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Asymptotic Neutrality of Large Ions
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Abstract. It is proved that a nucleus of charge Z can bind at most Z + O(Z¢)
electrons, with a =47/56.

Consider the Hamiltonian for a nucleus of charge Z and N quantized electrons,

H Y (—4,) z +lz : = —A+V
v i%ﬁ T x 2 5 1% — x| = Coulomb-

The ground state energy is then
E(Z)=infE(Z,N)=inf inf <{Hz ¥, ¥>,
N

N YyexN
=1

N
where # = A (L*(R?)® C) is the space of antisymmetric wave functions with ¢
i=1
spins. Throughout this paper we will simply refer to them as “antisymmetric” wave
functions.

For each Z, call N(Z) the smallest number for which E(Z)= E(Z,N). It is an
interesting problem to obtain sharp estimates for N(Z). The sharpest known result
appears in [8], where the reader will find a discussion of the history of the problem.
In particular, N(Z)/Z — 1 as Z — oo, although there were no estimates for the rate
of convergence. Our main result is the following:

Theorem.

47
N(Z)=Z+0(Z%) for r=ce

We announced this result in [1]. We are grateful to V. Bach for pointing out a
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minor error in our announcement. The rest of the paper is devoted to the proof
of this theorem.

For the proof we will be interested only in the case Z < N <2Z. Lieb ([6]
and [7]) has given a simple argument to handle the case N > 2Z. Thomas—Fermi
theory will play a central role in the proof. We recall a few fundamental facts. For
a nice detailed discussion see [5].

1. E(Z)~ CyeZ"? as Z— oo.
2. Let prp be Thomas—Fermi density. Then:

a. j pre(x)dx = Z.
3

R
b. For |x|>Z"Y3%¢ pro(x) < Clx| 8.

c. [ pre(x)dx < C,reR7> for R>Z7'7, for some constant C,r.
|x|>R

1. Key Estimate

Fix N points in R?, x,,...,xy. Take a radially symmetric function ¢, supported
in B(0,155Z %), [¢=1,sup|¢|<CZ? and set p,, ... .,(X)=) $(x—x;). Observe

.....

that the subharmonicity and positive-definiteness of the Coulomb potential
implies that

.<.Ix'iXA|g%j‘j‘pxl ,,,,, x)vlix-)-p;ll ..... xN(y)dxdy"CZZ/3'N
_ %” (Pxy, . xw — PTFTST,;T ,,,,, xy — PTE)(Y) dxdy
Prr,...oxn(X)PTE(Y) 1 PTF(x)PTF(Y) _ 23,
+ff e dxd 3ff oy xdy=CZPN
=cf1&17 2 Psy,... xn (&) — Pre(O)12dE
+y W(x,)—%jj%’”y?mdxdy—C/zm-N
7
with
w(x)=[f Px = 2)pre(y) l—Z_i)/;TF(y) dzdy.
Let’s set

_ X B
K(xl""’xN)=%_” (px' """ N pTF)( )(pxl ,,,,, XN pTF)(y) dXdy
[x —yl
and note that K >0 pointwise. This provides the operator inequality

N z
H,y2K+ .; [( —A) = W(x,-)] —4ff ’)TT_ix)—p;T_()))dxdy NV AL
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for N £2Z. We point out that similar inequalities were used in [2] and [4].
Let 4,,4,,... be the negative eigenvalues of

(—a)-Z

+ W(x),
|x|

and let
S 1 pre(X) prr(y)
EZ)y=q ) k—3|f—————dxdy.
i=1 [x—yl
It follows then that
H, 2 EZ)+0(2°7)

for all N between Z and 2Z. From [3] we know that for some b between 1/3 and
2/3 we have

EZ)zCp27? + %zz N ALE)

A careful exposition of Hughes’ proof appears in [10]. Similarly, it follows from
[7] that

E@Z N S CreZ™®+122+ 027 ™)

forall N> Z.
Putting all this together we see that

E(Z)Z E(Z,N)+ O(Z"*7?)

for any N between Z and 2Z. In particular, we have

HynZ Eo(Z) + K(xy,...,xy) — Cysw(Z77?) (1
for

Eo(Z)= inf E(Z,N),
N=(1+e%z

where ¢* will be picked later, and some constant Cygy. The constant b plays a
crucial role in the analysis of the best possible power of Z for the excess charge.
From [3] and [7] it follows that we can take b = 3: this implies that we can take
o =%l in the statement of the theorem. Notice however that this value of b has
been obtained using a much stronger result, namely the correct asymptotics for
the energy. It is clear that one can do better and may be one can take b = %, which
would allow us to take a=3.

2. Estimates for a Ball

What we are planning to do now is conclude that if the number of electrons a
particular state puts inside a ball is too different from what Thomas—Fermi theory
predicts, then this state will have too much energy. This will be then generalized



112 C. L. Fefferman and L. A. Seco

to random variables other than the number of electrons inside a ball. We need a
few definitions.
Consider a ball B(0, R). Define

Ng(x4,...,xy)=number of x;€B(0, R).
Also, take a smooth function

_ 1 for |x|<3R
=0 for |x| >3R

that we will call yz whenever we want to make it explicit which R is being used,
and let

Observe that Ng,(xq,...,Xy) S N, (x1,...,X5) = Nygp(xy,...,xy), for all xq,...,xy,
provided R > 2Z ™23, which will certainly hold in our case, since we will be working
with R = Z 13,

Define

N3" = [ pre()x(x)dx.
Now, note that
N(X1see s xn) = N3F =[x, oxw = PrE) X)X = [ (Dsy.... o — Pre)(EAEE.
Hence
[N, = N2 S [ E1PE [ (D, ... xw — Pre)|* 1€ 2dE < CR- KXy, xy).

Therefore, (1) implies

<IN, = N3 129, 4
R

CHzn, 4> 2 Eo(Z2) + Cy — Cysw(Z77P)

for some constant Cy. In particular, Cauchy—Schwarz implies

N , _NTFZ 2a—b
o2 Bo2) + O V=L ey

for any antisymmetric ¥, | {/ ||, = 1.
The previous argument can be generalized to yield the following result:

Lemma 2.1. Given any function ¢(x)e L*(R%), we have

*¢h — 2
CHz s 2 Eo(Z) + Cxl ey (Il\)V(P‘l)\TzF)’ 2l — Cyusw(Z77?)
2

for yeH, (¥, =1. Here,

Py =N 1Y%, Xy, ..., xy)2dx; - dxy
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in the case of a fully antisymmetric  (i.e. ¢ = 1) and in general
N
Pw(x) = Z jhp(xl"--axi—lax’xi+la""XN)|2 l;[dxj'
i=1 i)

Now, we define a working variant of estimate (A).

Definition. We say that Estimate (&, ¢, R) holds if for a nucleus of charge Z at the
origin and N quantized electrons confirmed to the ball B (0, R) we have

eZ

(Hzw¥) 2 Eo(2) + 1 (N = (1 +2)2)

for normalized , where
Eo(2)= inf  E(Z,N)

0SN<(1+e#)Z

for & to be picked later. By N quantized electrons confined to the ball B(0, R) we
mean that ¢ = y(x,,...,xy) is supported in the set x;€ B(O,R) for alli=1,...,N.

Now it will be necessary to introduce two parameters y; and y,, in the proof.
They are related to b by the relation

1. y,=3b.

2. ))2 = b/7.

The significance of y, is that it represents the excess charge. Precisely
NZ)=Z+0(Z'™ ™).

On the other hand, y, is related to the radius of the largest ball for which we can
obtain favourable estimates for its excess charge. This is clearly seen in the following
lemma.

Lemma 2.2. There exist constants C, and c,, independent of Z, such that Estimate
(¢,& R) holds for

1. fz2e2 CoZ™ M,

2. EScZ ™,

3. RECyZ™13*7,

Proof. Pick R,¢ and & within this range. Say ¥ confines N electrons to B(0, R).
If N<(1+¢)Z, then

<HZ,N¢5 lp) i E(Z’ N) g EO(Z)
= E\(Z)+ %(N —(1+¢2).
If N> (1+¢)Z, then
(N YO > (1 +6)Z
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for = y,x. Since NJF < Z,

|<N l// l//> NTFIZ C IN Z'Z ZZZ

C
K 2R 2R > Cx 2R

CKCO ZKZ0 773~ @i+ > 2CuswZ7370

for C, large enough; so,
IN-Z|?
<HZ,Nl//a l//> Z EO(Z) + CKT

On the other hand,

L4RZ|2 Z (N—(l—s)Z) for N=(1+¢Z. )

To see this, observe that it holds trivially at N = (1 + &)Z, because the right-hand
side is zero; if now we differentiate both sides with respect to N, we obtain for the
left-hand side

Cx

Ck(N—-2) CgeZ
2R 2 R
and £Z/R for the right-hand side. So Estimate (¢, ¢, R) holds taking ¢, small enough.
Throughout the proof we will need a couple more conditions on C, and ¢,
that will force us to take them to be larger and smaller respectively than what we
needed for this lemma.

Lemma 2.3. Let R=Z7'3%" qand y = yg. Say that for a number Y,
(N> =Z+YZ'
Then, for some universal constant ¢,

(Y] —e)3Z2 72
4R

CHz ¥ Z Eo(Z) + Cy — Cusw 21370,

Proof. Observe that we have
NIF é Z - I JRIZ pTF(X)dx ; Z - SCPTFZ1 32 = Z - SCPTle n

and NJ¥ < Z. Thus,
|<le//,‘//> — NIFIZ > (<Nx‘p, vy — N';F)i > (Y)iZZ"“x

R = R - R

and
I<N,,¢',X>—NIF|2>(NTF (N YD) S(=Y - 8C 1p)3 2272

R - R = R

Applying (A) to both cases and averaging the resulting inequalities, we get

(=Y —8C,rp)3 +(Y)3
2R

CHzn, ¥ 2 Eo(Z) + CZ* 2 — CuswZP70,
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Elementary calculus says that

N2

(—x—of + 03 2 I
and this implies the conclusion of the lemma.

The previous estimates could have been done for R of the form Z~'**7 for
y £y,, with the only effect of decreasing y; and thus worsening a little the estimates
for the excess charge. However, they cannot be carried out with these techniques
for y >y,, since whatever term we want to estimate will give a contribution so
small to the energy that it will simply be lost in the O(Z7/*~?). For radii this big
we need a different approach in which we use in a more direct way the properties
of the Coulomb potential. The goal of the next section is to analyze how estimates
for a given ball imply corresponding estimates for its double.

3. Estimates for Spherical Shells

In this section we consider a system of N quantized electrons confined to B(0, R),
and N’ electrons confined to B(0,2R) — B(0, R/2). That is, we will be considering
wave functions Y(x,,..., Xy, X,..., Xy ) supported on the set x,,...,xyeB(0, R),
XY,...,xy-€B(0,2R) — B(0, R/2). We have to impose the extra condition that for
fixed x1,..., xy., ¥ is antisymmetric in the x,,..., xy and viceversa: that is, we will
be considering vector-valued i, with domain x7,..., xy-€ B(0,2R) — B(0, R/2), and
values in 4 and vector-valued y, with domain x,,..., xy€B(0, R), and values in J#.

To stress the different role of the two sets of electrons, we rewrite the
hamiltonian as

xN + V) + (_Aextra + Vextra)

.....

HZ.N+N’ = HZ.N + Hextra = (_Axl

with
Aextra:Axll ,,,,, Xpye?
B Z Z 1 1
i=1 v X 2i$j|xi—xj|’
N 1 1 1

Verra = — — 2

extra i=1,z.;.,N'lx§| t=l-z~;~. Ix; — x;1 2,1=},Z;”N'IXZ-—X;I
i=

~~~~~~~~~~

Also, we restrict our attention to the case R > CoR, = CoZ 1372,

The content of the following lemma is as follows: We know from previous
estimates that approximately Z of the electrons will organize themselves to be close
to the nucleus; this will have the important effect of “screening” the nucleus. That
is, all the other electrons will hardly feel any negative electrostatic potential; this
has as a consequence that a lot more than Z electrons will only make the energy of
the system grow above the ground state energy.

Lemma 3.1. Assume that N+ N' = (1 + 8)Z for
CoZ M<o<(1+1079CoZ 7.
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Then, for some constant c,

yA
Vot 0> 25N

or else
(Hznin¥s¥) Z Eo(Z) + 237,

Proof. We will assume that N’ # 0 or else there is nothing to prove. Recall that
R,=Z7'3%7 Let y = yg,. Note that

Ny= ¥ RALORS L o= 3 xxélx)
as operators on our space of functions, since y*¢ and y have disjoint support in

the x; variables.
Let Verira = Z Vi(xg,..., Xy, XY,. .., Xy) for
J

Z 1 1 1
Vi= =5+ > .
! IX5] =1 Z'..,N|X =x| 2= 1‘;-,N'lx:'_xlj|
iFj
Note that
N1 x* ul 1—x*¢(X)
,-=Zl|x;.—x,.|_i=zl|x, ,; —x;]
Z Z-N i *¢(X.-)
[ x5 IxI sl
and write
Z—N, I 1—y*p(x;)
ViX1seeos Xy Xises Xy )= ———— %+ ;
J( ! P w) [ izﬁ Ixj—'xi‘
Y : +§< : >(x ¢)(x;)
2i=1.,$..:,~'lx}—x:~ A AL
17y

=T, 4+ T,+ T+ T,.

Let’s analyze this term by term:

1Z = N0
) (T 2 = m

) T,2 N=N, pointwise.

N —1
SRYAA") 2’8R—'



Asymptotic Neutrality of Large Ions 117

Therefore

N+ N =Ny —161Z — (N g,y o] — 1
8R

>5Z—20]Z— (N + 82

= 9R

AT+ T+ T, ¥ =

for Q=N+ N'—06Z — Z. Note that by hypothesis, £ = 0. Summing over all j we
obtain

0Z —20|Z —{N y, .Q
(T, + To 4 Ty 2 12 = Ny ol +

; 9R @

1=

J

If we could prove that |Z — (N y,y>| <cZ' ™7 for some constant independent of
C,, then we would have

6Z —201Z — <N Y>|+ Q2 _ 6Z

9R 10

ATy + T+ Ty 2

I\%

by simply taking C, large enough. So, the result will follow if we can prove that either
CHznsn ¥ ¥0) Z Eo(Z) + cZ713 77

or else:

16R

L2 ¢>'<—N’

and
|[Z <N Y| <cZ'

with ¢ independent of C,.
In order to analyze this, let’s define

Yo o (X X)) =X, Xy, X X))

together with its normalized version

Vet XX = 1V o s amm Yy (150 XN,

defined on the set

E={(x\,....xx) 1Yy, 5 12 # O}

Also, as in Lemma 2.1, define

N

pwx/l ‘‘‘‘ x}w()’)=.zl.“‘//(x1, ,xi—I’y’xi+1,"~’xN’x,1a'--’x;V’)l2l;[.dxja
i= ifj
N —

p.],‘l ‘‘‘‘‘ ‘&,(Y)=.le’|'/’(x1, ’xi—19Y5xi+1"--1xN’x,ls'H9xN)'2Ddx
i= i#j
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Note also that since prg and y are radially symmetric

1 1
Then

IT4’([(X1,,”,XN, x'l,...,x}‘,,){zdxl ...de

1
AT ~2)ps. . (dyd
”(lx}—y} |x}|>X(Z)¢(y Py, . Wdydz

1 1
=|f (—x:;—m)x(zw(y 25, (V)dydz

1
”( X, —zl 7 X — y|>X(Z)¢(y - Z)PJ{I'___J}W(y)dydz

1
~I( R I)x(y)(qﬁ Poy_ o )M

1
el (lx} —zl Ix;— y|>X(X)¢(y - Z)p‘py,l‘___xhl(y)dydz.

Now observe that

1 1
”(lx" -y - l)c}——))\)X(z)¢(y - Z)Plp‘:l _____ ‘,Nl(y)dydz
= =10 j I KBy —2pg, . (v)dydz
< 10N“j 'ZR“J Ao — o)z
L®(dy)

-2/3 1/3

—[pl2)dz <2

Summing over all j we obtain that

1 1 Z1/3
(IX’-—ZI _IX}—yI>X(Z)¢(y ~ Dy, Dz 225 N
J
Note that
Z3 Z213= 2 57
< / bl N
R2 N = R N « R N

’

Q)

as long as 2 —y, < 1—3y,, that is, y, <%, or b <Z, which certainly holds in this
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case. So

Z! T4Il/7(x1"”,xN’x(1>~"sx;V‘)|2dx1 '”de
J

1 1 Z13
= Zj(lxﬁ—y| i~ >x(y)(p¢‘ ‘‘‘‘‘ ,N,*¢)(y)dy}+27N'
_ 1 J o
- ;j<|x}—y|_ x;.|>X(Y)(Pu;g ,,,,,, o *00) = pre(y)dy| + 277 N
1 1 1/3
) <§<|x3—y|’ﬁcﬂ>""("% ----- - "TF> RN

So, if we define

o(y) = Z( " —1,—|>'x(y)-

j [x g
we have

1/3

Z
=Ko, (pg, . *¥¢—pre)d| + 2_R2_N,'

i J.Tétll;(xl,'"’XN’x,h'--’xk’)lzdxl"'de
J

In particular

— Zl/3 , 2
( Tl (g Xy Xy X)Xy - odxy| — 2 R N>+
J
<Ko, (o5, *9 = DI
Next, observe that \
CN'
W for |y|§R*
-
mﬁ'ﬁ N’ for R*=|y[___2 R*
0 for |y|>2'R,
In any case,
C I
Vol < SRR,

therefore,
R
IV,0l3 < CN’ZE;E.

By Lemma 2.1 applied to ¥, we have for (x},...,xy)€E,
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<HZ,N ‘p\*'l,...,.\"N«’ l//V’l...qY,N‘ >

2

R
N’2R*|<p"’\ ¥ — pres @ )1* — CuswZ7 7"

- - 21/3 2 7/3-b
<Z T4¢’x'l,...,x'N«’ l/j‘(', ,.A.,xlN. > } - ZFN’> - CHSWZ .
J

=E\2)+C

+

R2
> ’
= EO(Z) + C N/ZR*<

In other words,
<HZ.N ‘ﬂ,\-’,....,\-’N» l//x'l,.“,\}vr >

R2
N?R,

2y, 13-] Eo(Z) = CyswZ7 P+ C’
Z3 2
<Z T4¢‘<'l.,.,,‘<'N.’ l//xll,.“.x'Nr > l 2—5 R2 N’ “ ‘pr‘ XN )
J +

e, Y;V

=(Eo(Z) — CuswZ™° ") Iy, |

AN 2
( <ZT4l//r’1.u..r;v,»{//x'l,,_,,x’N,> — 22— RZ N'- ”!//(1 )
+C > j .
NTR, W w3
Now, integrate with respect to (x),...,xy)€E to obtain
2
CHyn ) Z Ef(Z) — Cuew 27370 + C/N/ZR
*
AL 2
( <Z T4 l/’rll...,.x;v., lpx',,_._,x;v,> —2— R2 N’ ” wx',,,..,x}v. “%)
j J o
£ lll//x/lv.,,xx,, 2

Now use Cauchy—Schwarz and the fact that
JU(x)) 1 dx = ([ f(x)dx), 20

to realize that

(grs)l=% ).

Z1/3 2
< (I (KZ Ty gV > S u%)dxa ...dfo,)
E J +
Zl/3 2
é <I(l <Z T4l//x'l,.,.,x;v,7 l//x'l,”..x;,,.> - 2—RT N/. ” ‘l/xll,...,\';v, ”%) dx,l o dx}v
E J +

S(fy,.. 13dxy - dxy)
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Zl/3 2
<Z T4lp\', ..... We? Q//\’,\'N>I - 2? N’ ” '»b\’,v,.,‘\-,'v, ”%)

+ ’ ’
dx'y ---dx)y

2
E ” 'p\-’,,,,,.x’N, ” 2
Zl/3 , 2
(’ <Z T4'// ",1~~-~"IN" ‘p.\'l,,“.\;\,,> - 2? N’ || lp\"l,m,\}vr ”%)
= J o Tdx, - dxy..
E ” w\,l ..... Wy ” 2
Therefore

+

RZ Zl/3 2 23—b
<HZ.N‘pa'//>gEO(Z)+C,W< <ZT4¢J// ‘_ZRZN'> '“CstZ / .
* J

Recall that
Hyn+Hea=Hzyin
to obtain
(Hznen ¥ 2 Eo(Z) + {Hexiea V¥

R2 <Z Zl/3 2 23—
+C— T¢,¢>i—2 N’) — CyswZ0,
NZR*< 7 4 Rz N HSW

Using (3) we get

0Z=201Z— NS +2,

R +(3r)
1/3 2
<ZT4w,w>‘—2%2—N'> CuswZ(9)

+

CHy oy, W) Z Eo(Z) +

R2
+ c_(
*

Similarly, since

N> =[N o 2 X dXly,

if we let, for (x/,...,xy)€E,
N oW ) =Z+Z 7Y (X xy)
and
(NY Y =Z+YZ'" 7,
then
Y= }fg Y(X0ooos X)Wy, 13dxy o dxly.
Now, Lemma 2.3 implies that

_ ~ C - , / -
<HZ,N'//,(,‘...,(;V,, l//V’I....,X;V,> 2 Ey(Z)+ TKZ7/3 WYX, Xy) = eq)3 — CuswZ77°

for (x},...,xy)€E.
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Arguing just as before we see that

2

(1Y =cy) é(f (1Y (X X)) =) Wy 112 dx’1~--dX3w>

g e .

lIA

2
§<£ Y(x17 [ )| —C1)+ “lib'(l XN ||2dx1 dx;v')
£ Yy xp)l = e )b Iy o 13dX, --dxy.
Therefore,
Ci 7/3-b
CHz U, ¥) 2 Eo(Z) + 2 (|Y|‘C1) — Cysw |Z )

and using (3) we see that

0Z—=201Z NI +2 <ZT4‘/”¢>

Haen ) 2 Eo(Z) + -

Cg
( (IYI—C ) CHSW>Z7/3_b-
Therefore, averaging this expression with (5), we get that

Z — —<N Q
CHy ot 2 Eg(2) + 22202 SN0 1 N’+<Zw,w>

9R
+(C(1Y]=c)] — Cusw)Z77°
RZ Zl/3 2
E (b E) e

possibly with a different constant C'.
Let’s say now that, for some numbers S and V,

0ZN'
<zj:T4l//,‘//>=_S R >

R
= V8Z > CoVoZ.

*

Thus ¥ 2 0. Note that if [S| < and | Y| is bounded above independently of C,
we are done. This follows from the remarks following (3).
Observe that

Q=N+N-Z—-6Z2(N'+<{N . ¥>—Z—52Z),
2]Y|
>(c,v- :
_< 0 C >+5Z

0

Using (4) we can rewrite (6) to obtain

CHynsnW ¥ ) Z Eo(Z)+ F(S, Y, V) 27370
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for

CZV_@(1+10 6¢ V|Y|+<C3V2—2COV|Y|—C5V>
0
9 +

—(L+107°)2CRIS|V + C((1Y] = ¢1)F +(ColSI=107°)%) — Cisw
> L(C2V —30C, V| Y| +(C3V2—2C,V|Y|— C2V), — 10C2|S|V
+C'((1Y=c)% +(ColS| = 107°)3) — 9Cusw)-
Observe that we can assume that C” < 1 and ¢, is so big that
c2C" — 18Cygw > 2. (7

The rest of the lemma is devoted to proving that either | S| < £ and | Y| < some
constant or else F > some other constant. In order to understand why this is so,
we deal with different cases:

"

C
Case 1. |S| >4 Y| <2¢, V<ﬁ|SI.
Since |S| > 1, for Co > 64 we have (Co|S|— 10~6)2 > 1C2S2. Thus,
9F 2 —3C"¢,ColS| — 5C"C2S? +1C"C2S? — 9Cys

= —40C"¢ COS + ZC"C2S2—9CHSW
zC Sz( 40c, + 12Co)—9Cst
Cll
162C0( 40c, + ZCO)_9CHSW’

and pick C, large enough so that this is at least 1.

CN
Case 2. |S|> 75 | Y| <2, V28],
9F = — 60c, VCy + (C3V2 —dc,CoV — C2V), — 10V C2|S| — 9Cysw-

Pick now C, large enough so that

"

(C3V?—4c,CoV—C3V), >1C3V? for V>_——

24-16’
then
240
9F 2 — 60,V Co +3C3V2 =57 V2C3 — 9Cusw
—60-24-16 240
2 V2<—TCI Co+3C3— e —C ) 9Chsw»

and again pick C, large enough so that this is at least 1 for V' > C"/24-16.
Case 3. All |S]|Y|>2c, V<1076C".
If | S| = 5, observe that — 10C3V|S| + C"/2C3|S|? is increasing in |S| as long as
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V < C"/160, which is true in our case. So it is enough to consider the case |S| < k.
Observe that

C2V—10C2V|S|23C2V if |S|<i%
Y2
(lYI—cl)zzT if |Y[22¢. )

Therefore

C//
9F 2 §C3V = 30CoV| Y|+ ¥* — 9Cysy

[Cc” 15C 2900

2 i1 -2V )~ 9Cumm
900
g C%(%V - C’ 10_6C”V) - 9C‘HSW

g C% V(% - 900' 10_6) - 9Cst.

Now, if ¥ > 100CyswC, 2 we are done. Otherwise,

C//
9F g - 3000CstC6 ll Yl + T YZ - 9CHSW

3000C, c’
>y _TTHSW & )
2Y < 36,Co 4) 9Cusw
" ZC/I
> Y 9Cum 2
by (7) and for C, large enough.
Case 4. |S| < |Y|>2¢c, 10713C"2CR=zV=10"°C".

If|Y|> C3 by (8)

—9Cusw 21

”

C

C/I
2 31072 CCEP| Y|+ Y~ 9Cusw-

Differentiate with respect to |Y| to realize that for Cy,>216-1073°C"3 the
right-hand side is increasing for | Y| = C3/3. So,

"

9F =z —3-10712C"*C3" + %Céoﬁ —9Cusw> ©

and pick C, big enough so that this is at least 1. If, on the contrary, | Y| < C3/3,
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we have
2C, VY| + CEV <107 13C"?(2C + CJ?) < 3-10713C2C3 < 5% C3 V2.
So, using (8) again
9F 2 —30C VY[ +$C3V? —9Cysw = — 30C5V + 3C3V? — 9Cysw, (10)
and pick C, so that this is bigger than 1 for V' = 10-°C".
Case 5. |S| 21 |Y|>2c, 10713C"*C{PzVv=1078C".

In this case, argue as in Case 4, with the only difference that C3(V —10|S|V +1C"5?)
need no longer be positive, and we have to include it in (9) and (10), which will
be replaced respectively by

C//
9F 2 31071 2C"2C° + - C3%° + C3(V — 10[ S|V +4C"5?) — 9Cysw

and
9F = —30C33V +1C3V2 + CE(V —10|S|V +3C"S?) — 9Chsw-

Note that
2 1L Q2 100 2172
Co(V —10|S|V +3C'S )g—FCOV’ (11)
since, for given V,
min (V — 10|S|V +£C”|S|?)
|81
is attained when 10V = C"|S]|: so,

. 100
min (V —10|S|V +3C"|S|*) = —— V2
Ist c
Therefore, in our range of V, (11) is at least — 10™2*C"*Cg/, so, for C, big enough
it doesn’t affect the result since V is bounded below by a constant independent of C,,.

Case 6. All |S| |Y|>2¢, 10713C"2CiR <V
If | Y| > (200/C")C,V, and |S| <&, by (8),
Cl/
9F =2 —30C,V|Y|+ 7 Y? — 9Cysw-
Again the derivative of this with respect to | Y| is positive for | Y| > (200/C")C, V.
So, plugging in for | Y| the value | Y| = (200/C")C,, V, we obtain
6000 10,000
o T —CT> —9Cusw 2 < C3V? —9Cysw-

If |S| = 1%, by (11) we have to subtract (100/C”)C3V?, that does not alter the result.
Now, if | Y| < (200/C")C,V, observe that

9Fgch2<—

400
C3V* —2CoVI Y|~ C3V 2 C3V? — - C3V2 — C3V 2 4C3V?
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for C, big enough, since ¥V = 1. So, for |S| < fz we have
9F = —30C,V|Y|+1C3V? —9Cysw

6000
> - CIV2+1C3V2 — 9Cysw,

and as usual we pick C, so that this is at least 1. If | S| = £, we have to subtract
(100/C")C3 V2 which again is harmless for C, big enough. This proves that either
both |S| <+ and | Y| < 2¢, or

CHynsnWs W) 2 Eg(Z) + 27370,

which concludes the lemma.

4. The Bootstrap

In Sect. two we obtained estimates for wave functions supported on balls, where
the ball was to be of a certain size. The estimates from the previous section will
help us obtain essentially the same kind of estimates for a ball of twice their size,
and by induction, to all balls in R3.
Lemma 4.1. Let R=2CoZ ™ 'P**", §=¢,Z" " and

CoZ "<e<(1+10713)CoZ 7.
If Estimate (g, ¢, R) holds, then Estimate (¢, ¢',2R) also holds, with

provided that £ < ¢* < 1.

Proof. We consider a partition of unity given by two smooth functions, 6, and
0,, satisfying

0 if |x|>R ’
02(x) + 03(x) = 1.

m:¥ifm<m2

Given a wave function y(x,,..., xy) supported on B(0, 2R), and given any sequence
.,iy of 0’s and 1’s, we define

‘/’ix ..... in = Oil(xl)“.ein(xlv)l//(xl’ s XN

Assume for simplicity that i;=0for j=1,...,N; and i;=1for j=N,+1,...,N
let N,=N—N,. We define Vs, .,..xy tO e Y, where the variables xy, ;1. ., Xy
are fixed. It is thus an antxsymmetlc wave function supported on (B(0, R))"". Smce
Estimate (¢, &, R) holds, we have

YA
CHonWng o Vg s x>z(Eo(Z>+£—(N1—(1+e)Z))u¢xM NH

,,,,,,,,,,,,,,,,,
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Integrate this against dxy, . {,...,dxy to obtain
ez B
CHznVi.ino Vi in ) 2| Eo(Z) +7(N1 —(1+82) )IYi,....inl32-

Our goal now is to prove that

CHznyvwoWin, . iwo Vi ?
%(Eo(z) R(N1+N2—(1+£)Z)>||¢ ..... W3
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(12)

(13)

This is trivial if N = N, + N, < (1 +¢)Z, since ¢ < &*. If N = (1 + ¢)Z, we can apply

Lemma 3.1, with d = ¢. If
{Hzn, +Nzlpi| ..... iNal/ji, ..... m> Z (Eo(Z) + cZ'3" b) I lﬁ,l ..... in | %

then, either
e
IVALRLES %(N —(1+82)
in which case (13) is proved, or

czr <2 (N—(1+e)Z).

(14)

If this is the case, just like in (2), note that provided ¢y < ¢Cy /(8 Cysw), Where ¢ is

the constant in Lemma 3.1 (we can assume ¢ < 1 and Cygy > 1),

IN-2Z)?

A
TR Bl
K 8CuwR ~ R

(N—(1+¢)2).

Equation (14) then implies that

IN—Z]?

Ck 4R

>2CuswZ 370,
Estimate (A) then with y = y,, implies that

|N_Z|2 2
<HZ,N1+Nzl//i1 ..... in® l/’il ..... iN> g EO(Z) + CKT “ lpil ----- iN ”2

Eo@) +eCd N g
0 SCHSWR Ifyeee, iN
and (15) again implies (13).
The alternative left from Lemma 3.1 is that

ceZ
<Hextral/’i1 ..... iN’l//h ..... 1N>_—N2 ”l/, ..... in ”%

Since

Hyn o vn,=Hzn, + Hegra

(15)

(16)
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and ce > ¢ (for ¢y < ¢ Cy), (12) and (16) imply

,,,,

and (13) is proved.
Putting all these estimates together, we see that

,,,,,,,,,,

.....

i15ees

=X Z (= A (05, (e, (0, (x %) >
= Zk O (— A ) ¥ > + zk (= Ay, B:(x:)), 0:(x )0 >
-2 Zk V¥ Vi 0:(x), ¥0,(x,) >
={(—Ay,¥)+ <2}; 0:(x)(— A5, 0:(x )Y, l//> - Zk (Vi 070a) Vi ).

The last term on the right is zero, since
YV 07 () = Vs, ) 07(x,) =V1=0.

Hence, if we define
W(x) =Y. 0,(x)A6;(x)

we get

As result, we get
£z
CHz Y, ¥ — <; Wx)y, l//> 2 Eo(2) + ?(N —(1+¢2).
Observe now that

C
[W(x)] SgE
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Thus it follows that
CN

Thus we have
&z CN
CHyl > 2 Eo(Z) + 5 (N =(1 4 6)2) = -
So we have only left to investigate when

eZ CN > ¢z

K(N——(1+£)Z)—F:§—§(N—(1+8')Z). (17)

Observe that the derivative with respect to N of the left-hand side is bigger than
the derivative of the right-hand side. This amounts to checking that

&Z C S ez
R R?T2R’
which is equivalent to
C &
— <=
R™ 2’
which will hold as long as R = 2C/¢Z. This certainly holds in our case, since
R>Z W34y z-1+n

So it is enough to prove that (17) holds for the smallest value of N in which we
are interested. For N =(1 +¢')Z, (17) is equivalent to

1 ’
C re <&eZ(e —¢),
Le.

C(1+¢)
’ > N 7
€26+ ——p—

So, Estimate (¢, ¢, 2R) holds with

g=c+ 2¢
" T EZR

Corollary. There exist &*,¢* such that Estimate (€%, ¢*, R)holds for all R= C,Z ~1/3* 72,

Proof. Define

g0 =CoZ™ 7, Eg=coZ ",

2C
Ry=CoZ 3% g =g | +- R, =2"R,.

£ ZR,’
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Note that

o 4C #, df g
s,,§30+k;)m<c go=¢
for Z large enough, provided b <1% (which is true in our discussion), with
C*<(1+410712),

By Lemma 2.2 we see that Estimate (,, ¢4, Ro) holds. Therefore, by the previous
lemma, if we make &* = &,, Estimate (§,,¢,, R,) holds for all n, and the corollary
follows. This implies that

CHznY, ¥ ) 2 Eo(2),
and therefore
NZ)LZ+eZ=2Z+0Z' ™).
From [11] it follows that
N(Z)zZ,
and therefore,
N@2Z)=Z+0(Z'"")

which proves the theorem.
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