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Abstract. Investigation of 2d conformal field theory in terms of geometric
quantization is given. We quantize the so-called model space of the compact
Lie group, Virasoro group and Kac-Moody group. In particular, we give a
geometrical interpretation of the Virasoro discrete series and explain that this
type of geometric quantization reproduces the chiral part of CFT (minimal
models, 2d-gravity, WZNW theory). In the appendix we discuss the relation
between classical (constant) r-matrices and this geometrical approach.

1. Introduction

In this paper we continue an investigation of 2d conformal field theories in terms of
geometric quantization (see [1-3]). As demonstrated in our previous papers, the
standard geometric quantization method [4] can be reformulated in terms of the
path integral approach. In [2] the correspondence between the coadjoint orbit and
the irreducible representation of compact Lie groups was explicitly realized by
means of the functional integral. More precisely, we constructed in [2] a quantum
mechanical system, such that the path integral with boundary conditions gives
matrix coefficients of the corresponding irreducible representation. The action
functional of this system is defined by the canonical symplectic structure Ω on the
given coadjoint orbit and a Hamiltonian H(X\ which is a function on the orbit:
S = $d~lΩ — $H(X)dtι this action is a functional of trajectories on the orbit. Later
in [3] using the same rules, we described quantum field theory on the coadjoint
orbit of infinite dimensional Lie groups (Virasoro, Kac-Moody) and the properties
of the corresponding action functional investigated. In particular, we have shown
that for the Virasoro group the geometrical action, written in terms of group
variables F(x)€diϊϊS1 differs from the action in 2d gravity [5] by the extra term
J b0FF'dxdt, where the number b0 parametrizes generic coadjoint orbits. (A similar
statement is true also for Kac-Moody group and WZNW model.) In the language
of geometric quantization the appearance of SL(2, R) current algebra in 2d gravity
is the consequence of symplectic geometry, and as it was shown in [3] Virasoro
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geometrical action can be obtained from the SL(2,R) Kac-Moody one by the
Lagrangian version of the Drinfeld-Sokolov Hamiltonian reduction (see also [6]).

Here we will give a slightly different type of geometric construction in which all
representations of the group are considered simultaneously and on the same
footing. More precisely, using the path integral approach, we will quantize the so-
called model space, i.e. such space that its quantization yields all representations of
the group with multiplicity one. This space is larger than the coadjoint orbit
(roughly speaking, it contains an extra variable which parametrizes the orbits and
the conjugate moment). The corresponding Hubert space splits into the direct sum
of all irreducible representations. Model spaces for compact semisimple Lie
groups have been studied earlier in [7]. (So far, we have been unable to compare
our construction with those in [7].) We believe that the study of model space
provides a more natural language for geometric quantization, especially in the
infinite dimensional case. It seems likely that for Virasoro and Kac-Moody groups
the quantization of individual orbits gives rise only to Verma modules. By
contrast, quantization of the model space gives rise (see Sects. 3 and 4 below) to
their irreducible quotients. Moreover, this type of geometric quantization, as will
be explained in Sects. 3 and 4 reproduces the chiral part in conformal field theories
and therefore it is also a natural language for them. Physically, this construction
means that path integrals are averaged over the set of all orbits. More exactly, the
parameter which lables the Virasoro coadjoint orbit becomes a quantum-
mechanical dynamical variable. The geometrical action, defined in our previous
papers (more accurately its trivial generalization) plays in this construction a
crucial role. It defines the symplectic structure on the model space. Using the
technique developed in [1,2,3] it is possible to introduce the "Darboux" variables
for this symplectic form both in the finite dimensional case and in the Virasoro case
(in the Kac-Moody group case - only for the quantum-mechanical part). As a
result the path integral reduces to a sum over blocks, where each of them is also
path integral, but over a special set of orbits. For the case of the Kac-Moody group
this sum is finite and each block corresponds to an integrable representation of the
group (this construction gives precisely a chiral part in WZNW model). For the
case of the Virasoro group with Cq<\ we also get a finite sum, with each block
corresponding to an irreducible representation of the group (for exact an
statement, see below in Sect. 3) and the central charge also quantized Cq = 1

— 6——— the sum is over Virasoro discrete series. These properties are similar to

those for the finite dimensional case.
This paper is organized as follows. In Sect. 2 we consider the quantization of

the cotangent bundle T*G and model space for the compact Lie groups. In Sects. 3
and 4 using the path integral approach for the quantization of model space for
Virasoro and Kac-Moody groups correspondingly we reproduce the finite sums
in RCFT. In the appendix we discuss an interesting question on the relation
between the geometrical actions and classical r-matrices (without the spectral
parameter). Our main observation is that the geometrical action defines a
nondegenerate symplectic structure on the group (in the infinite-dimensional case)
where corresponding Poisson brackets are of the r-matrix nature. It means that
there is a relation between RCFT and quantum groups just on the classical level.
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We think that this observation together with the geometrical point of view on the
conformal field theory can explain in the future the appearance of quantum groups
in RCFT. We will return to this subject in future publications.

2. Quantization of the J*G and the Model Space

The most natural symplectic manifold, related to the group is T*G - the cotangent
bundle of the group G (in this section we will consider a compact Lie group G). By
using Hamiltonian reduction we replace it with a smaller space, which will be
called the model space. The quantization of this space yields all irreducible unitary
representations of the group with multiplicity one. The quantization of the model
space is performed via the path integral method. For concreteness we shall
consider below only the case G = SU(n). A generalization to arbitrary simple
groups is straightforward (cf. [2]).

The canonical symplectic 2-form on T*G is defined by

Ω=%trdXdg.g-l+tιX(dg.g-l)2)9 (1)

where g e G, X e <&* is the right-invariant moment, ^* is the space dual to the
corresponding Lie algebra .̂ As in [1-3] we define the geometric action on T*G as
a functional of trajectories on the T*G

-^Jα, (2)

here doc = Ω.
This geometrical action possesses two symmetries:

1) X(t)->X(t)9 g(t)-+g(t)hR,

2)

Here hR and hL are constant matrices from G. Using the parametrization

X-fXoΓ1, feG9

where X0 is a diagonal matrix we get

and in the notation g=f~1g the action acquires the form

(4)

/ is defined modulo transformation /-»/Λ, with heH; H is the stationary
subgroup of X0, i.e. h is a diagonal matrix from the Cartan subgroup of G.

In new variables the global symmetries (3) are expressed by

2) g(tHg(ί),

It means that g(/) possesses only right (left) symmetry.
There is also an additional local symmetry in the action

Kί)-»goWg(t), (6)
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where g0(ί) belongs to the stabilizer of the Cartan subalgebra, i.e. g0 is such an
element of the group that X0 = g0^ogo 1 is again diagonal. The eigenvalues of the
matrices X0 and X0 coincide and both are diagonal, it means that the subgroup of
G formed by these transformations contains a component, which acts on the
eigenvalues of X0 as a permutation, and therefore this action can be identified with
the corresponding Weyl group.

Let e\ i = 1, . . ., n be an orthonormal basis in the n-dimensional complex vector
n

space, in which X0 is a diagonal with eigenvalues 2m?(ίί), . . .,2m°f; Σ m|0) = 0. Using
i

the symmetry with respect to the permutations, discussed above, we may impose
the restriction m° ̂  w° ̂  . . . §; w°, which is a fundamental domain of the Weyl
group, the Weyl chamber. Then it can be shown (see [2]) that each term in (4)
acquires the form

i tr X0dgg ^ = \i mf(t) {_(dab at) - (atda^ , (7)
^ i

where a\t) = g(t)el. The new vectors, a1, are also orthonormal. Let us parametrize
the last component of all these vectors by the angles φf:

£ = <&%., (8)

where aj, - are real: Imαj, = 0. Then we get

itrA odgΓ * =£™W+!iX[(da, a;)-(a, da,.)] . (9)
1 ί 1

Using the construction, developed in [2], for the second term in (9) we obtain the
expression

, (10)
i,k

where φf, φ(V are angles, 0 ̂  φf} £Ξ 2π and the variables m[k) form a Polyhedron Π

Γ Λ . n2 — n dimG — rankG
of the dimension

2 2
«2-Π

Π :mf-1)^m[fc)^mf+-ι1), (H)

which is the classical analog of the Gelfand-Zetlin basis.
The same construction can be applied to the second term in (4) and we finally

Set /» \
S = $ I Σ »ii(dφ? + dψf) + Σ n^dφV + Σ "ΪW? ) ,

\1 ί,k i,k J

where nf } form the polyhedron 77Π, defined by the "highest" weight ( — w£, . . ., — m?)
and φf} are the corresponding angle variables.

Now we must remember that / was defined module transformations
f-+fh:heH and therefore we can choose v?|0) = 0, i = i, ...,π — 1. Conditions
detg= 1 and det/= 1 in terms of m, φ variables can be written as
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This finally yields the following expression for the action:

S = ί i Δ , <M°> + Σ Δ^dφM + Σ Wdψΐ> , (13)
\1 itk i,k J

where A , = m|0) - m<0), Δf > = m|k) - mi,0), and JJ*> = nf} + m<0);
Zl 1 ^zl 2 ^.. .^zl n _ 1 ^0;zle77 and the corresponding regions for J[n) and zlf } we
denote by ΠΔ, U-Δ.

Thus we constructed the "Darboux" variables, and so we can easily reduce this
system to a smaller one. The first is the reduction over the constraints \pf} = const.
These constraints kill the field / The resulting system is the so-called model space.
The corresponding Hubert space will be J^ = 0 J^b where J ̂  are all irreducible

i

representations of the group. If we impose an extra condition mj0) = Mt = const we
will come back to the orbit, corresponding to the point X0 = diag(Mi).

Let us now consider the path integral quantization of the system under
consideration. Following [2] the Hamiltonian is chosen to be a linear combination
of Cartan elements Ht:H = α^/ί^m) + βfl^n). In the SU(ri) case Cartan elements Ht

are Gelfand-Zetlin parametrization and are given by the sum Ht = £ mf } over the
rows i of the classical Gelfand-Zetlin table. Thus l

(14)
ί,k i,k /

As in the case of the coadjoint orbit (see [2]) the path integral

G(φ°", φ", ip" I φ°', φ\ ιp'} = J dA .dφ^dή^dΔ^dφ^dip^^ (1 5)

with the boundary conditions: φ|0)(0) = φ|0), φf>(0)-φ|k), ψ(f\0) = ψfγ, and

can be easily calculated and we get

G(φ°", φ", ψ" I φ°', φ', ψ') = Σ expf i Σ^(ψm" ~ <P(°Y)
ΔeΠz i

(16)
,k /

exp i " '

where 71̂  z is integer valued Gelfand-Zetlin table. From this we obtain that the
Hubert space is direct sum J^ = 0 J^L(χ)^, where ̂  and ̂  are irreducible

representations of the group where left and right translations are acting. This
decomposition of L2(G) is well known. [Character can be obtained from (15) if we
put φ' = φ", \p' = \p" and integrate over φ, φ.] Remark that this situation is quite
similar to that in CFT. Maybe the study of the same construction for the infinite-
dimensional Lie groups (Virasoro, Kac-Moody) and their cosets, or Drinfeld-
Sokolov reductions will help us to understand the geometrical nature of CFT.
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In the case of the model space we have

G(φ', φ") = l

= Σ

and here Jf =
i

3. Finite Sums in the RCFT; Virasoro Group

First we will realize the above program for the Virasoro group. The main point we
are going to explain is the geometrical interpretation of the Cq < 1 discrete series.
Here additional difficulties are present as a result of the infinite-dimensionality of
the group and we will deal with 2-dimensional field theory instead of quantum
mechanics. On the other hand the dimension of the space quantization which is
responsible for the singling out the degenerate representations, is finite. This is the
consequence of the finiteness of the rank.

The geometrical action for the Virasoro group was constructed in [3],

where x e S1, F(x) e diff S1, F(x + 2π) - F(x) + 2π and F'(x) > 0. In [3] also a natural
measure for the path integral was given:

b0 in (17) is the number which parametrizes the coadjoint orbits (it corresponds to
classical "highest weight") and C is the classical central charge.

In the future, for the construction of the model space we need a different form of

the action (17). First we will introduce a new field /=expμF, where μ = \ °
and the action acquires the form

Now for the / we have a boundary condition

(20)

It is more convenient to use the parameter μ instead of the 60. These are two
different regions in the parameter space: 1) b0/C > 0, i.e. μ is real, and 2) b0/C > 0, i.e.
μ is imaginary μ = iμ with real μ. In new variables the measure in the path integral

has the same form μ(f) = Π - . For the real μ the property /' = eμFμF' > 0 allows us
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to introduce one more change of variables

f = eφ. (21)

We can do the same for the imaginary μ, but now f' = expiφ, where iφ = iμF'
+ lniμF and we get a nontrivial situation with complex φ. As follows from the
boundary condition (20) φ(x, t) can be expanded as

φ(x9 1) = φ0(t) + μx + φ(x9 1) b0/C > 0 ,
(22)

φ(x, t) = φ0(t) + μx + φ(x9 1) b0/C < 0 ,

where in both cases φ is a periodic function, but in the first case it is a real field and
it is complex for b0/C < 0. φ0(t)9 μ, and μ are real. As it follows from the definition of
φ for the b0/C < 0, μ, and φ0 are defined modulo integers

(23)

Let us first consider a more simple situation, when μ is real. In φ variables the
classical action acquires the form

(24)

But there is an anomaly in the measure, which corresponds to the nontrivial
Jacobian J = dete~φdeφ:

= J μ ( f ) . (25)

(A similar Jacobian appears in the bosonization procuedure for the WZNW model
[8] and it is possible to use the Lagrangian version of the Drinfeld-Sokolov
reduction [3] from the bosonized SL(2, R) WZNW theory to define the present
model.) Including this anomaly into the path integral we get the following
expression for the effective Lagrangian:

where R is the curvature of the external 2-dimensional metric on the world sheet (it
is necessary to introduce the external metric in the regularization of the
determinant). We must take into account this curvature term when defining the
stress-energy tensor; in all other places in this paper we can put it equal to zero, i.e.
we can choose the flat external metric. Now the measure in the functional integral
is a free measure: μ(φ) = f j dφ. (Let us note, that when we consider a fixed orbit, i.e.
the value of the parameter μ is fixed, φ is not a free field, because of the constraint
§eφ = exp2πμ — 1 = const, which must be included into the path integral; this
constraint is equivalent to the screening operator in the operator language, see
[8]).

Under the parametrization x->x + ε(;c), / behaves as a scalar field: δf=εf. It
means that φ is not a usual scalar field, but

δφ = εφ' + s f . (27)
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Using this transformation, we can define the generator of the reparametrization,
i.e. energy-momentum tensor

and 1 rγr \ /r \ Ί
τ=^r U+2 K2-2 τr + 2 W-W8π|_\6 / \6 / J

C
In the notation α2 = — + 2, φ = aφ we get

6

Thus the central charge of the Virasoro algebra is equal to

(30)

and Cq > 25 for real α.
Let us now consider the structure of the model space for the Virasoro group,

corresponding to the Lagrangian (29), i.e. for the case b0/C>Q. Now μ also
becomes a dynamical variable and

α2

The coefficient in the quantum mechanical term in (31) plays an important role in
our further construction and therefore it must be computed from the starting
action (17). (The difficulties appear during the change of variables we used before,
because they were done for the constant μ; the terms of interest are total derivatives
and it is easy to forget them.) The first term in (31) comes from the AAce:

ce

with F = FQ + x + (period terms). From a comparison with (21) we get

F = — + x + . . . and therefore we have (up to the total derivative)

£
ΔAce=-—

where terms . . . don't contain μ. As demonstrated before there is a renormalization
C-»6oc2 after quantization, and finally

α2

ΔAq=-—fdtμφ0.

This is the coefficient which was included in (31).
Now we have a pair of conjugate variables φ 0e(— oo, oo) and μe(0, oo). The

corresponding phase space is non-compact. Each value of μ = μQ (i.e. fixed
coadjoint orbit) fixes a representation of the Virasoro group. Thus, the spectrum of
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the representations is continuous. The character of the given representation can be
written as a path integral in the same way as for the compact groups. To this we
must introduce the Hamiltonian H = j Γ(x, t)dx, which is a Cartan element of the
Virasoro algebra and calculate the path integral

=I(μ',μ»\T)9 (32)

with the boundary conditions φ(0, x) = φ(T9 x) and μ(0) = μ', μ(T) = μ". It is easy to
see that the path integral acquires the form

I(μ',μ"\T) = χμ,(T)δ(μ'-μ"), (33)

where χμ{T) coincides with the character of the irreducible representation of the

Virasoro group with the central charge Cq > 25 and the highest weight h =

e2πihT

4 '

(34)

ίnT °°
η(T) - is a Dedekind eta function η(T) = exp —- Π (1 - e2πinT). Here we change T

by 2πT to obtain the answer in the traditional form. (Our Hamiltonian can be
written as

iji"""-"]' (35)

where φ'(x, t) = μ(t) + £ an(t)einx, and it differs from the L0 in the standard
n Φ O

definition of the character

C — 1
by shifting H = L0 -- *— — . The term (1 — exp 2πίnT) comes from the integral over

nonzero modes aw α_π.)
The most interesting and nontrivial situation appears in the case when μ is

imaginary, i.e. fc0/C<0, because as we shall see later, here the quantum central
charge is less than \,Cq< 1. We know degenerate representations are present. Here
the effective action can be computed in the same way as in the previous case and it
takes the form

Leff = + 2 Φφf + 2lRφ ' (36)

It looks like (26), however φ is complex, the first term has the opposite sign, and
moreover there is an i in the second term. From the condition f' = expiφ we get
that under the reparemetrization φ changes as δφ = εφ — iε', and therefore the
energy-momentum tensor acquires the form

(37)
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(C \
where α2 = — I — + 2 I, φ = αφ. For the central charge now we get

6

and it means that Cq < 1 (we assume that α is real).
Following our prescription, now we must assume that μ is a dynamical

variable: μ = μ(t) and we will consider the theory with Lagrangian (36) on the
model space, instead of the coadjoint orbit. Thus the action acquires a form similar
to (31):

^eff = - y ί dtμφ0 + ,4eff(φ) . (39)

But now the story is different, due to the identification (23). It means that now the
space of the zero modes is a torus T2, which is compact, and as a result we will get a
discrete spectrum for the corresponding quantum mechanical system. Therefore
we have a discrete spectrum of the representations. (Note that a similar
phenomena should play an important role in the elliptic case for Liouville theory

[9].)
In fact, it is possible to consistently quantize only the torus with the "integer"

symplectic volume F=2πK; KeZ. Here we will use a generalized quantization
scheme, which applies also for the rational K; KeQ. For this it is necessary to

α2 .
assume that — is a rational number. Let us suppose that α2 = p/q, where p and q are

integers. Then the quantum central charge (38) becomes

C β l_6k=< (40)
pq

which coincides with the central charge for the Kac discrete series. The volume of

the phase space is equal to 2π— and we must make it an integer. The standard
2q

trick is to pass to the covering space, namely to the 2g-fold covering, i.e. we must
impose the identifications

n,meZ, (41)
μ ~ μ + 2qma ,

instead of (23); here we redefine φ0->αφ0, μ-χχμ, which is in agreement with the
definition φ = ocφ.

Now we must introduce the Hamiltonian. As in the previous case, bQ/C > 0, the
natural Hamiltonian is H = \T(φ)dx [see (37)]. But now, by contrast with the
finite-dimensional case, this Hamiltonian depends on the parameter μ, which is
subject to the identification (41), i.e. H doesn't live on the torus: Hΐί+2qma^H~μ. So,
we will integrate over μ from 0 to oo, but the contributions of the points (i) μ = μ0

+ 2qma and (ii) μ = — μ + 2gmα, with some m, will be collected in a block. The first
rule is a consequence of (41). The second comes from the following arguments: the
starting action (1 7) is invariant under the reflection μ0 1— > — μ0, thus we can consider
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only positive μ0, μ0^0; but there exists such an integer m that —
Orbits, corresponding to μ from (i) and (ii) are different, but the boundary
conditions on / are the same and therefore we collect their contributions to one
object, to the "Block." Then the resulting path integral is a sum over blocks. (Let us
note once more that such construction is dictated by the symplectic geometry and
the noninvariance of the Hamiltonian.)

Thus our prescription is as follows: we must integrate over μ from 0 to oo and
then decompose this integral as

oo qa.

\dμ(...)=\ Σ (-W, (42)
0 0 μ'~μ

where the sum is over the equivalence classes μ' ~ μ, defined by (i) and (ii). We use
the integration region (0, qa) instead of (0, 2qa) as a consequence of (ii). (Now it is
clear that we need the 2g-fold covering of the torus both for even and odd p.)

Now, after this discussion, we can calculate the path integral over the Virasoro
model space:

I(φ'o,φo\T) =
k n ^

(43)

Here the sum over n guarantees the periodicity over φ0 (see [2]) and we introduce a
Z2g-character χκ(ή) in (43), which corresponds to the 2q-ϊo\d covering of the torus;
fc = 0, ...,2g — 1. We can use the approach of [2] and obtain:

qa ( Γj \ / fe \

I(φ'o,φ'ί>\T) = ΣΣ ί #exp i£(φS-φ'0 + 2πnα) exp i2πn- 7(μ',Γ), (44)
fe n o \ 2 / \ 2qJ

2nT ϊ

J (H-£)dt\. (45)
μ~μ' 0 J

Let us use the following parametrization for the integer k in (44):

k = sp-lq,

where fee [0,2^ — 1]; s = l, ...,# and 5 is present twice in the pair (5, /) with odd
and even /. Using the identity,

(46)
neZ

we get for the possible values of μ:

(47)

where r is an integer; r e Z and s = 1, . . ., g. Finally the path integral (44) acquires the
form

(48)
r,s

with
(49)
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and

Xr,s(T)= Σ I(F,T), (50)
μ'-ίrα-i-sα)

where I(μf, T) is given by (34). It is easy to show that

Each block χr s corresponds to the infinite set of orbits. The "Hubert" space of
this system is the set of the Verma modules with highest weights

hn=Krχ-l-s<* + 2qrn)2. (52)

The difference hh — hm is an integer for any m and n. The minimal value of h from
this set is

_ (rq-sp)2

/ϊ°'^- 4pq ' ( }

(the choice of the minimal value of h in this set corresponds to the choice of
modules with nonzero cohomology in [12]) which coincides with the highest

weight from the Virasoro discrete series ί it differs from the standard Kac formula
C — 1\ ^

by the q ), but the domain for the numbers r and 5 is different: instead of 1 £Ξ 5

^q— l , l rg r ίgp — l,gr>psin the Kac formula here we have 1 ̂  s ̂  q,
+ sp/q.

For each pair (r, 5) from the Kac spectrum there exist a pair (r, 5) in (49), defined
by the following rule:

r = 2p~r, s = s if rα~1+5α^^α,
(54)

r = + r, s = q — s if roc

The block (r, s) has beautiful properties : first h% ' s) — h(^ s) is an integer (it means that
Verma moduli F(f's), corresponding to /z(J>5) is a submodule in F(x's)); second

lr,s(T)=l,s(T)-χ^(T) (55)

is a character of the degenerate Virasoro representation with highest weight hr^s

and the central charge (40) from the Kac spectrum.
All this means that our theory is not "complete" (or the prescription is not

complete), because in the "complete" theory the blocks must coincide with the
characters of the degenerate representations; thus our blocks χr s and χ-r-s are from
one "super block." It seems that the way to construct the "complete" theory is the
following. We must consider quantum mechanics on the model space with wave
functions which are not only functions but also differential forms. It is equivalent
to a transition from the manifold to a supermanifold, and thus we must include the
anticommuting variables into the path integral. Our hypothesis is that χr s and χ-r -s

will be from one supermultiplet and the path integral will reduce to the supertrace;
as a result we must get the sum over blocks, where each block will be a character
Xr,s

 = Xr,s — Ir-s- We hope to return to this question in a separate publication.
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At the end of this section we want to note that here we discover only the domain
Cq>25 and Cq< 1. The domain 1 ̂ Cq^25 corresponds to the complex α in (30)
and (37) and must be treated separately.

4. Finite Sums in the RCFT; Kac-Moody Group

In this section we discuss the quantization of the model space for the Kac-Moody
group. The corresponding geometrical action is given by [3]

(56)

and differs from the WZ action by the first term; here d = d/dx; g(x, ί)eLG (for
concreteness we shall consider G = SU(n)\ V0 is a constant matrix from the Cartan
subalgebra of the corresponding semi-simple Lie algebra, K is a central charge of
the Kac-Moody algebra. In the construction of the model space, following our
prescription we must consider V0 as a dynamical variable. As in the finite
dimensional case we can assume that V0 is a diagonal matrix from the positive
Weyl chamber, i.e. its eigenvalues are VQ ^... ̂  VQ. We'll discuss only the Hubert
space of the corresponding quantum-mechanical system, which is responsible for
the quantization of the representations. We shall not introduce the Hamiltonian,
and therefore we can consider the fundamental domain for V0 with respect to the
symmetries of the action.

Let us describe the symmetry group Γ of the action S. First, there is a symmetry

g^gh», (57)

where hD is a constant diagonal matrix (in general hD is from the maximal torus)
hD^oh^1 = V0, and therefore this transformation is not interesting for us. The
discrete group Γ/D contains the usual (finite) Weyl group

g-+gw, Fo^w^FoW, wePF, (58)

and the affine transformation

g->g<**9 70->70+J^o, (59)

here exρ2πw0 = 1. The last condition guarantees the conservation of the periodicity
of g(x):

g(2π,f) = g(0,ί).

It means that u0 is from the root lattice of the corresponding semisimple Lie
algebra. If K = 1 the fundamental domain for the 2πF0 coincides with the affine
Weyl chamber:

2π<α;V,F0>^0, 2π<α v ,F 0 >^l, (60)

where α. are simple roots, α is the longest root, α v = dual root. For the SU(ri)
<α,α>

case the simple roots are α~diag(0,..., 1(0, — 1(I +1), ...,0), the longest root is
α = (l,0, ...,0, — 1), α v =α and pairing is given by trace. For the generic K the
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fundamental domain is K times the largest alcove

2π<r,F0>^K, (61)

and this alcove we define as Aκ. The weights from Aκ correspond to (different)
integrable representations.

Let us now introduce the dynamical variable g0 conjugate to F0 by g = ggθJ

where g0 = g0(ί) and
φ = lg-igdx = 0. (62)

In these variables we have

S = JTr{-F0g0-
1

ίigo-goF0g0-
1g-1|}c/x + ̂ (g). (63)

Here Wκ(g) is the standard WZNW action. As it follows from this condition φ = Q,
this action is factorized into two parts: the first one corresponding to the quantum
mechanics and the second to the 2d field theory. We are interested in the first term.
Path integral now acquires the form

/ = f ™ [rfg0]exp{-i|ώTr(2πF0g0-
1g0)} - f [<ίg]exp(ιWx(g)), (64)

where V0eAK. The quantum mechanical part is easy to compute using the
construction from Sect. 2,

Path integral reduces to a sum over integer weights A" from the Aκ, i.e. over the
integrable representations of the Kac-Moody group,

dg]eχp(iS(A,φ,g)), (65)

where φf" and φf are the boundary conditions.
Adding the Hamiltonian to the action (f.e. a linear sum of Cartan elements) we

can define a character as a path integral with periodic boundary conditions. We
think that using the construction, similar to those in the Virasoro case and the free
field parametrization of the WZNW model (see f.e. [8]) it is possible to prove that
the corresponding path integral over g0, F0, and g is equal to sum of the Weyl-Kac
characters over integrable representations.

Appendix

Here we'll discuss the relation between the geometrical action on the coadjoint
orbit of the Virasoro group and classical r-matrix. We think that it will help us to
understand the appearance of the quantum group in RCFT.

A similar relation can be found between the geometrical action, corresponding
to the Kac-Moody and P^algebras (geometrical action here is given by the
Drinfeld-Sokolov reduction from those for SL(n) Kac-Moody group as in [3] for
SL(2), see f.e. the second ref. in [6]) and r-matrices in the Toda field theory.

Our main observation is that the geometrical action defines a non-degenerate
symplectic structure on the loop group (cf. with [14]). It is easy to calculate the
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corresponding Poisson brackets for the Virasoro case from (19),

{/(*), f(y)} = «lXχ - y) (/(*) -f(y))2 +f2(χ) -/200] , (66)
where α = — 48π/C and f ( x ) is a fundamental field with initial Boundary
conditions in 2d gravity. Now we'll demonstrate that these Poisson brackets are
of the r-matrix nature. We mean here that the same Poisson brackets appeared
earlier in the r-matrix approach for the Liouville-theory (see [9, 10, 11]).

Let us give a short summary of the r-matήx construction for Liouville theory
following [9]. The fundamental relation which can be postulated is

{ Γ(x)® 1\y)} = - [r, Γ(x)® T(j;)] , (67)

where r es/(2)®s/(2) is a classical constant r-matrix and T is a 2 x 2 monodromy
matrix. [The quantized version of this classical relation is the quantum group
sl(2)q.] r is defined as a module, a multiple of the Casimir operator. The special
choice of this multiple leads to the r-matrices

®σ~],
(68)

~®σ+],

satisfying the classical Yang-Baxter equation. It follows from the relation T(x)
= T(x9y)T(y) and the ultralocality condition /l.e. we suppose that
T(x)® T(y, z) j = 0 if x ̂  y or x ;> z\ that

(69)

for x > y. These relations actually involve only two independent fields u = B/A and

τr = D/Cint

get from (69)

A B
= D/C in the notation of [9], where we denote T= I ). For these fields we

(_/ DI

? u(y)} = s(x - y) (u(x) - u(y})2 + u2(x) - u2(y) ,

*χ - y) (τr(x) - ny))2 + ̂ 2 (x) - ^2(y) , (70)

(Φ), ny)} = 2(u(χ)τr(y) - TT 2(y)) .

Thus we see that the Poisson bracket for the "chiral" part, i.e. for u(x) coincides
with that for the fundamental field f(x) in 2d gravity. The absence of the second
field V in the geometrical action is easy to understand: as we demonstrate above,
quantization of the model space (or the orbit) corresponds to the chiral part of
RCFT.
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