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Abstract. We discuss a quantization prescription of the conformal algebras of
a class of d =2 conformal field theories which are integrable. We first give a
geometrical construction of certain extensions of the classical Virasoro algebra,
known as classical W algebras, in which these algebras arise as the Lie algebra
of the second Hamiltonian structure of a generalized Korteweg—de Vries
hierarchy. This fact implies that the W algebras, obtained as a reduction with
respect to the nilpotent subalgebras of the Kac-Moody algebra, describe the
integrability of a Toda field theory. Subsequently we determine the coadjoint
operators of the W algebras, and relate these to classical Yang—Baxter matrices.
The quantization of these algebras can be carried out using the concept of a
so-called quantum group. We derive the condition under which the
representations of these quantum groups admit a Hilbert space completion by
exploring the relation with the braid group. Then we consider a modification
of the Miura transformation which we use to define a quantum W algebra.
This leads to an alternative interpretation of the coset construction for
Kac-Moody algebras in terms of nonlinear integrable hierarchies. Subsequently
we use the connection between the induced braid group representations and
the representations of the mapping class group of Riemann surfaces to identify
an action of the W algebras on the moduli space of stable curves, and we give
the invariants of this action. This provides a generalization of the situation for
the Virasoro algebra, where such as invariant is given by the so-called Mumford
form which describes the partition function of the bosonic string.

1. Introduction and Summary

One of the most prominent problems in string theory is to develop a prescription
that incorporates both the geometric and algebraic concepts of its quantization.
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A first attempt in this direction, made a year ago by Friedan and Shenker [1],
consists of a description of so-called modular geometries which can be defined on
some infinite genus Riemann surface . A modular geometry, which is an abstract
description of a conformal field theory, is defined to be a bilinear functional on
some noncommutative algebra A, labelled by a rational number ¢, which is
invariant under the modular, or mapping class group n;(Z).

The noncommutative algebra acts in the space of holomorphic sections of some
vector bundle L, defined on the moduli space of stable Riemann surfaces of finite
genus. The energy-momentum tensor of the corresponding conformal field theory
isinterpreted as a holomorphic flat connection on this bundle. If L, is a holomorphic
line bundle it is, by a theorem of Harer [15], isomorphic to a power of the
holomorphic line bundle of one-differentials. This has been the key point in the
construction of Arbarello et al. [2], who proved that the cohomology of this space
is isomorphic to the cohomology of the Virasoro algebra, using a description on
a suitable infinite dimensional Grassmannian. As a result one finds that the
infinitesimal geometry of the determinant line bundles on moduli space is described
by the Virasoro algebra [10]. However, so far this formalism has been developed
only for line bundle geometries. This is a serious problem since for full
characterization of the string ground state it is necessary to incorporate all possible
geometries for given ¢ such that the interplay between the representation theory
of the conformal algebra and the geometry of the moduli space of (stable) vector
bundles on Riemann surfaces is manifest.

A possible generalization is provided by the construction of so-called extended
Virasoro or W algebras which appeared in the generalization of the Sugawara
construction to higher-order Casimir operators [5,7,8,9]. However the con-
struction of these algebras as given by these authors does not provide a
geometrical interpretation along the lines described above.

In the present paper we will give a geometrical construction of the classsical
analogues of these W algebras which is suitable for a quantization prescription
that combines both its algebraic and geometrical properties. Our approach is
connected to the Drinfeld—Sokolov theory [14] on bi-Hamilton (also called
bi-Poisson) structures for integrable systems. As is well known, a characterizing
property of an integrable conformal field theory is that the master equation is the
classical Yang—Baxter equation. Recently much progress has been made in the
understanding of the algebraic nature of this equation which culminated in a
consistent quantization prescription in terms of a new algebraic object called a
quantum group [11].

Before we proceed, let us give a simple argument why conformally invariant
integrable field theories are necessarily of Wess—Zumino—Witten type, i.e. free field
theories, or Toda field theories for some Lie group G [9]. Consider the following
general Ansatz for the action of a scalar field theory:

S[¢]=3[d*x(0nd'0,$'g;; + V() (1L.1)

where g;; is an arbitrary n x n matrix and V(¢) an arbitrary potential. It follows
straight-forwardly using the classical field equations corresponding to (1.1), that
the improved energy momentum tensor is traceless, provided that
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V(§)=KY exp gy, (12)

where k is an integration constant. If one further requires that the theory be
integrable (in the sense of [13]) it follows that g;; is the Cartan matrix of some
simple Lie algebra 4. The theory defined in this way is known as a Toda field
theory on the group manifold of some Lie group G. Note that (1.1) and V as in
(1.2), corresponds in the limit k — 0 to a free field theory. To such a theory one may
add a topological term, without affecting the integrability or the conformal
invariance, thus turning it into a Wess—Zumino—Witten model. The conserved
currents associated with (1.1) are known to build up a Kac—-Moody algebra
associated with 4.

In Sect. 2 we use some results of [14] to show that the classical conformal or
W algebra can be obtained from the Hamilton reduction of integrable nonlinear
hierarchies associated with higher order differential operators. The space of
differential operators we shall consider in this paper form the dual of an SLy
Kac—Moody algebra. As is well known this space admits a natural Hamilton or
Poisson structure. The space of differential operators endowed with this Hamilton
structure, is identified as the phase space of the classical field theory. In addition
to this natural Hamilton structure, there exista a second Hamilton structure, a
fact which reflects a symmetry acting on this phase space. The pair of these
Hamilton structures is called a bi-Hamilton structure.

The study of this structure is the central point in this section. One of the main
properties we will discuss is the existence of a nonlinear map, which relates these
Hamilton structures. Geometrically this corresponds to reducing the phase space
with respect to this symmetry. This map is referred to as the Hamilton reduction.
It is provided by the so-called Miura transformation. In the first part of this section
we apply this formalism to quadratic differential operators to obtain the Virasoro
algebra. This case is well known in the literature (see [17]). In the second part we
generalize this to arbitrary differential operators of order N and show that the
resulting W algebra contains terms of higher order in the generators, which can
be considered as the classical analogues of the quadratic terms in the generalized
sugawara construction in [43,7,9]. This approach was first followed by Fateev
and Lykyanov [8], [48]. In the third part we present the relation of these algebras
and a classical Yang—Baxter matrix by exploring the relation between the nonlinear
hierarchies and the integrability of the Toda field theory. This provides an
alternative characterization of W algebra, namely as the Hamiltonian reduced
associative free tensor algebra modulo the ideal generated by the Yang—Baxter
relation. Such an algebra has the structure of what is called a bialgebra or Hopf
algebra. This point of view is relevant for discussing a quantization of W algebras.

In Sect. 3 we discuss a quantization description for the classical W algebras
formulated in terms of a quantum group built out of the classical Yang—Baxter
matrix for the (classical) Toda field theory. This quantum group is essentially a
generalization of the well known geometrical quantization procedure. It is defined
as a deformation of the Hopf algebra structure described in Sect. 2. In this respect
we would like to consider quantization of the classical reduced phase space as an
irreducible representation of this quantum group. This is in general impossible,
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since the reduction in the classical situation corresponds to a nonlinear
transformation which in general has no meaning after quantization. Or in other
words, the second Hamilton structure on the reduced phase space does not define
canonical conjugated variables. We will show in this section that this problem can
be solved in terms of solving a condition on the representation content of a
quantum group.

The section is divided into three parts. In the first part we derive the condition
for which the representation of the relevant quantum group admits a Hilbert space
completion, using a homomorphism of the quantum group into the braid group.
Subsequently in Sect. 3.2 we introduce a normal ordering description in the Miura
transformation which depends on the deformation parameter of the quantum
group. Thus we are able to define a quantum W algebra. Using the relation with
the integrable nonlinear hierarchy we conclude that the effect of the Miura
transformation is similar to adding a term to the energy momentum tensor of the
underlying field theory corresponding to an electric charge “at infinity.” As a result
we find that application of the Miura transformation leads to the so-called coset
construction for Kac—Moody algebras as developed in [6,7]. This relates the
central charge of the W algebras with the deformation parameter of the quantum
group. Finally in Sect. 3.3 we explore the relation between certain representations
of the braid group and the mapping class group to show that the quantized W
algebras define an action on the moduli space of stable curves. It is shown that
the irreducible highest weight representations of a W algebra define holomorphic
flat connections on the moduli space. This provides a generalization of the result
obtained in [2] for the Virasoro algebra, and shows that one may understand this
action as an action of the underlying quantum group.

2. Classical W Algebras

In this section we will show that the Kac—Moody algebra acting as a symmetry
algebra in a Sly. Toda field theory admits a reduction which yields the classical
extended Virasoro or W algebras. As will be shown, these algebras are obtained
as the Poisson algebra of the second Hamilton structure defined on the space of
smooth differential operators. To introduce the formalism and to fix the notation
we begin with briefly reviewing the situation for the Virasoro algebra, which is
related to the second Hamilton structure of the Korteweg—de Vries equation. This
is done in Sect. 2.1. Then, in Sect. 2.2 we generalize the formalism to arbitrary
AP Kac-Moody algebras using a theorem in [14]. In Sect. 2.3 we establish the
connection with the classical Yang—Baxter r matrix and the induced Lie bialgebra
structure.

2.1 The bi-Hamilton Structure for the Virasoro Albebra. Our starting point is to
relate the 2-cocycle on the infinite dimensional Virasoro algebra with a so-called
bi-Hamilton structure. The technique we shall describe below is well known and
originally due to Gervais and Kupershmidt [ 16, 17]. We will generalize it later on.
The Virasoro algebra is generated by a symmetric 2-tensor, the energy
momentum tensor of the underlying conformal field theory, which has Laurent



Quantum Group Structure in Integrable Conformal Field Theories 5

expansion:
+
T(z)= ) Lz "2 2.1

where

L,= fﬁd—z.z” 'T(2).
2mi

As is well known the variation of T(z) under a holomorphic change of coordinates

z—z + w(z) is of the form:

o0T(z) = 1—62w’”(z) +2T(2)W(2) + T'(z2)w(z), 2.2)

where ceC and the ' denotes d/dz. This is equivalent to the following Lie algebra
relations for L,:

[L,L,]=0m-mL,, + én(nz 1) 2.3)

n+m
which is the defining relation for the Virasoro algebra.

Our aim is to show that (2.2) is the coadjoint operator related to the second
Hamilton structure on the dual representation of the Virasoro algebra. To do so
we will introduce two Hamilton operators associated with (2.3). Consider a ring
K of vectorfields f(6)(d/d6) on the circle S* parametrized by 6, which by virtue of
a differential operator 0:K — K is turned into a Lie algebra of Diff (S?):

Lfgl=19 =19 24
The Virasoro algebra is defined as the universal central extension by C described
by the 2-cocycle [23]:

wlfig)=c] fg"ds, ceC, 3
0

where c is the central charge. Thus, o defines a skewsymmetric form on (2.4), with
¢ belonging to its center. We shall write (2.5) formally as

w(f,g)=cfdg. (2.6)

Next, introduce the ring to K denoted by C[u] generated by a periodic
C>-function u(x) and all its derivatives. On C[u] we have the induced derivation
O:u'>u'*!. Elements of the algebra in (2.4) will be called adjoint, whereas the
elements of its dual (i.e. the Lie algebra on C[u] induced by 0) are called coadjoint.
The Hamiltonian H introduced above which is compatible with (2.4) is considered
as an operator on C[u], defined by

H=—(@Lf, g])=z(j)"f(u6+0u)g, @7)

that is
H =ud + ou. (2.8)

We can introduce an operator h, on C[u], corresponding to the 2-cocycle w by

h(f)g=ol(f,9)
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so that
h,, = cd>. 2.9

It is not difficult to show that H, = H + h,, is again a Hamilton operator on C[u],
which is associated with the Lie algebra (2.4) with the non-trivial 2-cocycle (2.5).
Also the trivial cocyle on C[u]

Mf.9)=30f)g (2.10)
gives rise to a Hamilton operator H, = 30 in an analogous way. The pair
H,=3%0, H,=ud+ du+cd® (2.11)

is called a bi-Hamilton structure [27]. Observe that (2.2) is of the form H,. For
the moment we will put ¢ = 3. A well known fact states that to such bi-Hamilton
structure there corresponds an integrable hierarchy of nonlinear evolution
equations of the form:

du(x,t) = Pol (u) (2.12)

where the evolution is taken in some time direction ¢. The right-hand side of (2.12)
is a polynomial of degree r in C[u]. In the case of (2.11), the associated hierarchy
is known as the Korteweg de Vries (KdV) hierarchy, which has the generic form

o=, "t )= 1, %), .1

ou ou

where d/0u denotes the functional derivative with respect to u, and Q, denotes the
r'® conserved densities of the hierarchy, which is an element of C[u]. This first few
are [27]:

QO = jgdx’
Q,= j%de,
Q, = [(Gu® — u)?)dx. (2.14)

Upon substituting these into (2.13) one finds the KdV equation as the first
non-trivial element of the hierarchy

du = H(6uu' + u"). (2.15)

These Hamilton operators give rise to Poisson brackets by means of (2.15) and
can be written as a Hamilton equation. Before we discuss the properties of these
Poisson structures we consider the integrability of the KdV hierarchy a bit more
in detail. The bi-Hamilton system (2.13) (with ¢ = ) is closely related to a so-called
Lax representation of the KdV hierarchy:

0,.L=[L,A], (2.16)

where L is the Hill operator:
L=0*+u (2.17)
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and A the pseudo-differential operator of the form
A=(Ly,, (2.18)

where L'/? is the pseudo-differential operator of the form

=0+ Y uo™* (2.19)
i=0
such that (L'/?)? = L. This pseudo-differential operator is unique; the coefficients
of it are differential polynomials in the coefficients of L. In (2.18) the + denotes
the positive, i.e. the differential part. For r =3 A is given by

A=(I¥?), = 0%+ 3u0 + 3u, (2.20)

which upon substituting in (2.16) produces the KdV equation. The fact that this
operator is of the same form as the second Hamilton operator has a nice
interpretation which we shall discuss at the end of this subsection. For the moment
we conclude that the Hamilton operators (2.11) define two Poisson structures on
the space of functionals on the (smooth) manifold M consisting of all operators
of the form (2.17). These functionals are of the form

P(L) = [ f(W(&),u' ()., u"(&))d, (2.21)

where f is a polynomial in C[u]. The Poisson brackets induced on them are given by
_ (%0 0¥

{¢,'//}i—f<5uHi5u>dx. (2.22)

For the functions u(x) they are given by:
{ux)u(y)}i=Ho(x—y), i=12 (2.23)

with H; given in (2.11). So, we have found a relation between the non-trivial
2-cocycle of the Virasoro algebra and the bi-Hamilton structure of the KdV
hierarchy [17].

We will now show that the Poisson structure induced by the second Hamilton
operator defines the Virasoro Lie algebra on the dual space. For this it is convenient
to reformulate the Lax equation (2.18) for L in terms of a Lax equation for a
linear differential operator .# of the form:

&L =0+ q(x)+ A. (2.24)
where
_ 911(%)  q12(x) (0 A
q(x)—( 0 qu(x)>, A_(l 0), (2.25)

in which 4 is the spectral parameter and the function ¢g(x) is an element of another
differential ring C[q] diffeomorphic to C[u]. It is important to realize that the
form of £ is unchanged under conjugation by constant matrices which have zeros
on the diagonal. So the choice of V is not unique.

It is easily seen that given % the operator L is determined completely. That
is, for each gauge the assignment % — L is given by a gauge invariant differential
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polynomial relating u with the functions v in (2.25). The idea is very simple: one
forms a quadratic polynomial in % whose coefficients are differential polynomials
in u. Then, by imposing the eigenvalue equation for this quadratic differential
operator (which is Hill’s equation), the coefficients are fixed uniquely. In particular
this will give a relation between the function g(x) and u(x) which is such that gauge
equivalent operators .# correspond to the same quadratic differential operator L.
This differential polynomial in u and g is known as the Miura transformation. It
is given by

L=0—q)0+q<=u=q —q> (2.26)
Observe, that this transformation is not injective: knowing L one finds ¢(x) up to
integration constants, which reflects the above mentioned gauge freedom. An

important property of the differential operators £ is that the time dependence of
the functions g(x) can be given as a Lax equation for %,

0¥ =[A, L] (2.27)
If we require that under (2.26) this Lax equation goes over into (2.16) one finds
that o/ is given by
2_ 1 3_ 3_1 2 /
=<q/13 14(2(12 q/) lz 211(‘1 :—q)” >’ (2.28)
B —JM*+4q) —2q+329°—9q)
which upon substituting into (2.27) gives
0.9 =14(q" —64°q). (2.29)

The equation is called the modified Korteweg—de Vries equation, corresponding to
the modified Lax equation (2.27). We will discuss the relation between (2.16) and
(2.27) in more detail in the next subsection. For the moment we simply observe
that (2.28) can be expressed as

m=—g@&) . (2.30)
oq u=q' —q?

That is, the operator

H_, =10 2.31)

is a Hamilton operator for the modified KdV equation. This can be seen as a
consequence from the fact that H is a Hamilton operator for the KdV equation,
and the identity

mod

18 + ud + ou = D(— 19)D*, (2.32)

where D = d — 2q is the “Jacobian of u with respect to ¢,” and D* = — 0 —2gq its
formal adjoint. We thus observe that the Hamilton structure defined by H is
obtained as a reduction of H_, [18].

We are now in the position to derive the classical Virasoro algebra from the
second Hamilton structure by localizing the Miura transformation. To show that
this operator indeed induces the Virasoro algebra we expand the functions u(x)
and ¢(x) into Fourier series using techniques presented in [29]. We introduce the
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Fourier series & (u), respectively & (q) of a function u(x) respectively g(x) by

12 iz .
ux)=—— Y e ™L,+3, (2.33)
2 iz
q(x) = Y. e ™a, (2.34)
Ci=-w

where we reintroduced the parameter c. Subsequently, we define the fourier series
for the derivatives u"” respectively g as
. 12 & i s
Fu)=—-—3% (—infe "L,

n=—o

. 12 & o
F@")=-— Y (—infe"™L, (2.35)
We refer to [29] (pages 32, 33) for the relevant statements on the calculus for these
Fourier series, necessary to extend the fourier map & to the ring C[u], respectively
C[q]. After substituting into (2.13,2.26,2.29) one obtains the corresponding
equations for L, and a,:

Ql 2 __ 5Q1
oL, = —m)L — s 2.36
L, =Y (n—m) mimsy + ( )5L_,. (2.36)
da, = — Sn2 2.37)
12 (?a_,,
12 1 12
L,=—— -a,a,, +—(n—1a,. 2.38
. ngnz I C( ) (2.38)

This gives the matrix components of the Hamilton operators:

c
(Hmod)mn ~ = Enén +m,0° (239)
¢

Hy)p,=m—mL,, . En(n2 —1)8,, 4 .00 (2.40)

leading to the Poisson brackets:
{L,L,}=m—-m)L,,, + I—n(n2 —1)8, 4 0 (2.41)

c
{a,a,} =—10, ., (2.42)

12

This shows that the second Hamilton operator of the modified KdV induces a
classical representation of the Virasoro algebra on the dual space. Thus the classical
Virasoro algebra is obtained as the reduction of a free oscillator algebra which is
homogeneous in n. We will see in Sect. 3 that this is a general property, and is in
fact related to the SL, Kac—-Moody algebra.
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Now that we have obtained the Virasoro algebra we will discuss its coadjoint
operator. To find this operator we use some results of the coadjoint orbit method
as presented in [26]. Using the invariant bilinear form on the virasoro algebra
one can embed the space M of Hill operators into the dual space denoted by Vir*:

L=0%+u—(u,c= — 1)eVir*,

where we used the notation as in [26]. Using the Poisson brackets of the Virasoro
algebra we find the coadjoint operator

ad* (u, — 1) = (9 + ud + du)f. (2.43)

This is in agreement with the fact that L transforms covariantly under a Diff §*
transformation x — 6(x):

L—(0)732L) "2, (2.44)

where

L=0%+1,

i—(0) 1e” _3(¢ 2)
u—(9)u(9(x))+2<9, 2<(—)’> .

This shows that the function u(x) transforms as an energy momentum tensor T.
In this respect one may view the Lax equation for L corresponding to the KdV
equation as a conformal deformation by the third order differential operator A. In
Sect. 3 we will discuss a quantization of the coadjoint operator (2.43) in which we
will relate this deformation with the operator product expansion of the energy
momentum tensor.

We conclude this section with a brief comment on the classification of the
coadjoint representations [24,23,25], which follows by determining the kernel of
(2.43), i.e. by classifying all feVir which for given u solve the equation

ou=f"+2fu+uf=0.

From this it is clear that the orbits fall roughly into two classes depending on
whether f contains zeros or not. If f contains no zeros it follows that the coadjoint
orbit contains the constant vector u=u, The orbits containing a constant
coadjoint vector are known to be Diff S!/Rot S?, and Diff S*/SL,(R)", where the
index n denotes the copy of SLy generated by L, ,, L,. It is not difficult to show
that a critical point of the “Hamiltonian” L, in (2.38) precisely corresponds to
orbits containing the constant coadjoint vector. Further as can be seen from (2.38),
only diff S*/Rot S*, and diff S'/SL,(R)" for n = 1 the critical points are stable. For
these orbits L, is bounded from below, hence will lead to highest weight
representations after quantization in a semi-classical expansion. For the case n > 1
there will also exist highest weight representations, but these will in general not
be irreducible. In section three we will discuss a quantization description for the
Poisson brackets (2.41-42) (including the case n > 1), i.e. for the coadjoint orbits
for which the Hamiltonian has critical points.
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2.2 The Geometrical Construction of the W Algebras. In this section we will
generalize the construction outlined in the previous section by explaining the
bi-Hamilton structure and its relation with the modified Lax equation using an
abstract theorem of Drinfeld and Sokolov. To do so, and to discuss its consequences
we need some more machinery to deal with arbitrary differential operators, as was
developed in [27,28]. We will consider differential operators L of the form:

N—-2
L=+ Y wd, (2.45)

i=0

where u; = u{”e C*(S!, C), the zero'™ order component of the ring C[u], consisting
of functions u; and all their derivatives. Furthermore we denote by M the smooth
manifold of all operators L of the form (2.44).

We now introduce the pseudo-differential symbol X as

N-2 )
X= Z a0”! (2.46)
i=0

so that X is in fact an integral symbol. Denote by F the space of all
functionals of the form

HL) = [ f W&ty 1 (O U ., . (EDE.
To each pseudo-differential operator X we associate a functional Iy: M — C by
Iy=TrXL, (2.47)
where
TrX = [res X = [a_,(x)dx. (2.48)

We will use this formalism to study the Lie algebra structures induced by the
Hamilton operators corresponding to some generalized Lax equation. One can
show [27] that associated with each operator L there exists a Lax equation of the
form:

o,L=[L,A], (2.49)

where A is defined as a= ) ¢(L""), with ¢; arbitrary complex constants. The
i=0

left-hand side of (2.49) is a differential operator of order not exceeding n — 2, while
the right-hand side is in general of order m + N — 2, which makes that there are
m relations between the coefficients of A and L. These relations determine the
operator A4 in terms of L. The pseudo-differential operator L'/¥ is of the form (2.19)
and satisfies the condition (L)Y = L. The Lax equation (2.49) can be given in
terms of a bi-Hamilton structure which induce poisson brackets of the form
(2.22-23). The Poisson brakcets can be computed with the following

Theorem 2.1. ([14)] Let ¢, Y be two linear affine functionals defined on the manifold
M of differential operators L of the form (2.45). Denote by X, respectively X, the
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pseudo differential operators corresponding to ¢ respectively y,

X,= Y 0l x= Y o

where 6/0u denotes the variational derivative with respectively to u.

- 0

ui__ 1 =1 5“, 1

1. On F there can be defined a bi-Poisson structure given by

{¢’ l/j}l(L) =Tr([L, X¢]+X»1/)’ (2.50)

{#,¥}2(L) = Tr (Vx (L)X,). (2.51)
where Vy (L) is defined as

Vx, (L) = L(X,L), — (LX) L. (2.52)

2. The Lax equation (2.49) is Hamiltonian with respect to both Poisson structures,
and for a given operator A, (as in (2.49)), the Hamiltonian function is given by
H,(L)= N Tr(L"™)/m.

It is worthwhile to mention that the operator Vy, behaves under an arbitrary
constant translation of the operator L— L + k as

V(L) =V (L) — k[L, X ;1. 2.53)

Later we shall see that this defines a Hamilton structure also. Observe that the
theorem generalizes the bi-Hamilton structure for the Korteweg—de Vries equation
to differential operators of order N. In particular the conserved charges follow
from the formula given in the second part of the theorem.

In the rest of this section we will give a Lie algebraic interpretation for both
of the Hamilton structures in the context of conformal field theory. More precisely,
we will show that the first Hamilton structure can be interpreted as the natural
Hamilton structure on the coadjoint orbits of an affine Kac—Moody algebra. We
will use the formalism as presented in ref. [30]. The application of the results in
[30] to classical W-algebras has been discussed independently by I. Bakas in [50].
The second Hamilton structure will turn out to define Poisson brackets of
generalizations of the Virasoro algebra known as W-algebras. The two Hamilton
structures are related via a non-linear mapping known as the Miura transformation.
As we will discuss, this provides a ‘classical’ version of the Sugawara construction
for Kac—Moody algebras. In addition to this we shall find that the Poisson manifold
for the second Hamilton structure has a ‘hidden’ gauge symmetry which stems
form the Kac—Moody algebra associated with the first Hamilton structure. In order
to make these ideas explicit, we use results of the Drinfeld—Sokolov theory on the
relation between affine Kac—Moody algebras and Lax equations for first order
differential operators.

We start with introducing the space .# of all first order differential operators
of the form

L =0+ V(x), (2.54)
where V(x)= V,(x)T% and T° denote the generators of a simple Lie algebra %,
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with commutation relations
[T T"] = foT" (2.55)
It is well known [ 30] that on .# there is an action of the loop group LG = C*(S,, G),
with G the Lie group associated with 4. Under g(x)e LG we have
&' =97 ()Lg(x) =0+ g~ ()V(x)g(x) + g~ (x)dg(x), (2.56)
which shows that LG acts via gauge transformations. We recall that there is a
natural central extension, which in terms of the algebra L%, is given by
oV, V) = [dx<Vi(x), Vy(x) ), (2.57)

where ( , ) denotes the non-degener/gte G-invariant bilinear form on L%. The
central extension of L% is denoted by L¥. Using this bilinear form one may identify
L% with the smooth part of its dual space L%*, and in this respect the action of
the loop group LG (without central extension), can be considered as describing
the coadjoint action of LG in the this dual space L%*.

Now, it is well known that on L%* there is a natural Hamilton structure.
Denoting by ¢(V) and (V) two functionals on L%, then the Poisson bracket
corresponding to this structure is given as

_ op(V(©) 5!//(V(y))] >
V(x)), y(V =\d , , L ).
{dVENY(V(y)} = é<[ V) | V()

It is easily verified using the properties of the bilinear form
<ua [U, W]> = - <U, [u: W] >,
u,v') = —=<vu'),

that this bracket satisfies the Jacobi identity. Furthermore, if we take V = V* one
recovers the Poisson relations for the affine algebra L%:

{Vax), Vi(9)} = [ Vebx0(x — y) — 30,,0,0(x — y), (2.59)

(2.58)

where we used the normalization Tr(T°T?) = — 15%.

In fact, this bracket has an important property namely, it still satisfies the
Jacobi identity if we replace the operator £ by a the operator

P =K +p?, (2.60)

with K a constant matrix. In this way one obtains from (2.58) a bi-structure on
L%*, by taking either A =0 or u=0: (see [30] and e.g. [50])

0p(V'(9) 5¢(V(y))J >
V(x), y(V 1=)d ) ,K ), 2.61
{6V, YV (W)} =] €<[ V) | V) (2.61)

_ op(V (&) W (V(y)
{p(VON Y (V()}2 —fd€<[ V) " V() ],5 + V(X)>' (2.62)

In other words one finds that { , } =A{ , }; +u{ , }, again defines a Hamilton
structure. This Hamilton structure leads to the relations for the loop algebra Lg
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with V = V*
(V). VE(3)} = Af2V(00,5(x — y) — 5pu60,3(x — ) (2.63)

In the case where y =0 the Hamilton structure describes on action similar to
the action of the (finite dimensional) Lie group G on the coadjoint representations
of its algebra. One calls this Poisson bracket also the Kirillov bracket.

Note that on the Poisson manifold defined by (2.58) we have the loop group
LG acting by gauge transformations. In order to relate the Hamilton structures
(2.61-62) with the bi-Hamilton structures on the space F one has to isolate this
action. This can be done by specifying a gauge. For this it turns out to be useful
to consider operators.

L =0+q(x)+A (2.64)
where g(x) is an N x N-matrix upper triangular matrix:

q11(x) o gin(x)

q(x) = ? 4221 L (2.65)

0 qNN(x)
and A is the N x N-matrix

- O
[e]
[T

A=|0 1 - , (2.66)

0 -« - 1 0

with A the spectral parameter. Formulae (2.65-66) are direct generalizations of
(2.24-25). For this operator & the gauge transformations correspond to
conjugation with unipotent matrices, (whose entries are functions of x). It follows
that one can choose in each gauge equivalence class a representative denoted by
& of the form

LU =04+q“"+ A, (2.67)
where
0 - ¢“(x)
q(x)=| : S (2.68)
0 - qy"()

The relation between the matrix elements of g and ¢*" follows from the operator
equation

det & = det £, (2.69)

One of the main results in [14] is that the map & — £ is a Poisson morphism
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for the bracket (2.62). The map £ — #“" is referred to as the Miura transformation.
It can be computed explicitly as follows. Recall the argument made in the previous
section, by which we assigned to each gauge equivalence operator £ a quadratic
differential operator L. It is straightforward to verify that the same argument
applies also to higher order differential operators. We use this to compute the
Miura transformation u:/i — M explicitly:

N
L=IlT@—gq™<u_, =—q (2.70)
i=1

We are now in a position to relate the bi-structure in (3.2.64—65) for G ~ GLy
with the bi-Hamilton structures on functionals on the space M of operators L
defined in theorem 2.1. Denote by .# the space of operators & of the form (2. 64),
and by Z the space of functionals on ./#. The Hamilton structure on the space & is
obtained from the Hamilton structure (2.58) on & by applying the Miura
transformation ¥ — £°". By virtue of (2.70) one finds that this Poisson structure
can be expressed in terms of functionals on F:

{$w()), P(u(y)} = [res (Vi (L)X,), 2.71)

where we used the notation explained earlier, which is precisely the form of the
second Hamilton structure introduced in theorem 2.1.

Summarizing, we have shown that, upon using the Miura transformation, the
Hamilton structure (2.58) for the affine loop algebra GL, defines the second
Hamilton structure (2.51) on the space F of functionals on the affine space M of
operators L. Furthermore, it follows that any linear combination of the two
Hamilton structures on F again defines a Hamilton structure on F. One refers to
the Poisson algebras associated with (2.51) as the Gelfand—Dickey algebra
GD (GLy). We may consider this combined Hamilton structure on F as formally
describing the coadjoint action on the dual algebra. This generalizes the
construction of the previous section which lead to the Virasoro algebra. In fact
by imposing suitable conditions on the form of the operator L one
may obtain Gelfand-Dickey algebras for the classical Lie algebras.

Let us conclude this section with discussing the algebra GD (SLy). This algebra
is obtained by imposing the condition that the coefficient u, _, = 0. For consistency
it turns out that one should modify the definition of X as

N-1 ~ 5¢
Xo= 3 07
i=1

Uy

+ 07 Vby, 2.72)

where the coefficient by is determined by the condition that res[L, X ;] = 0. This
is precisely the term of degree N — 1 in the definition of Vy,.

We will now work out the second Poisson structure and the localization of
the Miura transformation for the case SL,, which we will identify as the classical
analogue of the spin-3 algebra found by Zamolodchikov [5]. We start from the
third-order differential operator

L= +0u+ud+v=0>+2ud+v+u (2.73)

It transforms covariantly under a reparametrization of the circle S*.
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This operator gives rise to the so-called Boussinesq equation,

0Zu=3u" + 42, (2.74)
which can be written as
du=v, dp==1+3u. (2.75)

The first and second Hamilton operator as computed from Theorem 2.1 are
Hl = %a,
H _<%63+8u+u6 vd + 20v )
2 v0 + 20v 105 + 10u0® + 150/0% + 9u"0 + 16u0 + 2u” + 16uu’ )’
(2.76)
with the associated densities
Qs = [(—3W)* +gu’ + 3v?)dx,
Qo = [Fvdx. (2.77)

Correspondingly, the Poisson structure induced by H, will split into four parts.
In order to find them in the canonical form we expand the functions u and v in
fourier components. For u we take the expansion (2.34), while for v the appropriate
expansion reads:

wW)=2/10 3 e, 2.78)
c n=-ow

Then one finds that the L, generate the Virasoro algebra while the other parts in
(2.76) give rise to the Poisson structures

i{L,, W,} =(@2n—m)W, ., plus the complex conjugated bracket,
{WoWt=tn—m)(FEh+m+2n+m+3)+i(n+2)(m+2)L,,,

c
T 5c(n —mA, ., + gén(n2 —1)(n* — 45, . 0s 2.79)

where
+ o0
A=Y L, L, (2.80)
m= — o0

This last bracket does not define a Lie algebraic structure in the usual sense since
it contains terms quadratic in the generators. We can consider (2.79) as the classical
analogue of the algebra constructed by Zamolodchikov in [5]. Upon localizing
the Miura transformation one obtains an oscillator representation of the W algebra
in a similar way as in the previous section, without normal ordering.

Observe also that the Virasoro algebra is contained in the W algebra of Si;.
In fact this is a consequence of the following natural filtration of the W algebras.
Define the subspace F; as

N-2
_f;':{X: Z a_lxlelel =X2=~"=XN_i_2=0}. (2.81)

i=0
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Then one checks easily that
[F,F]<F,,, (2.82)
thus implying the filtration

FocF,c--cF,_,=W(Sly). (2.83)
In particular we observe that the Virasoro is contained in F,,.

2.3 The Relation with Toda Field Theory and the Classical Yang—Baxter
Equation. Now that we have constructed the W algebras and discussed their
representations, we will discuss the relation with the Toda field theory and with
the classical Yang—Baxter equation (YBE). This amounts to giving a Lie algebraic
interpretation for the modified Lax equation and the associated nonlinear
hierarchy. For this we have to introduce some notation.

Let 4 be a rank r Kac—-Moody algebra, with canonical generators (e;,f;, h;).
Denote by 9_, 9,, 4. the subalgebras generated by the f;, h;, e; respectively. Let
% be the loop algebra, obtained by dividing out the center from %. In the principal
grading we set %, = #, the Cartan subalgebra. Let #* denote the positive
respectively negative component of the principal Heisenberg algebra & with respect
to this grading of 4. Furthermore we let {4;} be a basis of %, where the index
runs over the exponents of ¥.

Next, we fix a vertex ¢, of the Dynkin diagram of 4. Then we can consider
the so-called homogeneous grading of ¢ specified by the requirement that f,e% _,
e,€% . and all other generators belong to %,. Thus the Dynkin diagram of the
finite dimensional algebra %, is obtained from ¥ by removing the vertex c,. Let
#* denote the two Borel subalgebras associated to %, and denote by A" the
nilpotent subalgebra associated with 4.

The following theorem gives an algebraic interpretation for the modified Lax
equation.

Theorem 2.4. Let ¥ =0+ A+ q, where A=A, =2ZXZe, and where q is a matrix
Junction of x in the set of upper triangular matrices, #*. Then there are unique
elements Ue[A, %] and HeS~ such that

VL =0+ A+ H. (2.84)

For a proof we refer to [14, Prop. 6.2].
For us the following, easily verified consequence is very important.

Theorem 2.5. Let U be defined as above and set /(7). = e **Y(}), where only the
component of positive degree is taken. If q is a matrix in & respectively, # then
the Lax equation

0& =[AA)+, Z] (2.85)
is also defined on & respectively H# .

With this theorem we can now define the generalized KdV and modified KdV
hierarchies associated with 4 as
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Definition 2.2. The modified KdV hierarchy associated with 4 is defined by (2.84)
with V belonging to the Cartan subalgebra # of the Kac—Moody algebra % in the
principal grading.

To obtain the KdV hierarchy we have to remove the gauge freedom in the
operator & with ges#. Namely it is seen that conjugation of ¥ with unipotent
matrices corresponding to 4" leaves the form of % invariant. So in order to define
the KdV hierarchy one has to show that (2.85) is covariant with respect to gauge
transformations of the form exp(adn(x)) with n(x)e4". This is shown in [14]
[Sect. 6], and will not be explained here.

Denote by g a gauge equivalence class in the set of matrices #~. One defines
the KdV hierarchy associated with ¢, by

0q=[(A)+, 0+A+q] (2.86)

Now, any class g has a representing element q in the Cartan algebra s# which
satisfies (2.86). The map g— g is the Miura transformation for g.

The connection with the Toda field theory can be made as follows. The field
¢ is taken in the Cartan subalgebra # of 4. The two dimensional field equation
reads

2 r
;T;f Y e, (2.87)
i=0

which upon expanding ¢ = Y u;h' yields

i=0

2, r
Ui _ exp< y ai,-uj>, (2.88)
J

where a;; denotes the Cartan matrix of 4. As is well known, this equation can be
obtalned from a so-called zero curvature condition

(¥, 2]1=0, (2.89)
where
F=e %+ A=0,+¢ + A,
P =04 e4D], (2.90)

in which A=Ye; and A= Y. fi It is not hard to verify that (2.88) gives rise to
two Lax equations, one for ¥ and one for 2. 1f we set ¢’ = q then & gives rise
to a generalized modified KdV hierarchy.

One concludes that ¢ and 0,¢ or ¢ and 0,¢ are canonically conjugate with
respect to the appropriate Poisson bracket

{06(x), ¢;(y)} = 0;j0(x — ). (2.91)

This bracket is known as the fundamental Poisson bracket. It defines a classical r
matrix, satisfying the classical Yang—Baxter equation (YBE) as follows. For any ¢
valued function T the bracket gives rise to a matrix re A*% satisfying:

(T, T} =[ri; ®T, @ T,]. (2.92)
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Upon substituting this into the fundamental Poisson brackets one finds that the
matrix r defines an ad 4 invariant element {r,r>e A3% defined as:

Krory =[ri2r13]+ [r12, 23] + [F13,723], (2.93)
where ( , > denotes the Schouten bracket [12]. If the left-hand side is zero then
(2.92) is the classical YBE. IN [12] it is shown that a classical r matrix satisfying
(2.92) defines on ¢ a Lie bi-algebra structure. A Lie bialgebra consists of a Lie
algebra ¢ together with a linear map:

ViG> A2Y (2.94)

which satisfies two conditions. First, it must be 1-cocyle with values in the ¥
module A (9 ® %), that is, for x, ye¥ it satisfies:

e, y(9)] = Ly Yy ()] = ¥([x, y D). (2.95)
Secondly, the dual map y* which is a map
Y*AZGE > g* (2.96)

must induce a Lie algebra structure on %*, which means that y* satisfies the
Jacobi identity. The cocycle condition on ¥ means that  defines an element in
the cohomology group H(%, A%2%). In our case the underlying finite dimensional
Lie algebra is simple so that H(%, A (4 ® 9*)) = 0. Hence for all xe% there exists
an element r such that

Y(x) = [x,r]. (2.97)

One can verify easily that y* satisfies the Jacobi identity if and only if r satisfies
(2.93). We will denote such a bialgebra by (%, or). Evaluated on the generators for
% one finds that the 1-cocycle ¥ is given by:

Y(h)=0, Yle)=e=eAh, Y(f)=finh. (2.98)

Now suppose that r is invertible. Then its inverse r~! defines an element of
A2@* which is in fact a linear functional

r 1 A2g* SR (2.99)

It follows that when r is invertible it determines an ad % invariant symplectic
structure on %, hence r itself defines a nondegenerate Poisson bracket on ¢*. This
is in particular the case for the Poisson bracket (2.91) by which we could choose
naturally conjugated variables in the Toda field theory.

The Poisson brackets that correspond to the KdV and the modified KdV
hierarchies contain derivatives, which makes that they define “degenerate” Poisson
structures, in the sense that there is no obvious choice for variables that are
conjugated to each other. These Poisson brackets correspond with r matrices
which cannot be invertible. Even if the r matrix is not invertible it can be shown
that the classical Yang—Baxter equation amounts to a Lie bialgebra. Furthermore,
one can define the “quantization” of these Poisson brackets in terms of “quantum
groups”. This seems the right context to discuss the quantization of the Poisson
brackets for the W algebras. In the next section we will discuss such a quantization
scheme.
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3. Quantizing W Algebras Using Quantum Groups

In the present section we will discuss a quantization prescription for the W algebras
obtained in the previous section which can be viewed as a combinaton of the
geometrical quantization scheme, or “quantization of orbits” [26], and a
quantization of functions on Lie groups. This section is divided into three parts.
In the first we discuss the quantization of the classical Lie bialgebra structure
induced by the classical r matrix leading to so-called quantum groups and we will
derive a theorem on the unitary representations of these quantum groups. Then
in part two we define the quantum W algebra by introducing so-called T functions
and a normal ordering in the Miura transformation. Finally in part three we
discuss the action of the ¥ algebra on the moduli space of stable Riemann surfaces.

3.1 The Hilbert Space Completion of a Quantum Group. As we have seen, the
quantization of a solution of the classical YBE amounts to a quantization
prescription of the Lie bialgebra structure induced by this solution. Such
quantization has recently been described by Drinfeld. Rather than giving a detailed
analysis of this description, we summarize some relevant facts here that we will
use later one. We refer to [11,31,32] for a more rigorous treatment.

The Lie bialgebras we are interested in are of the form (2.92). Using elements
of formal group theory one can show that such a Lie bialgebra actually has the
form of a universal enveloping algebra denoted by U(%). The quantization of a Lie
bialgebra is then defined as a one dimensional deformation of this universal
enveloping algebra with deformation parameter q. The deformed universal
enveloping algebra will be denoted by U,(%). An important condition is that the
deformation must be such that infinitesimally it is isomorphic to the original Lie
bialgebra. Drinfeld showed that this requirement means that U, is generated by
the operator valued matrix functions T; generating a non-commutative and
non-commutative Hopf algebra which he called a quantum group.

To make this more precise we start with the following definition:

Definition 3.1. Let V =) A'W,, W,~C" and let t;{}) =Y (t;)pA", where (t;),€
End (W,,)), a complex N x N matrix and A the rapidity or spectral parameter defining
the grading of the infinite dimensional Z graded vector space V. Furthermore,
introduce a matrix R(A,u)eEnd(V®V), satisfying the following equation in
End(V®VRV):

Ry5(4 WR 5(4, V)R3(1, v) = Ry3(4, V)R 3(4, V)R 1 (4, ). (3.1)

The quantum group Apg is defined as the free tensor algebra generated by the t;}(4)
modulo the ideal generated by

Ry, (A, ) Ty(A)Ty(p) = To(wT1(AR,5(4, W), (3.2)
where

T\(A=TA®id, T,()=id®T(A), TA=Y T.A", T,=I(t).cEnd(W,).

Equations (3.1) and (3.2) are called the quantum YBE and the fundamental
commutation relation respectively. Observe that (3.2) implies that the family of
operators generated by Tr T(4) (Tr denoting the trace), is commuting so that (3.2)
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can be regarded as the condition that the quantum theory be integrable. If R
allows a perturbation expansion of the form:

R(A, ) =1 + ihr(4, w) + O(h?), (3.3)

then the relations reduce in the “classical limit” g — 1 to (2.91-92).

From (3.2) it follows that if T;(4) and T,(4) are two representations of Az then
the product T;(4)T,(4) is also a representation. In a more abstract way this implies
the existence of an algebra homomorphism, called the comultiplication A:

AiAg— Ax ® Ag (3.4)

acting on the generators t;;(4) as:

n

A(t;(4) = Z talA) @ ty(A). (3.5
k=1
There are two important automorphisms of the algebra Ay that we have not
discussed yet. Although we will not make use of them in the sequel, we present
them for convenience.

Theorem 3.1. The algebra Ay generated by T has the following automorphisms:
1. Then antipode S, acting on T as

S(T(A) = (T~ *(4)" (3.6)
2. The inversion I:

I(T(A) =T (- A). (3.7

These properties give the quantum group Ay the structure of a Hopf algebra.

One can introduce the dual space to the algebra Ag, as Hom (4, C). 1t is clear
that this is an associative algebra and the multiplication on it is induced by the
comultiplication on Ax. So in Hom (Ag, C) there exists a co-unit & such that

gti-zéi'. (3.8)
J J

For some values of g the representation space of a quantum group has the
interpretation of a Hilbert space of states of a quantum field theory. The dual
representation has therefore the interpretation of the space of observables of the
theory. The non-cocommutativity of the dual is thus crucial to describe
noncommuting observables. To determine the values for g for which the quantum
group has this interpretation we first have to study some aspects of the
representations of the ¢ deformed algebra. Starting from the 4’ Kac—-Moody
algebra in the principal grading with Cartan matrix a;; and k; = g™ the following
representation of the dual of the quantum group is known [19,117:

kiki_l = ki—lki = 1, klkj = kjki7 klejkl_l = qal"ej, k,fjkl_l = q_ﬂijfj’
=5 ki_ki_l 2 2 -2 2_0
[e.fi1= ijm_‘z9 eies— (@ —q “Jeeir e+ e, =0,
[ifis1 =@ = ifiarfi+ xS =0 (3.9
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For convenience we also present the representation of the comultiplication, there
co-unit and the antipode:

Ale)=e;®@k; '+ k®e, Af)=fiQki'+k®f;, Ak)=kQk,
8e)=0=28(f), 6k)=1, S(e)=—qe, S(f)=—af, Sk)=k ' (3.10)

This representation can be considered as a g-deformation of the Cartan—Weyl basis
of the Kac-Moody algebra A . Indeed for g— 1 the relations (3.9) go over into
the defining relations of the “classical” Kac—-Moody algebra with Cartan matrix
a;;. After the quantization of the Lie bialgebra structure of the fundamental Poisson
bracket (2.85) is replaced by the fundamental commutation relation (3.2).

It is easily verified that U, has in addition to A a second comultiplication,
which is defined by

A =go4, (3.11)

where 0:U,® U,—» U,® U, denotes the permutation, s(a®b) =bQa.
A particular interesting situation is when the R matrix is invertible. In that
case the comultiplication A’ is related to the inverse R™! by

A =RAR™. (3.12)

In Sect. 2 we discussed the Lie bialgebra structure (%, 0r) in terms of the classical
r matrix. We conclude from the discussion given there that the cocomutator in ¢
given by

x->[x@d+Id®x,r] (3.13)

is an algebra homomorphism. We want to have a similar statement for the quantum
group U, in terms of the matrix R. It is not difficult to see that if

(A®IdR =R,3R,3, (Id® AR =R 3R,, (3.14)

then the map /i—(/® Id)(R) which is a map U, — A is an algebra homomorphism.
If an element ReU,® U, satisfies (3.12,14) then R satisfies automatically the
Yang-Baxter equation (3.1) for constant spectral parameters. The quantum group
U, is called in this case a quasi-triangular Hopf algebra. The R matrix for (3.9) as
found by Jimbo [19] satisfies (3.12-14).

The representation (3.9) has a crucial property which relates its structure with
the representation theory of the so called Hecke algebra. This fact turns out to be
very important in the discussion of the irreducible unitary representations of U,.
To discuss this relation we have to introduce some more notation. Let V be a
finite dimensional vector space over C of dimension N, with basis E, E,,..., Ey.
Le R = C[q'?,q"*/?], and form Vi =V ® cR. Define

V(P)E!®C"'®V®C'“®CV

n-times

and

v =V" ®cR.



Quantum Group Structure in Integrable Conformal Field Theories 23

If n = 1 this is a module for U,. The generators of the algebra U, act on it according
to

eiEa = 5iaEa+ 1 eiEn =0
fiEa=6i+1aEa—1 flE1=0
kiEa — q(5i +1a _6ia)/2Ea. (3 1 5)

Because of the fact that the comultiplication on U, is an algebra homomorphism,
we conclude that vy is a module for U, for arbitrary n. In the sequel we need the
action of U, on vy for n=2. It reads

e(E,®E,) = 5iaq(0ib-5i+ l,b)/zEa+ (®E, + 5ibq—(—5ia—61+ 1,a)/2Ea®Eb+ .
f{E,® E,) =5i+1,aq(6w-6.+ 1,1;)/2Ea_1 ®E, + 6i+1’bq_(5ia“6i+ l'a)/zEa®Eb-—1
ki(E,® E;) =q(6.~+ 1,a=8iatdi+ 1,b—5ib)/2Ea®Eb. (3.16)

One can define an operation T:vg — vg, for arbitrary n which is the g-analogue of
the symmetric group. For p =n it reads

T(E,QE)=E,®E,+(q ' —q** )E,®E,, (3.17)
where
—1 if a>b
{a,b) = 0 if a=b>b
1 if a<b.

Theorem 3.2. The commutant of the algebra U, in End(V) is the Hecke algebra
H,(q), and the U, module generated by (e, f;, k;) is completely reducible.

Outline of Proof. It is straightforward to show that the action of T commutes with
the action of U, on vg. For this it suffices to take n = 2, and use the above explicit
formulae. For n=3 one may write action of T as follows. Let us denote
E,®E,®E ,=E,,. Then

E . if a>b
T\E. =< q 'Ep,, if a=b
E,+(@ '+qE, if a<b
E.. if b>c
TE,. =< 4 'E. if b=c

Ewp+ (4" ' +qEqs if b<c
This gives two identities:
T.T,T, =T, T\ T,, (3.18)
(Ti—q~")(T;+ 9)=0. (3.19)

Considering this in for arbitrary p one gets in this way n — 1 generators T; which
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staisfy:
TiTi+1Ti=ti+1TiTi+1 if Ii-ﬂéz
T.T;=T,T, if |i—jl>2
(T;—q ) Ti+q)=0. (3.20)

The algebra generated by the T; is called the Hecke algebra of the symmetric
group, denoted by #,,.

This shows that the Hecke algebra is contained in the commutant of U,. To
show that the Hecke algebra forms the whole commutant, we will study the limit
q— 1, and show that the dimensions of the commutants do not “jump” in this limit.
For g indeterminate we know that the representation theory of the Hecke algebra
generated by T, is the same as the representation theory of the symmetric group.
Now we let K = C(g'/?), the field of rational functions in ¢q'/2. We define

& r =the R-subalgebra of End u,(vg) generated by e;, f3, k;
& ¢ =the K-subalgebra of Endy (v¢) generated by e;, f;, k;
% =the C-subalgebra of End. (vc) generated by €, f;,k; = 1.

Correspondingly, we define by

J r =the R-subalgebra of Endg (vg) generated by T;

J x =the K-subalgebra of End (v¢) generated by T;

7 =the C-subalgebra of End,. (v¢) generated by T, = ;.
In the limit g — 1 we have R—>C, (e, f,, k) — (&, f,, 1) and T, -,

Now it is not hard to show that the commutant of ¥ is precisely #..
Furthermore, # is isomorphic to the group algebra of the symmetric group. Since
the symmetric group is a finite group it follows from a theorem of Maschke that
the #. is a semisimple algebra. The map ¥ — & is surjective. Hence, one can
find elements y,, y,,..., y, such that for all ij; = x; and these may serve as a basis
in Z. It is not difficult to show from this that the elements y; are in fact linearly
independent over K. This implies that

dimyg 4 = dim¢ Z.

Denote by Cx the commutant of ¢, in Endg (vg), and by C. the commutant
of #. in End.(v¢). The next step is to show that

dimg Cx < dim¢ Ce.

Consider O = Endg (vg). This is an R-submodule of Endg (vg). One has the following
exact sequence for R modules:

0-0NnCr—>0->0/(0ONCg) —0.

It now follows that ® " Cy is a direct summand of 0. (We leave the verification
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of this to the reader). Using this one shows that if fe® Cy then
STi=Tf <fT,=Tsi=sF.
Now in the limit g— 1 we have @ — End(v¢), and it now follows that
dimg O "% = dimg Cy,
hence
dim; 0 Cyx < dim C,.

which in turn implies dim;Cg < dim; % . Since £y = Cx. We now conclude that
dimg £ < dimyg Cx. Combining this with the result above one concludes

dimg ¥ =dim; &L

and the commutant is indeed the Hecke algebra. A short argument shows that
&L and # are semi-simple algebras over K. As a result we find that the module
vk is completely reducible. []

Now, let U be a U, module. One defines spaces V,, weC¥, by
V,={xeUlkx=wx, i=1,...,N}, (3.21)

where o = (w4, ..., wy), w;€C. This is called the weight space corresponding to the
weight w. Let U™ be the subalgebra of U, generated by the f;. One defines a
highest weight module U, by the property that U = A-x for an xeV,,. w is called
the highest wieght of U. It has not difficult to show that for any w there exists a
highest weight module with highest weight given by w.

Now let Ug be the U, algebra over K generated by all the (e, f;, k;"!),i=1,...,N.
Denote by Uk its closure. Let Ug be the R-subalgebra of U, generated by
O =f[n], e =e/[n]!, k', where i=1,...,N, n=1,2,.... The notation is as
in [197:

_4-9'94’-q q"—¢q°
[n]! = — S .
q9—q q9—4q q9—q

n

This is the g-analogue of the usual n-factorial formula. B
Suppose we are given an irreducible Ug-module V finite dimensional over K.
Then because the module is completely reducible, we may write it as

V=®,V,. (3.22)

We want to show that the module V is given by V = Vx® K, where Vj is an
R-submodule of V. We will not prove this in full detail but show the steps of the
reasoning. One may take the module Vj to be given by the Ag-subalgebra, denoted
by Ay generated by all the f:

VR=AEUCI/,
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where veV is a vector (%0) such that e;p=0. After some combinatorics of
g-numbers one concludes that the module Vy is a finitely generated R-module.
From that it follows from a rather straightforward but lengthy argument that V
is indeed given by (3.32).

This fact is useful to study the limit limit R - C, i.e. ¢*/?—1. One can show
that in this limit

dim¢ V=dimg V

where V = Vz ® zC, and it follows that the generators of generate in this limit the
enveloping algebra of a Kac—Moody algebra. This is made more precise in the
following theorem:

Theorem 3.3. Any integrable highest weight module U, of (the universal enveloping
algebra of ) the Kac—Moody algebra underlying U,, admits a deformation, i.e. there
exists a highest weight module U of U, such that when q— 1 it tends to U,. The
dimensions of the weight spaces of U, are given as “q numbers” of the dimensions of
corresponding weight spaces of U, which are given by the Weyl-Kac character
Sformula.

This result was already announced in the paper by Jimbo [19].

We may thus conclude that for generic q the representation theory of the
Hopf algebra A is very much the same a for Kac—Moody algebras. In parti-
cular one can apply without difficulty the theory on unitary highest weight
modules.

The situation changes when we consider the case where ¢ is a root of unity.
This case bears some resemblance with the theory of subfactors of representations,
in particular with the work of Wenzl [21]. For generic q the representations 5 ,(q)
are classified by Young diagrams, like for the symmetric group. If A=[1;---4;]
is a Young diagram with n boxes; 1, boxes in the first row, 4, boxes in the second
etc., then we can associate each irreducible representation of #,(q) with a .. When
q is an [-th root of unity, most of these representations are singular. In [21] the
regular representations have been determined in this case. The conclusion is that
only diagrams with at most k rows, where k<I/+1 and 4, — 1, <[ —k provide
regular representations of #,(q) where q' = 1. It is clear that for a Hilbert space
completion of the representations of the quantum group we have to restrict to the
regular representations. So we conclude that the commutant of the quantum group
as computed in theorem (3.2) in the case g is a root of unity is given as a quotient
of the Hecke algebra, corresponding to the regular representations of #,(q). That
is, we find a restriction on the representation content of a quantum group. In the
next section we will come back to this phenomenon.

We conclude this section with discussing a property of the algebra which we
will use in the following sections. The algebra U, turns out to be intimately related
with the braid group of n strings. More precisely we will show

Theorem 3.4. Let U, be generated by (e, f;, k;) satisfying the relations (3.9). For each
i=1,...,N there exists a unique algebra homomorphism 0,:U,— U, acting on the
generators of U, according to:
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O;e; =fiki_2
Oe;=q 'ee;—qee; if a;=—1
Oie;=e; if a;=0
0.fi = ki 2e;
eiszqufi—q_lfifj if a;=—1 (3.23)
0.fi=1; if a;=0
Ok, =k *
0k; = kik; if a;=—1
Ok;=k; if a;=0
which satisfies the braid relations:
0.0,0,=000; if a;=—1
0,0,=0,0; if a;=0. (3.24)

Proof. The proof follows by a straightforward calculation. First one has to show
that the 0; are really automorphisms, that is one has to verify that the commutator
[e;, f;] is invariant under the action of the ;. We have

Oi(e.fi— fie) =fiki2ki_2ei - ki_zeifikiz

=(fie: __elifi)
- % (3.25)
A similar calculation shows that if a;; = — 1
kk.—k71k7
Oile;f;—fie) = # if a;=—1

To check the rest of the relations is done by similar calculations. It is straight-
forward to verify that the definition of the action of the 6; on the generators imply
the braid relations (3.24). [

3.2 Quantization of the Poisson Brackets for W Algebras

In this subsection we show that a modification of the Miura transformation can
be used to define the quantization of the Poisson brackets introduced in Sect. 2.
This modification turns out to be related to the vertex realization of Kac—-Moody
algebras. By introducing so-called t-functions we will be able to define the
quantization of the Poisson brackets for W algebras.

Subsequently we use the relation between vertex representations of Kac—Moody
algebras and W algebras, provided by the Miura transformation, to study
decompositions of vertex representations of Kac—Moody algebras into irreducible
representations. It is known that under certain conditions these decompositions
comprise only a finite number of irreducible representations. We will find an
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alternative explanation for this phenomenon based on the Miura transformation.
As we will show this finiteness property is related to properties of the representation
theory of the quantum group associated with the Kac—Moody algebra in the case
q is a root of unity.

In order to introduce these t-functions we need some notation. Let V(A,) be
the vertex representation of A{}’ associated with the Dynkin vertex c, corresponding
to the highest weight vector v,. A is defined as the sum over the exponents as in
Sect. 2. As is well known, this provides a representation on differential
polynomials in infinitely many variables on which the algebra acts by differential
operators of the form (2.45). Furthermore, on V(A,) there is a hermitian form (-, )
which is expressed in terms of differential polynomials. Denote by V+(2A,) the
orthogonal complement of V(2A,) with respect to this hermitian form. The
1,-function is then introduced as the element in V(A,) which solves the differential
equation

(f,1®1)=0 forall feV1(2A,) (3.26)

such that t®teV(2A,) = V(A,) ® V(A;). Equation (3.16) is a bilinear differential
equation in 7 called the Hirota equation (see e.g. [34]).

A well known theorem in [35] states that the t-function is in the group orbit
of the highest weight vector v, (recall that the highest weight representation is
integrable, i.e. locally nilpotent so it can be exponentiated to give a group action
on vy):

Ty = CGUy, (3.27)

where ¢ is an arbitrary complex constant and g is an element of the Kac—Moody
group. Observe that the group element g does not determine 1, uniquely since
conjugation by unipotent elements leaves 1, invariant. The relation with the
t-function (and its associated bilinear equation) with the modified (generalized)
KdV-hierarchy is extensively discussed in [33]. We will not discuss this formalism
here.! Using the results obtained there one finds that

v=0,F¥ 1A (3.28)

provides a solution of the modified KdV hierarchy. The function ¥ is defined on
the subspace I, in the notation of [33]. From this it follows that the bilinear
equation satisfied by the 7-function is equivalent to the nonlinear modified KdV
hierarchy. We will now show that the Miura transformation applied to the bilinear
equation is related to the coset construction by which one can define the
quantization of the W algebra. Let V(A,) and V(A,) be the two fundamental 4"
representations in the vertex realization and put

V=V(A)®V(A,), (3.29)

we now have the following

! The relation between t-functions and (irreducible) representations of the Virasoro and W-algebras
has been considered also in [49]
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Theorem 3.5. The action of A ® A in ) V,, where we put

V2k = V(Ao)a V2k+1 = V(Al)

is decomposed into irreducible representations with highest weight vectors 1 ® v, of
AP keZ™ . Inparticular for N < oo the number of irreducible components is finite.

Proof. Consider the modified KdV solution
v=20log(to/1;)

and apply the Miura transformation. We have to be careful here: since we started
with a highest weight representation of the Kac—Moody algebra, we have to make
sure that the resulting representation of the Virasoro algebra has a highest weight
too. This is accomplished by imposing a normal ordering description:

L=]]0—v:=) W0, (3.30)
where the coefficients W, are the normal ordered expressions
WO = 1,
Uy =W, =v—v*:< (3.31)

Ln = (n - l)an + Z AnQm—n — nen +m9(n)’

where 0(n) = 1 if n > 0 and zero otherwise. Thus we have afforded a highest weight
representation of the Virasoro algebra in the vertex realization of V(A,). If we
now identify u(x) with the energy momentum tensor T generating the conformal
transformations, then the second Hamilton operator associated with the Lax
equation for L= 0 + uis with (3.31) equivalent to the operator product expansion

c/4 T(x)+ T(y)
x=p*  (x—y?

This is in fact precisely what happens in the so-called coset construction of [6,7].
Indeed direct calculation of the possible highest weights yields the finite
irreducibility.

Using the higher order Miura transformations one may generalize to the
following

T(x)T(y)oc

+ regular terms. (3.32)

Theorem 3.6. Let V(2A,) be the A\ vertex realization generated by 1® 1, which

affords the space for the bilinear equation for the generalized modified KdV hierarchy.

Let V =Y V,, where V, denotes a fundamental representation of A\Y. Then the action
k

of AP ® A on V for N < oo breaks up into finitely many irreducible representations
of A\) induced by the Miura transformation of order M with the normal ordering
prescription as given in (3.31).

The higher order Miura transformations thus provide highest weight
representation of the W algebra associated with A{}’. However the identification
with an operator product expansion is more subtle. For example in the case M =2
(i.e. SL3), one finds that the operator product expansion corresponding to the
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quantization of the bracket (2.72) reads
c/3 4 2T 4 T N
=% (e=p* (=P (x—y)?

v(x)o(y) oc E&T' +2u*+i0) (333)

1 U / !
—— (& T" + 5@ + 5o+ &),

(x—y)
where
=12 16 —1 A+LT” ,
22+5 9 90
A=T*— 3T

In these formulae we have made the identification of u and T and used the fact
that the second Hamilton operator (2.76) is symmetric. To identify the operator
u*> we may use the Miura transformation also. It then follows that u? transforms
as a spin-4 operator, hence similar as A and contrary to : T2:. If we make the
identification of u* with A then (3.33) is in agreement with [7]. The fact that the
above operator product expansions indeed defines closed algebras (with quadratic
terms) is a direct consequence of the property that the Miura transformation is a
Hamilton transformation for the second Hamilton structure which defines a closed
algebra.

It is interesting to consider the limit N — oo with respect to the bilinear equation
for the t-function. The bilinear equation (3.26) for A{} has the general form [33]

P0,)t(x —y)t(x + ¥)|,=0=0, i=1,2,3,..., (3.34)

where x and y,x = (Xy,..., X, _ X, 15+ Xpp—15X2n41---)» and similar for y, are
vectors associated with the two copies of the vertex representations V(Ay) and P;
is a certain differential polynomial in “time” variables y;. Their explicit construction
can be found in [34] for 4§. Using this it is easy to prove that in the limit N — oo
Theorem (3.5) implies that all the polynomials become linearly independent. So
one obtains the Virasoro algebra in this case entirely from A,. The hierarchy
associated to the bilinear equation in this limit is known as the K.P. hierarchy. If
N < oo it follows easily that the polynomials are not all linearly independent. One
can now choose a suitable set of coordinates such that the t-function does not
depend on x,,x,,,X3,,.... So the bilinear equation breaks up into “irreducible”
components. The nontrivial part is equivalent to the generalized KdV hierarchies
for A}, while the trivial part, corresponding to a trivial hierarchy, decouples. The
linear independence of the polynomials P; in the case N = oo implies that in
Theorem (3.5) all the irreducible representations of the Virasoro algebra appear.
One can consider the same limit in Theorem (3.6). Without knowing the precise
form of the analogue of the bilinear equation one may still conclude that also in
this case all irreducible representations will appear.

Summarizing we conclude that for finite N Theorem (3.5) respectively its
generalization (3.6) provide reducible representations of the Virasoro algebra
respectively of a W algebra, provided by hierarchies of partial differential equations,
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which decompose into a finite linear combination of irreducible representations.
This is similar to the situation in the well known coset construction applied to
higher level k representations, i.e. to AQ® A = A%+ Y as described in [7]. It is
illuminating to explore this relation further, using the Miura transformation, to
describe the apparent connection with Kac—-Moody current algebras. As a result
we will be able to relate the central charge with the g values obtained in the
previous section. We will first discuss this for the Virasoro case, ie. for
Theorem (3.4). The generalization is straightforward.

Recall from Sect. 2.1 that the variable u(x) transformed as the energy momentum
tensor. In view of the Miura transformation (3.21) one thus has two independent
solutions v,(x) which can be interpreted as currents id,¢. These currents build up
the level k SL, Kac—Moody algebra. Via the Sugawara construction this leads to
the usual SL, level k energy momentum tensor:

1
Top,=—— w2 3.35
SL» k + 2 ( )
In this respect we conclude that the Miura transformation has the effect of “adding
a electric charge at infinity” to this energy momentum tensor. Computing the
operator product expansion (3.32), one finds for the central charge:
3k
c® =" 6k, 3.36
SL> k +2 ( )
which is in agreement with the value found in [39, 36, 8]. At this point we recall
the value of the central charge ¢ of an irreducible representation of the Virasoro
algebra provided by the coset construction as explained in Theorem 3.4:

6
13— 6kt =c® —2. 337
¢ pi2 Skt =cs, (3.37)

We thus observe that the difference is independent of the level. (This observation
lies at the basis of a cohomological argument in [51], showing that the cohomology
of the reduced phase space is isomorphic to irreducible representations of the
Virasoro algebra.) Combining with the remarks above, we find that the irreducible
representations of the Virasoro algebra provided by the Miura transformation
(3.21) have central charge ¢ given by (3.27). This result is easily generalized to
W-algebras corresponding to SLy. The central charge of the usual energy
momentum tensor for a SLy level K Kac-Moody algebra reads k(n*> — 1)/(k + n).
Applying the Miura transformation one finds in a similar way as above the
modification of this value of the central charge:

1
c‘s"L’N=N4—N(N2—1)<~k—+—N+k+N>—1. (3.38)

The central charge of the quantum W algebra corresponding to SLy has been
computed in [ 7]. Using the result found there, one finds the generalization of (3.37),

cw=c¥ —(N*—2N3+N).
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Again we observe that the difference is independent of the level k. We will find a
geometrical explanation of this fact in the next subsection. Let us conclude this
subsection with a comment on the relation with the value of the deformation
parameter q. This relation follows for example by applying the so-called
Bathe-construction [37] to the representations of the W algebras obtained above.
We will not present this formalism here. Using it, it follows that when q is a root
of unity it depends on the level k via '

q = e2milk+N (3.40)

as is shown in [42]. In fact this formula was derived much earlier in [16]. This
concludes our discussion on the relation between the quantum group and the
quantum conformal algebras.

3.3 The Action of a Quantum W Algebra on the Moduli Space of Riemann
Surfaces. In this last subsection we will find a geometrical explanation for the
relation between the representations of W algebras and representations of
Kac-Moody current algebras, provided by the Miura transformation (3.21). The
key point is to find a geometrical interpretation for the Hillbert space associated
with the quantum group introduced in Sect. (3.1). For this it is convenient to
consider the quantum R matrix as the monodromy matrix of the correlation function
associated with the fields ¢ in the underlying conformal field theory. This is
extensively discussed in [42,43]. An n point correlation function G(x,...,x,)
defines a multivalued function on a subspace H, = C" as follows [43]. Introduce
first the set H:

H={(xq,%3,...,X,)€C"|x; # x; for all i # j}.
The correlation functions are actually invariant under a permutation of the points

x;€ H, hence they are invariant under the-diagonal action of the symmetric group
S,. That is the correlation functions are multi-valued functions on

HO = H/Sn.
It is not hard to see that H, is not simply connected, and in fact:
n1(Ho) = B,. (341

This shows that there is a natural diagonal action of the braid group on the
correlation functions. One can use this action to define the correlation functions
as single valued functions on the universal covering of H,. Consider two curves
&), &, () with te[0, 1] such that their composition represents a loop in C?,

€i(0) =x; (D) =x;,4,
¢r1O=x,, & ()=x.
Restricting to H,, this defines an element R, , € B,. In fact by acting with this
element on G(x4,..., x,) defines a new correlation function on R, ; H,. Repeating

this n times one produces a correlation function which only depends on a given
element ReB,:
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such that
G(xy,...,x,) =RG(&q,..., &) (3.42)

defines a single valued function on the universal cover RH, of H,. This shows
that the correlation functions define a representation of the braid group, which
determines completely the monodromy of these functions:

G(£1(0),..., £,(0) = RG(&, (1), ..., &,(1)). (3-43)

Observe that the monodromy of G is trivial if and only if R defines a unitrary
representation of B,. Equation (3.41) shows that correlation functions are actually
sections of a complex vector bundle V over H, with fibre V,® ---® V,, V; = C™

The requirement that the monodromy is trivial is thus equivalent with requiring
that R is the holonomy of a (projectively) flat connection in V. (The projectivity
of the connection will become clear below.) Locally such a connection is trivial
while globally it corresponds to a homomorphism

n,(Ho)— G (3.44)

which describes its holonomy. Here G is some Lie group acting in End (V) which
we will specify below. Thus, we find that the quantum R matrix amounts to a
monodromy representation of n,(H,). We can identify this holonomy quite easily
by using the relation between representations of the braid group and of the mapping
class group of a Riemann surface. It is well known [22] that the mapping class
group I, of a genus n compact Riemann surface defined as

I, = Diff/Diff,,

is generated by the Dehn twists along 2n + 1 nonintersecting homology cycles of
the surface and one further element, describing the twist along an intersecting
cycle. (Such a cycle is only present when the genus is greater than 1.) The Dehn
twists satisfy the relations of a 2n + 2 string braid group. So the mapping class
group of a genus n — 1 Riemann surface X' is generated by a homomorphic image
of B, , together with one extra element if the genus is larger than one. So on
the sphere and on the torus the complex vector bundle admits a flat connection,
while for higher genus it admits only a projectively flat connection. Thus the
representation (3.34) is equivalent with the monodromy representation of the
fundamental group of X,

1,(2) > G. (3.45)

These observations give rise to an alternative description of the representation
space of the quantum group associated with R. Namely it corresponds to the space
of functions on the possible monodromy representations (3.35). More precisely, if
V denotes the Hilbert space mentioned in Theorem (3.2) we have

¥ = Hom (n,(X), G)/G, (3.46)

where Hom denotes the set of representations n,(X)— G. The Hilbert space is
obtained as this set modulo the action of the inner automorphisms of G. It is well
known that the smooth part of this space is a manifold which admits a Kdhler
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structure, which depends on the choice of G. In particular in [44] it is shown that
if G = SL, then this Kédhler structure can be identified as the Weil—Petersson Kahler
form on the moduli space of stable Riemann surfaces. One may generalize this to
other groups; here we will consider the case for the groups SLy (see [44]). For
definiteness we first consider G = SL,. Thus, the space V in (3.46) should provide an
irreducible representation of the Virasoro algebra. We will now show that this is
indeed the case. The argument is as follows. The Kéahler form is in fact the first
Chern class on the determinant line bundle 4; of holomorphic j differentials on
moduli space. In [41] we have computed this Chern class as the curvature of the
so-called Quillen metric. The result found there reads:

6i(ji—1)+1
W— (!pr, (347)

c 1(/11') = <
where ,,, is the Weil-Peterson Kahler from.

Next we recall the result obtained in [1], namely that a given representation
of the Virasoro algebra with central charge c¢, corresponds to the space of
holomorphic sections of a determinant line bundle L,. This space is endowed with
a Hermitian metric. By a theorem of Harer this bundle is isomorphic to a power
of the determinant line bundle of the holomorphic one forms. More precisely:
Lf? ~ },. Thus it follows that the curvature denoted by £2 of the Hermitian metric
on L, is proportional to the Weil-Petersson Kéhler form:

c 1

27T 242

At this point we recall that the value of the central charge c is given by (3.27).
The bundle 4; together with its anti-holomorphic counterpart, corresponds to the
Hilbert space of a (b,c) ghost system of weight (j— 1,j), which has a so-called
conformal anomaly given by —2(6%” —6j+1). So we arrive at the following
geometrical interpretation of the representations obtained in the previous
subsection, namely that the Hilbert space L. (providing an irreducible
representation of the Virasoro algebra) is isomorphic to an irreducible
representation of the SL, level k current algebra after application of the
Miura transformation, times the Hilbert space of a (b,c) ghost system of spin
j=1

It seems natural to expect that this generalizes to the W algebras for SLy. The
following remarks sustain this idea. For SLy, the factor N* — 2N3 4+ N corresponds
to the sum of the conformal anomalies of n different (b,c) ghost systems, for
1=<n<N-—1,of weight(— N +n— 1, N — n). The fact all of them have to be taken
into account is consistent with the filtration property of the W algebras discussed
in Sect. (2.2). Furthermore, one expects that the anomalies cancel for a particular
value of ¢, i.e. there should be a global section on the moduli space, like for the
Virasoro algebra when ¢ = 26. In this case there is an invariant of the action of
the Virasoro algebra given by the so-called Mumford form:

uh=12,®A713. (3.49)

(3.48)
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In a possible generalization to the other W algebras the filtration property of these
algebras may be used to decompose the general bundle V' into subbundles
V=V,®---®Vy where each of the subbundles V; provide irreducible
representations of the lower order W algebras. Subsequently, using the
Grothendieck-Riemann-Roch theorem one may determine the invariant action
on the moduli space. For example for the SL; W algebra this suggests the invariant

'u(Z) — 13®12®/10~13737 (350)

so that the critical value of the central charge is given by ¢ = 100. This value also
appears in [7] where it is related to the (b,c) ghost systems of weight (0, 1) and
(—1,2). This concludes our discussion on the W algebra acting on the moduli space.

Note added. During the typing of the manuscript recent work by P. Mathieu [45] and K. Yamagishi
[46] came to our attention, in which similar aspects as discussed in Sects. 2 and 3 have been presented.
We also received a preprint by G. Lusztig [47], in which a proof is presented of the quantization of
integrable irreducible highest weight modules of arbitrary Kac-Moody algebras. The contents of the
present paper have been reported at the CIME conference on “Global Geometry and Mathematical
Physics,” held at Montecatini, Italy, July 1988.
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