0 j Vj Vj

We easily see that by (3.10) and (3.11)

Y. 17202 (@)= Cus@) L Y PQird )~ i)’ T (@)

|Bl=m 0<p v=min(f—d,a)
1Bl=m
(3.12)
and
> IJ”@“f(Z)ILzm)_Cm(a) ) Y |PQird)iy)o: T T f(2) ey
|Bl=m 6<p v=min(f—d,a)
|Bl=m
(3.13)

From (3.6), (3.8), (3.12) and (3.13) it follows that
[0%f(2)] oan = < the right-hand side of (3.2).

The inequalities (3.2) follow from the above immediately.
We next prove (3.3). We put f(x) = e~ "*I?'g(x) and r = |¢| in (3.1). Then we have

(120,711 g(2)] 1y .y S Colt] "2  Pitd,)(i10,%e ™ 2g(2) Aty

- b/2
'<|mz= | P(2itd,)(itd,)** P~ /Z'g(znjm,b) .
(3.14)

By Lemma 1 and a simple calculation (see Remark 2) we get
| Pitd,)(itd.) e~ 2 g(2) ] 12y = 2. Q0 1£)| O1P(2itd,) (i20,)%e~ /g (x) |2
Y
=00, DI ™2 P(2itd, )itd, ) * “e~ "2 g(x) 2 gn)
v

=2 00, DIUMOPRx)x"**U(~ )g(x) Frgn,  (3.15)
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The right-hand side of (3.15) = }’ Q(y, 1)| P(2i0)0} **[# U(— t)g1(&)| iz(Rg)
Y

=00 1)|agP(ziag)age“'é'z/Zg(c)|§zmg,. (3.16)
Y

Thus we have by (3.15), (3.16) and Lemma 1,
| Pitd, )(it0, e~ "12g(2) 2 ) = | PRIDIIE 242 2y (3.17)

By applying (3.17) to (3.14), we obtain (3.3). We finally prove (3.4). In the same
way as in the proof of (3.3), we put f(x) = e~ *I2'g(x) and r = |¢| in (3.2b). Then
we have

|20, ™ "1729(2) | 11 <y S Cio(@) 2] ™" | PQitd,)(itd.)e ™ 111 g(2) | 3y,
) Y (1P Pito,)(itd.)* i)™

6B vEmin(B—d,0)
[Bl=m
,jg—a—ve—ilz|2/2zg(z)l/zﬂ}(,m)b/z' (3.18)
By a direct calculation we have
|¢12190] P2itd,)(itd,)* ~ (i) T2 =2~ e~ 1 2g(2) ] o
= |20 | Pitd,)(it0, ) e TV (— it0, )P0 (2) 2 g
= |t|1#| P2itd,)(itd,)* e 112108 =07 g (2) |2 o) (3.19)
In the same way as in the proof of (3.17),
the right-hand side of (3.19) = |¢|*!#!|P(2i0,)02 "2 2# =2~ 4(2) 3 y).  (3:20)
By (3.18), (3.20) and (3.17) we have (3.4). Q.E.D.

The next estimates concerning the nonlinear term | f(x)|> f(x) are obtained by
using Lemma 3.1 and gauge invariance which the nonlinear term satisfies. It is
clear that | f(x)|2 f(x) satisfies gauge invariance since | f(x)|*w f(x) = w(| f(x)|> f(x))
for any complex number w with |w|= 1. We note that if f(z) is analytic on S(r)
and f(z)e AL"(r), then so is f (z) and | f(2)| aLrn = . =] f ()| 4Lr(ry- The restriction of f 2)
to the real axis coincides with f (x), and hence f(Z) f %(z) is an analytic continuation

of | f(x)|2f(x).
Lemma 3.2. 1. Let J2f(z), J8g(z)e AH'""*(r) for |a| + |B| < 2n + 1. Then we have

@S AD)p,0 < Crr (L + 1) IF @13, (3.21)
/(D1 42) — 9(2D9%(2) g,y < Cra (L + 1) (1 @13, + 195,02 f (D) — 95,0
(3.22)

2. We assume that e"*12E8 (&), ¢"412E83(E) have analytic continuations to S(1)
and e"71*228 f(z), &171°122845(z)e AH'(1) for || + 1Bl <2n+ 1. Then we have

IS @Dl py S Cro* (L +1E) 1S @)1}, (3.21)

Iﬁfz(z) - ﬁgz(z)lyz(,) _S_ C20'(1 + |t|)—"(|f(z)|32(;) + |g(z)|32(¢))2|f(z) - g(z)lnz(,)-
(3.22)
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Proof. By gauge invariance of |f(x)|?f(x) and a simple calculation

@223, < Cas y 10102 £ (2)- 022 £ (2)-84T2 £ (2) 2 12
la| =]y| +|5] + |ul
1BI=1v] +]t] + ol
lal+|Bl=2n+1
Ifa, b,ceN and a + b + ¢ £2n + 1, then at least two of them are less than or equal

to n. Therefore we have by the above inequality

I%fz(z)hil(t) é C22 Z |5:Jff(z)|1Loo(,)|f(z)|12;,(,,, (323)

lal +18l=n

where we have used the fact that

|04T2 £ (2) 4oy = 104T2 £ (2)] 41000y
By Lemma 3.1 ((3.1),(3.2a)),
1028 £(2)|% 2y S Ca3'(1 + |2])72"| Pird, )02 £ (2) 3520

( T PQird ) @)

lyl=In/21+1
2b
+ Z Z 29| P(2ir0,)0:~ vJry=dov g (z)lf1 Lzm)
o<y vSmin(y—d,a)
I7[=[n/21+ 1

< Coulr)1 +1t)) 22 £ (2) |:2(n/2’;)+|a| e <|J£f(z)|iH(n/2)+[n/2]+l+|z|.2(r)

2b
+ Y y IJf""_'s—"f(z)|iH(n/2)+|a-v|.2(,)) . (3.24)
pl=tmaen =T
Since (n/2) + [n/2] + 1 + |a| + |B| = 2n + 1, we have by (3.24)
y |Zﬂ| 10372 £ (@) ey = Cas(r)(L +121) ™21 1 (2) 5,y (3.25)
al+|B|=n

From (3.25) and (3.23), (3.21) follows. We have
f@f*2) - 9(@)g%2) = _@(ﬂ(z) — g%(2) + (f(D) — 9(2))g%(2) -
=f@Nf(2) — g [ (2) + 9(2) + (f(2) — 9(2)g’(2). (3.26)

In the same way as in the proof of (3.21), from (3.26) we obtain (3.22) immediately.
We next prove (3.21'). By the same argument as in Remark 2 we have

fOfD20,= Y ) e P2l f@) @) gy (27

laj +|Bl=2n+1

By a direct calculation, the right-hand side of (3.27) is dominated by
Cse > |(i20,)7e = 121*120) £ (2)-(it0,)’e ~ 1113 £ (2)

Ja| =]y + 18] +ul
[Bl=1vl +[z| + ]l
la| +|B1£2n+1

(itd e 1'00 £ (D)3 2y
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Therefore we obtain in the same way as in the proof of (3.23),

If@f*2)I3, = Can . Y 10, e f(2) 4 ) S D) By (328)
al+|Bl=n
By Lemma 3.1 ((3.3), (3.4))
|(itaz)ae—iIzIZ/Ztagf(z)Iij(ltl)
< C28'(1 + lt')—2n|P(Ziax)ageitlzhlzzﬁf(z)I:(lfz(—ll;)

< Y |PQid)3 e 2 f(2))2 L

Iyl=[n/21+1
. R 2b
+ Z Z |P(2iax)a;—vezt|z|2/22ﬂ+v—é—vf(z)liLz(1)>
d=<y v<Smin(y—d,a)
I7=[n/2]+1

_ . - _ 2 a
S Chor (L +12]) 2"|eulzlzlzzﬁf(z)m(}}(n/g))+|a|,2(1)'(leulz' /zzﬂf(z)l,zqmnmﬂn/znt+|a|,2(1)

2b
+ Z Z |e""'2/2"’”'"‘"f(z)limn/zwa—v».z(l)) (3.29)
65y v=min(y—d,a)
IyI=[n/21+1

Since (n/2) + [n/2] + 1 + |a| + | 8] £ 2n + 1, we have by (3.29),
| |+%|< |(i20,)%e = 1208 f(2) 4wy = Cao' (L + 1) 2"/ @)50  (3:30)

From (3.28) and (3.30), (3.21") follows. In the same way as in the proof of (3.22), we
have (3.22') by using the proof of (3.21’), and so we omit it. Q.E.D.

Remark 4. We can treat more general nonlinear Schrédinger equations
i0u + 3Au = Alu|*’u, (t,x)eR x R",
u(O’ X) = ¢(X), XER:a

where AeR, peN for n =2, peN and p = 2 for n= 1. Moreover if we restrict our
attention to the local existence theorem of analytic solutions, our method is
applicable to the nonlinear Klein-Gordon equations,

Ot —Au+u=f(u), (tx)eRxR,
u0,x) = ¢y(x), 0u(0,x)=¢y(x), xeRj,

where f(4) is a real analytic function of 4, ¢,(x) and ¢,(x) have analytic
continuations to S(r) and ¢,(z)e AH?*"*1%(r) and @,(z)e AH?>"*(r), respectively.

Appendix
Lemma A. We let Lx(aa B) = Lx,(ab :Bl) o Lx,.(ana ﬁn)a where
B min(B—dje) /@ —5\/a.
L 8)= % ) (?’)(ﬂ ! ’)( v’)( — 1)"v;1 087 (— iy;)Pig =,

8;=0 vj=0 j Vj J
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Then we have for any L (x, B)f(z)e ALX(r),
e R LA

Proof. Since [J,,0,,1=0ifj#k, we have

s 9= T1 2100 A1)
j=1
If we can prove that
(iy;)"” .
yzo yJJ Jﬂ1671+ f(x) yz @iy))" (%JLxJ(aJ, B f(x), (A2)
J= j* i

then the desired equality follows from (A.1) and the fact that
[(?lj, ka(alo ﬂk)] = 0 lf ] # k
We will show (A.2). For simplicity we drop the index j. By a direct calculation

J-times

B B ~—A— _
[Jﬁ,al+a]= Z ((S)[Jxa[‘]x”[']x,ai]]]‘]g s
=1

f(ﬂ><§>(—1)ﬁa!ag—v,ﬂ;—" for y2o.

5=0\0

0, for y<é.

Thus we have by the above equality
min(f,7)
Jho1f(x) = f (ﬁ)(Z’S)( —1)%310272J8 % f(x). (A.3)
6=0

By using (A.3) we get

(l y)y (iy)V min (8,7) ( ) 5 ip—s
= Jboro* = — -1y LA Ll
y;o o 7% W (x)= 0 52 o 5), ) L0 ()

Ms

min@n (' (iy) ( ) or-oJ8-3 >
y=0 &=0 ((V 5)' ¥ xf(x)

L& (iy)y” » 5<ﬁ> pd 7
S0y Ts — 5)6 Rl

-5 (’y_)’a;( 5 (—iy)"(ﬂ>J£“’0§f(X)>- (A4)
y=0 7! 5=0 4

We again use (A.3) to obtain

Jg—éa;f(x) _ min(ﬁz-'é,a) <ﬂ : 5)<:>(_ l)vvla‘;“‘VJﬁ""”f(x). (A.5)

v=0
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By (A.4) and (A.5)

PR

_ 0 (ly))' y min (B —é,a) —-6
‘EOW"*(EO @(ﬂ )(:)““””ai‘“-iy)"Jﬁ“““f(x))

= 3 Yot wprw.
y=0 ¥:
This shows (A.2). Q.E.D.
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