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Abstract. In this paper we will study the nonlinear Schrδdinger equations:

idtu + ±Δu = \u\2u, (f,x)eR x R£,

It is shown that the solutions of (*) exist and are analytic in space variables
for ίe(R\{0} if φ(x) (ςH2n+1>2(Rn

x)) decay exponentially as |x|-> oo and n ̂  2.

1. Introduction and Results

We consider the nonlinear Schrδdinger equations

ίdtu + ±Δu = \u\2u, ( ί ,x)eRxR£, (1.1)

u(Q,x) = φ(x), xeR"x. (1.2)

There are many works on the global existence of solutions to (!.!)-( 1.2) in
appropriate Sobolev spaces (see [2-5,8,10-13], and references cited therein).
Furthermore it is known that (1.1)-(1.2) have a smoothing property that the
solutions become smooth for t Φ 0 even if their initial data are not smooth. More
precisely, in [7] it was shown that all solutions of (1.1)-(1.2) are smooth for t ^0
provided that the initial data in H[li/2] + 1>2(R") decay sufficiently rapidly as |x| -> oo.
Our aim of this paper is twofold. One is to show that if the initial data φ are
analytic and sufficiently small in an appropriate norm, then the solutions of
(!.!)-( 1.2) exist globally in time and are analytic in space variables. The other is
to show that if the initial data φ in Jf f 2 l I + 1 2(R£) decay exponentially as |x|-»oo
and are sufficiently small in an appropriate norm, then the solutions of (1.1)-(1.2)
exist globally in time and are analytic in space variables for ίelR\{0}.

We give notation and function spaces used in this paper.

Notation and Function Spaces. We let LP(IR") = {/(x);/(x) is measurable on R",
/ \ I / P

< °°}> where 1/MlzΛoφ = ί \f(x)\pdx if 1 g p < oo and l/ίx)^ =
\Rj /
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ess.sup (|/(x)|; xeRJ} if p = oo, and we let Hm>p(Rn

x) = {/(x)eL'(RJ);

l L < o o } , where we(R+, | ί | 2=t

J e~ixξf(x)dx (or /(£)) is the Fourier transform of /(x) and [̂ Γ

"ϊ
1

^rr^ J eixξg(ξ)dξ is the inverse Fourier transform of #(£), respectively. We denote
(2π) Rj

the L2(lR")-scalar product by ( , ). For each r>0 we denote by S(r) the strip
{ - r < Im Z; < r; 1 ̂  j ^ n} in C". For xeIR", if a complex- valued function /(x) has
an analytic continuation to S(r), then we denote this by the same letter /(z), and
if g(z) is an analytic function on S(r), then we denote the restriction of g(z) to the
real axis by g(x). We let

ALf(r) = {/(z);/(z) is analytic on S(r), |/(z)|XLP(r) < oo},

where

and

and we let

LLP(r) < co},

where we(R + . We note that if we 1^1, then

and

where α = (α^ . . . , αJe(N u {0} )Λ is a multi-index, S£ = 3 ;̂ - - - 5«"n, d*z = d*\-~ d%9 and
|α| = <*! + •••+ αn. For any interval / of R and any Banach space B with the norm
| |β, we let C(/;5) = {/(ί);/(ί) is continuous from / to β, sup{|/(ί)|B; tεl} < oo},

Cm(7; 5) = < f(t)eC(ϊ, B); sup ^ £ | a//(ί)|β; ί e/ > < oo V. Constants will be denoted
I U'=o J J

by C7 (7= 1,2,...). If necessary, by Cj (*,...,*) we denote constants depending
only on the quantities appearing in parentheses.

We now state our results in this paper.

Theorem 1. We assume that φ(x) has an analytic continuation to S(r) and
M= X \d*zβφ(z) \2

AL2(r) is sufficiently small, where zβ = z{1 - - - zβ

n

n and n^2.
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Then, there exists a unique global solution u(t,x) of (1. !)-(!. 2) such that u(t,x) has
an analytic continuation to S(r) and

+^2(r)). (1.3)

Furthermore, u(t,z) satisfies

(1.4)
\a\ + \β\£2n+l

where

n
jβ ϊβi ϊβn T ^i\z\2/2tjf^ ~ — i \ z \ 2 / 2 t i fpι \~\2 V1 τ2
Jz ' Z l * J

Z n5 JZj — e ll°zje — zj-rltVzji \Z\ — 2^ Zj

7 = 1

Theorem 2. We assume that ^φ] (ξ) has an analytic continuation to S(\) and

N= Σ l^z/?[^Γ</)](z)I^L2(i) ίφs sufficiently small, where n^.2. Then there

exists a unique global solution u(t,x) of (!.!)-(1.2) such that

eιt\ξ\ I2[^u\(t,ξ) has an analytic continuation to S(\) and

Furthermore, elt^2/2[^u](t,z) satisfies

The paper was inspired by the work of T. Kato and K. Masuda [9]. In [9],
they proved that if the initial function of the Korteweg-de Vries or the
Benjamin-Ono equation has an analytic continuation to S(r) and is in AL2(r),
then the solution has an analytic continuation to 5(rj) and is in AL2(r^) for some
time interval which depends on the size of the initial function, where r>rv. They
obtained the above result by making use of a class of Liapunov functions involving
a parameter. Their method is useful to prove the analyticity of solutions of another
type equations such as the Euler equation, the Navier-Stokes equation, nonlinear
Schrodinger equation, etc. Thus our result of Theorem 1 is similar to the result of
T. Kato and K. Masuda. However, their result is different from ours, since their
result follows from Theorem 1 immediately in the case of (!.!)-(1.2). In fact,
φεAL2(r) implies φeAHm'2(r^) for any weN provided that rί <r, therefore by
Theorem 1 we easily see that the solution of (1.!)-(!.2) is in AHm^(r^ if φeAL2(r).
Moreover, Theorem 2 does not seem to be obtainable by their method which
requires the condition r1 < r.

In [13], J. C. H. Simon and E. Taflin obtained the global existence theorem
of analytic solutions for more general nonlinear Schrodinger equations than
ours in three space dimensions. They proved that the solutions are analytic in a
neighbourhood of IR + x 1R^ under the conditions on the initial data φ(x) such that
the support of φ(ξ) is contained in {ξeR\\(a + 1)~ l £ \ξ\ £ a} and 0({)eC14(lφ.
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We note that their conditions on the initial data φ are stronger than ours (see
Theorem 1).

Our results are based on the following

Lemma 1, If f(z)eAHm>2(r\ then we have

n \ y \

where y is a multi-index, \y\ = y1 + — h γn9 (2γ 4- 1)! = (2γί + l)\ -(2γn + 1)!, and
Σ = Σ Conversely, for a function f(x) with a finite integral (1.8) on the real

γ ye(Nu{0})"

lines, there exists an analytic extension f(z) such that f(x) = f(x) a.e. on Un and
f(z)εAHm'2(r) satisfying the identity (1.8).

Proof. Lemma 1 was already obtained in [6] in the case of one space dimension.
In the case of higher dimensional space, Lemma 1 is also obtained in the same
way as in the proof of one space dimension, and so we omit it (see Lemma 1 in
[6] for details).

We give some remarks on Theorem 2.

Remark L From Lemma 1, we have easily

22 |y l

ΣZ-i - i x i 1

1)!

Σ ί Π .\x^xφ(x)\2dX. (1.9)

Thus the assumption of Theorem 2 is satisfied if the right-hand side of (1.9) is
sufficiently small. Namely, Theorem 2 is valid if the initial data φ in H2n+1'2(R"x)
decay exponentially as \x\ -> oo and are sufficiently small in the sense of the norm
(1-9).

Remark 2. From Lemma 1, e''"2|2/2w(ί,z)e,4L2(l) shows that

22|y|

_ y (2\t\) I ay -, |
~ Λ |x|2/2(
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where U(t) is the evolution operator associated with free Schrόdinger equations,
and we have used the fact that U(t)xyU(- 1) = έΓ ί |x |2/2ί(iffljVW2/2ί. Thus Theorem
2 implies that the solution of (1.1)-(1.2) is analytic in space variables if ίeR\{0}.

Remark 3. Similar result of Theorem 2 has been obtained in [1] in the case of
semi-linear heat equations.

The paper is organized as follows. In Sect. 2 we prove the theorems. In Sect. 3
we give some lemmas which are needed for that purpose.

2. Proofs of Theorems 1-2

We will prove our theorems by making use of the contraction mapping principle
in function spaces stated below.

Proof of Theorem L For any r > 0, we define the Banach space B^R) by

8^)= {^z)6C(RMLV));IΦ)lJ,l(R) = sup{|φ)|Jl l( f);ί6R} < oo},

where |φ)βl(f) = Σ I^KMI^or For any v(t,z)eB1(R) we define the
\β\+\

operator M by

Mv(t, x) = U(t)φ(x) - i J U(t - s)φ, x)2v(s, x)ds.
0

We denote by B^R) the closed ball in B^R) with radius p>0, where
/ y/2

p = 21 Σ \dΛzβΦ(z)\AL2(r) j We W*H Prove that if p is sufficiently small,
'

then the mapping M is a contraction map from B^(R) into itself. We only treat
the case t > 0, since t < 0 can be treated similarly. We put u = Mv9 then u satisfies

idtu + \Au = v2ϋ, (ί,x)e!R+ x R"χ9 (2.1)

w(0,x) = 0(x), xeRn

x. (2.2)

We apply dy

x

+ΛJβ

x to Eq. (2.1) to σbtain

idtdl+ΛJβ

xu + \Δdl+*Jβ

xu = dl+ΛJβ

xv
2v, (2.3)

since [idt + ±Δ,dy

x

+"Jp

x] = 0. Multiplying both sides of (2.3) by ((2r)2|y|/
(2γ -f l)!)δ^+αJfw, integrating in x and taking the imaginary part, we have

1/2

l/2 (2 4)
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where we have used the Schwarz inequality. From (2.4)

,1/2

/2

/2

Σ

We let m tend to infinity and use Lemma 1 to obtain

From this it follows that

Σ l^z^+ίl^z) !̂̂ . (2.5)<x\ + \β\^2n+l 0

Applying Lemma 3.2 ((3.21)) to (2.5), we have

2 o

2 o

From this we have

W + C4 p3. (2.6)

Let Vj(t,z)eBp

1(U) (j = 1,2) and u} = Mv} be the solution of

id,uj + ±Δuj = v]vs, (t, x)eR+ x R^, (2.7)

u/0,x) = <£(*), xeR^. (2.8)

In the same way as in the proof of (2.5),

|Ml(z) - u2(z)\BM ^l\v\(z)Vί(z) - v2

2(z)v2(z)\Bί(s)ds. (2.9)

We apply Lemma 3.2 ((3.22)) to (2.9) to obtain

|Ml(z) - w2(z)|Bι(R) ̂  C,^^^)!!̂

(2.10)
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If p is sufficiently small, then (2.6) and (2.10) imply that M is a contraction map
from B^M) into itself. This implies that there exists a unique global solution of
(!.!)-( 1.2) satisfying (1.4). From (1.4) and (1.2) we have easily (1.3). Q.E.D.

Proof of Theorem 2. We define the Banach space J32(IR) by

B2(R) = {ι;(;,x)eC(R;L2(r));|φ)|β2(K)-suP{|φ)|β2(ί);ίG^} < oo},

where

- V \daeίt]zl2/2zβv(t z\\2

(r ~~ Z-t I z υ\l>*'\AL2(\Y

We denote by B$(U) the closed ball in B2(R) with radius p> 0, where
/2

- We let Vj(t,z)eBp

2(U) (j = 1,2) and consider
a\

the Schrόdinger equations (2.7)-(2.8). By the Fourier transform we have

from which it follows that

ίdte
itlξl2/2ύj(t, ξ) = elt^2/2[_^Oj](t9 ξ\ (2.1 1)

(2.12)

In the same way as in the proof of (2.6) and (2.10), we have by (2.11), (2.12) and
Lemma 3.2 ((3.21'H3.22'))

\Uj(z)\B2(U) + CΊp\ (7=1,2),

\u,(z) - u2(z)|B2(R) ̂

The above inequalities show that M is a contraction map from B%(U) into itself
provided that p is sufficiently small. This implies that there exists a unique global
solution of (1.1)-(1.2) satisfying (1.5), (1.6) and (1.7). Q.E.D.

3. Lemmas

In this section we use the following notation:

P(2irdx) = Π (
7 = 1 7 = 1

P(2x) = Π (1 + (2XjW\ b =
7 = 1
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and

(2r)2|y|

Q(y> r) = - f°r a multi-index v,
*U (2y + 1)!

where [5] denotes the largest integer that is not larger than 5.
We first derive several L°° estimates for analytic functions which are proved

by using the Gagliardo-Nirenberg-Sobolev inequality and the L°° decay estimate
of the evolution operator associated with free Schrodinger equations.

Lemma 3.1. 1. Let d*f(z)eAHn+i'2(r). Then we have

2.
and δ^β mean that v
we have

/ Y/2

.( Σ \P(2irdx)dl+»f(z)\2

AL2(r}) . (3.1)
\|0| = [n/2]+l /

)eA//π/2^^^
v,- ̂  min (βj — δp α,-) and δj ̂  βj (1^7^ n\ respectively. Then

2 (3.2a)
2. (3.2b)

3. We assume ί/iaί e"lί|2/2^(ξ) /jas an analytic continuation to S(l) and d"ze
ltWl2g(z)

eΛ//"+ 1 2(l). Then we have

/ \*/2

• Σ \P(2ίdx)dΓβeίmβW2AL>W) (3-3)
\ !0 |=[w/2]+l /

4. We assume that elt^2/2ξβ~δ~vg(ξ) has an analytic continuation to S(l) and
d*z-

veitlz{2l2zβ-δ-vg(z)eAHn/2>2(\), where v ̂  min(β - v, α), δ ̂  β. Then we have

(3.4)

Proof. By Sobolev's inequality we have with m = [rc/2] + 1,

!L ,̂( Σj^/(z)|2χ)J
/2, (3.5)
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and
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b/2

ΣJ

Σ I
β\=m

In the same way as in the proof of (2.8) in [6], we have for g(z)εAHn/2>2(r)9

(3.6)

Since

cosh 2y^ ̂  1 + sinh 2\yj\\ξj\,

from (3.7) and Lemma 1 it follows that with C13 = (2^/2)",

= c 1 3J Π Σ

Π Σ βίy/.'

1 l
J = l

We have by (3.5), (3.8) and the equality dβ

xd*J(z) = d*z

+βf(z),

J

| / ϊ |=m

6/2

(3.7)

(3.8)

This shows (3.1). We have by the Taylor expansion and Lemma A (see Appendix)
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In the same way as in the proof of (2.8) in [6],

| * r (3.9)

By virtue of (3.9), (3.7) and (3.8),

l'ίW)βχ> ̂  (^ri^ΐrajL.ία, ]8)/(z)|2L2(r). (3.10)

Similarly we have

where Lx(α, /?) = Lxi(oc^ β\) ~ LXn(an, βn) is the complex conjugate of Lx(α, /?), namely,

βj mm(βj-δjta

M« ,̂)= Σ Σ
<5, = 0 v, = 0

We easily see that by (3.10) and (3.11)

Σ ι^/(z)i?V)^c15(α) Σ
X

\β\=m

(3.12)

and

Σ l^/(z)lfv,^C16(α) Σ Σ l^irδJίi^-^-'-Yίz)!^.
| j 3 |=m X θ^/3 vgmin(^-^,α)

l / » l = m

(3.13)

From (3.6), (3.8), (3.12) and (3.13) it follows that

|L°>") ̂  the right-hand side of (3.2).

The inequalities (3.2) follow from the above immediately.
We next prove (3.3). We put/(x) = e~ ilx}2/2tg(x) and r = \ 1 1 in (3.1). Then we have

^ V/2

Σ
(3.14)

By Lemma 1 and a simple calculation (see Remark 2) we get

= Σ βίV. 1)1 t/ίtWΣxίx^ C/ί- %WI&(R«,. (3.15)
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The right-hand side of (3.15) = Σβ(y, l)\P(2idξ)dl+x^U(-t)gm\2

L^
y

= Σ 0(7. IPPW '̂1*12/2^)^,,.,. (3.16)

Thus we have by (3.15), (3.16) and Lemma 1,

\POitd \titf) W~' | z |2/2'ί7fzϊl2 — \PCiirl WV' l |z |2/2flίzϊl2 Π 17Ϊ\r\J-ll<Jx)\ll-υz> e y(z)\AL2(\t\) \Γ\LlυxlυzK y\z'\AL2(lY \ > lll

By applying (3.17) to (3.14), we obtain (3.3). We finally prove (3.4). In the same
way as in the proof of (3.3), we put /(x) = e~'M2/2'g(x) and r = \t\ in (3.2b). Then
we have

lxLχ ( |«i) ̂  Clo(*m-nl2\P(2Mx)(itdz)*e-Wi2>g(z}\\-L>>:(IΊ)

(\t\2w\p(2itdx)(itδzγ-*(it)M
S&β v^min(β-δ.x)

By a direct calculation we have

(3.19)

In the same way as in the proof of (3.17),

the right-hand side of (3.19) = \t\2W\P(2idx)d"z-
ve"^2/2zβ'δ~vg(z)\2

AL2(ir (3.20)

By (3.18), (3.20) and (3.17) we have (3.4). Q.E.D.

The next estimates concerning the nonlinear term \f(x)\2f(x) are obtained by
using Lemma 3.1 and gauge invariance which the nonlinear term satisfies. It is
clear that |/(x)|2/(x) satisfies gauge invariance since |ω/(x)|2ω/(x) = ω(|/(x)|2/(x))
for any complex number ω with |ω| = 1. We note that if /(z) is analytic on S(r)

and/(z)e/lί/(r), then so is/(ϊ[and \f(z)\ALP(r) = \m\ALP(rY The restriction

to the real axis coincides with /(x), and hence /(z)/2(z) is an analytic continuation

of l/(χ)l2/(χ)

Lemma 3.2. 1. Let Jξf(z), Jξg(z)eAHM 2(r)for |α| + \β\ ̂ 2n+l. Then we have

Bι(()^C17 (l + |t|)-"|/(z)||ι((), (3.21)

(3.22)

2. We assume that e"^2/2ξff(ξ), e"W>2ξl>g(ξ) have analytic continuations to S(l)
and e"|z|2/2z"/(z), eίI|2|2/2z^(z)e/lH|ot| 2(l)/or |α| +J^| g 2« + 1. Then we have

" ()^C19 (l + |ί|)-"|/(z)||2((), (3.21')

(322')
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Proof. By gauge invariance of |/(x)|2/(x) and a simple calculation

z)\l (,) ̂  C2ι Σ \slJlf(z)'dδ

zJ
τ

zf(z) B^
M
|/?| = |v| + |τ| + |

If α, fe, ce N and α - f f c - l - c ^ 2 n + l , then at least two of them are less than or equal
to n. Therefore we have by the above inequality

\W)f2(z)\2

Bί(t) ^ C22 Σ |3J/i/WliL.wl/WlS l W (3-23)

where we have used the fact that

By Lemma 3.1 ((3.1),(3.2a)),

+ Σy
|y|=[n~/2]+l

£C24(rχi + |t|Γ
" \

+ Σ < Σ a IJΓ' 'ΎWI^'+i-^w)"- (3.24)
|T| = W2]+1

Since (n/2) + [π/2] + 1 + |α| + \β\ ̂  2n + 1, we have by (3.24)

Σ \s"Jlf(z)\ΛL*M^C25(r)(l + \t\Γ2n\f(z)\Ltr (3 25)

From (3.25) and (3.23), (3.21) follows. We have

- g(z))(f(z) + g(z)) + (/(z)) - g(z))g2(z). (3.26)

In the same way as in the proof of (3.21), from (3.26) we obtain (3.22) immediately.
We next prove (3.2Γ). By the same argument as in Remark 2 we have

l/W2(z)lί2(l)= Σ l(^z)V-ί|z|2/2'^/(z)/2(Z)βt2(|ί|). (3.27)
|α| + l 0 l ^ 2 n + l

By a direct calculation, the right-hand side of (3.27) is dominated by

c26
\a\ =

v\ + \τ\ + \ω\
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Therefore we obtain in the same way as in the proof of (3.23),

l70/2(z)||25ΞC27 Σ l(iίδz)^-iW2/2'^/(z)|^«(|1|)|/(z)||2(r). (3.28)
M + I0IS"

By Lemma 3.1 ((3.3), (3.4))

ί^-i|z|2

ί C28 (l

+ Σ Σ
d^y v^min(y

| y |=[n/2]+l

2&

\y\=[n/2] + l

Since (n/2) + [n/2] + 1 + |α| + | β\ ^ 2n + 1, we have by (3.29),

\\L^ ^ C30 (l + |ί|)-2Ί/ωii2(f). (3.30)

From (3.28) and (3.30), (3.21r) follows. In the same way as in the proof of (3.22), we
have (3.22') by using the proof of (3.2 1'), and so we omit it. Q.E.D.

Remark 4. We can treat more general nonlinear Schrodinger equations

where λeR, pef^J for n ̂  2, peN and p ̂  2 for n = 1. Moreover if we restrict our
attention to the local existence theorem of analytic solutions, our method is
applicable to the nonlinear Klein-Gordon equations,

dttu -Δu + u= f(u\ (ί, x)e R x R",

where f(λ) is a real analytic function of λ, φ^x) and φ2(x) have analytic
continuations to S(r) and ^iίzJeX/f2""^1'2^) and φ2(z)eAH2n'2(r), respectively.

Appendix

Lemma A. We let Lx(α, β) = LXl(α t, βj - - - LXn(απ, jSπ),



40 N. Hayashi and S. Saitoh

Then we have for any Lx(a,β)f(z)εAL2(r),

Σ (^Jβ

xdϊΛf(x) = Σ ̂ f <^Lx(α, β)f(x).
y γl y γl

Proof. Since [Jx ., dxj = Qttj*k, we have

If we can prove that

00 ( j v \Vj 00 / • \ y .

Σ «r/M= Σ ̂  sϊL.Mtm (A.2)
then the desired equality follows from (A.I) and the fact that

We will show (A.2). For simplicity we drop the index;. By a direct calculation

δ-limes

for y^5.
= < s=o

.0, for

Thus we have by the above equality

By using (A.3) we get

Σβ o

f
oo (JΛ*}7~δ

y UW_δr-a(_ , )ί

r-ί(y-ί)! -

Λ'υ)y / ί / Λ \ \

(A.4)

We again use (A. 3) to obtain

min(/ϊ-,5,α) / / ? ε\ /

(A.5)
v = 0 \ V / \ V
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By (A.4) and (A.5)

V^> \*yj Λy j /

This shows (A.2). Q.E.D.
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