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Abstract. The K-matrices for the quantised Lie algebras An are constructed
through the quantum double procedure given by DrinfeΓd [6]. The case of
Uqsl(3) is thoroughly analysed initially to demonstrate the more subtle points
of the calculation. The ease of the calculation for An is very dependent on a
choice of generators for the Borel subalgebra Uqb+ and its dual, and a certain
ordering imposed on these generators which is related to the length of a certain
word in the Weyl group.

Introduction

To every Lia algebra and Kac Moody algebra g there exists a unique Hopf algebra
A; a one parameter deformation of the universal enveloping algebra of g. This is
the quantisation of the algebra g, and was defined by DrinfeΓd [6] and Jimbo
[11]. In the terminology of [6], these Hopf algebras turn out to be (pseudo)
quasi-triangular Hopf algebras, which means that there exists an element Re A® A,
called the universal .R-matrix, that satisfies certain properties. The recent interest
in quantum groups and the associated quantised algebra appears to be based on
two of these properties: the K-matrix is the quantisation of the classical r-matrix
[2] associated with g, and R satisfies the quantum Yang Baxter equation. The
former property is important in attempts to quantise Toda field theories and
related systems, since the classical r-matrix defines the Poisson structure of the
monodromy matrix [8]:

{T?T} = [r9T®T]9 (1)

where any variable dependence of the monodromy matrix T and classical r-matrix
r (in some representation) has been suppressed. Quantisation is then achieved by
interpreting T as a matrix of operators that satisfies an appropriate quantum level
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version of the Poisson bracket [8]:

RT1T2 = T2T1R. (2)

This quantisation process quantises the r-matrix, interpreting it as a representation
of the universal .R-matrix associated with A. The representation corresponds to
that initially used for r. Problems occur in this quantisation process when taking
the continuum limit, and so has tended to be restricted to discrete models. However
quantisations of the nonlinear Schrodinger equation and sinh-Gordon model have
recently been proposed by Skylanin [17,18]. Similar techniques and ideas occur
in relation to the KdV hierarchy and VF-algebras [1,19]. If the representation of
R is fundamental, Eq. (2) defines a quantum group generated by the matrix elements
Tij [9] The ease with which this equation can be obtained from the quantised
algebra A given any representation of A, suggests that the Hopf algebra A and the
universal .R-matrix are of deep significance in this quantisation process.

Secondly we have the quantum Yang Baxter equation, which is intimately
linked with the Braid relation. This suggests that any system possessing a braiding
may have an underlying quantum group interpretation. This is the case for
conformal field theory, whose braiding matrix has a structure very reminiscent of
the R-matrix provided that q is a root of unity [16]. The connections between
CFT and the KdV hierarchy [19] support this suggestion; the KdV hierarchy
admitting hamiltonian structures defined by a classical r-matrix [13]. The R-matrix
is, as before, in some representation. However it may be possible to remove the
representation; lifting to some universal object encompassing the properties of the
CFT.

From a more mathematical point of view, this relationship of the QYBE with
the braid relation has been exploited to give universal invariants of links [15], the
invariants being valued in A ® A. This construction uses the universal R-matrix
and gives an universal invariant for each quantised algebra A. Given any represent-
ation of A, the more usual link invariants are obtained. This construction can be
viewed as lifting the representation.

The connections between quantum groups and physics occur through a
representation of the R-matrix, these normally being evaluated by indirect methods
and not using the universal R-matrix. This is because although the universal
R-matrix was defined by DrinfeΓd [6], and a method of calculation given via the
quantum double construction [6], the method is difficult, and some R-matrices in
representation form were known [12], [14]. Hence motivation was lacking.
However universal objects can display an underlying structure in a more succinct
form and encompass representation independent properties. Hence they may
ultimately prove useful.

This paper derives the universal R-matrix for the Lie algebra sequence An by
using the quantum double construction [6]. Initially the Uqsl(3) case is analysed
in detail, Uqsl(3) having properties not present in the Uqsl(2) case, which was given
in [6] and is also analysed together with the quantum double construction in [4].
The main new feature is the g-analogue Serre relations [6,11]. These arise because
of the use of generators corresponding only to the simple roots. It is desired to
avoid direct use of these Serre relations, and hence generators corresponding to
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each root of An will be defined. It is necessary to order these generators, the chosen
ordering being based on the length of the word of the element in the Weyl group
that generates the root from αx; the end root of the Dynkin diagram. This ordering
is necessary to make the calculation of dual bases of Uqb + , Uqb_ possible.

The following result is obtained:

RΛn = qf(Hi) U<E

q-Λλea®fa) with f(Hi) = Σa~1Hi®HJ.
<xeΦ+ ij

This involves a g-analogue of the exponential function Eq, non-coroot generators
{eα}, {/α} of Uqb + , Uqb- respectively, a generator ordering implied by < and a
constant λeC[[7i]]. atj is the Cartan matrix corresponding to Λn.

This paper is constructed as follows. In Sect. 1 the Hopf structure of the
quantised Lie algebra Uqsl(3) is studied; a system of generators and an adjoint
action being given. However the adjoint action does not appear to give a
representation of the quantised algebra. Section 2 constructs the dual of the Borel
subalgebra Uqb + of Uqsl(3\ the Hopf structure being explicitly constructed from
the duality definition. The quantum double of Uqb+ is constructed in Sect. 3 as
defined in reference [6]. The R-matrix for the quantum double is constructed in
Sect. 4 and then passed to the quotient to give that of Uqsl(3). Emphasis is on the
choice of generators and bases for the corresponding modules, an appropriate
choice making this construction via the quantum double feasible. Section 5
demonstrates that the classical limit of the R-matrix reproduces the Lie bialgebra
structure, i.e. it gives the classical r-matrix of 5/(3). Sections 6-8 extend the above
constructions to the algebras An. Probably the essential feature of Sect. 6 is the
ordering of all the positive roots and the corresponding generators defined by an
adjoint action. The ordering is very important in the calculation of the structure
of Uqb'+ and in defining a system of dual bases. In Sect. 7 the dual algebra to
Uqb+ is analysed, again with an ordering of the generators. Here it is observed
that Uqb

r

+ ^ Uqb + , hence only the coalgebra of the dual needs to be calculated;
the algebra can be inferred. Finally the R-matrix for the quantised Lie algebras
Λn is calculated in Sect. 8. The fundamental representation is then used in Sect. 9
to project the universal R-matrix to the representation form, this agreeing with
that given by DrinfeΓd in [6].

The various definitions and quantities required to understand the form of the
R-matrix are collected in an appendix for ease of reference.

0. Notation

It is necessary to assume a certain amount of prerequisites in order to limit the
length of this work. The quantum group terminology used is defined in [6], while
the structure of the root system may be found in [10]. The quantum double
construction of the universal R-matrix is defined in [6], while an analysis can be
found in [4] together with an explicit construction for the Uqsl(2) case, h will be
the deformation parameter associated with the quantised algebra An. We shall
find the following combination useful: q = eh/2. This differs from some other works
on quantum groups, there being no uniform notation.
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In order to simplify notation we shall use the following convention; wherever
indices appear we shall assume:

ίje{l,2} sum over simple roots.

α,be{l,2,3} sum over positive roots.

The explicit numerical values are for the Uqsl(3) example. It must be stressed that
in Sect. 1 through 5 the root α3 is not simple. This contrasts to the general case
of An where this root would be denoted α 1 2 .

1. The Hopf Structure of Uqsl(3)

The quantisation of the Lie algebra sl(3) is achieved by defining generators for
each coroot and simple root, the latter satisfying a ^-analogue Serre relation [11].
In the construction of the quantum double, Sect. 3, it will be necessary to obtain
the dual to Uqb+i a Borel subalgebra of Uqsl(3). Handling the Serre relation in
this dualising process is immensely difficult; hence extra generators will be defined
such that the Serre relation is reduced to commutation relations. These generators
will be defined via an appropriate analogue of the commutator bracket.

We shall review the structure of the Hopf algebra Uqsl(3) as given in [6], 5/(3)
has 3 roots: α l 5 α 2 and α 3 = αx + α2, with the following inner product structure:

(αί? αf) = 2, (α l 9 α2) = — 1,

where α 1 ? α 2 are a choice of simple roots. A suitable basis of generators for Uqsl(3)
is the q-analogue of the Chevalley basis of sl(3). The generators are H 1 , i ϊ 2 , X j : ,
X 2 ,X*, i.e. Hi are coroots and the X* are the generators corresponding to the
roots ± α α .

The algebra structure is as follows:

ΓTT y±" | i Λyί r rr y + "| y yi r rj \r + -ι —rγ +

L"ί» Λ j J - I ^ Λ i •> LΛ1> Λ 2 J ' Λ 2 » L Λ 2 ί Λ l J Γ -Λ ί ,

sinh(^)
[Zi

+,XΓ]=+^. ^AZ. (3)

sinhί -

Xf satisfy ^-analogue Serre relations [6] and [11], in this case these are triple
relations. However we shall define extra generators X^ corresponding to the third
root α3 such that a direct use of this triple relation is avoided. The extra generators
are defined by a ^-analogue of the adjoint action of sl(3):

X1

±. (4)

Then impose commutation relations between X^ and the generators Xf such
that the ^-analogue triple relations are reproduced. The total algebra structure of
the generators X * is given by:

i = l , 2
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ί =0. (5)

This definition of the adjoint structure is the same as that given in [3].
The coalgebra structure is given by:

Δ: Uqsl(3)-+Uqsl(3)®Uqsl(3),

ΔHi = Ht ® 1 + 1 ® Hh

ziA j~ == Λ. j~ \£) q -\- q Kg) -Λ ~, Ϊ = i, z,

The skew antipode So [4], [6], is given by:

So(Xh=-qΨ1Xr, i = l , 2 ,
c /v^^ Λ+2V±r 7̂̂
Lj 0 \-Λ- 3 / — — (j_ A- 3 5 ^ / /

where X3':=q~ll2X^X2 ~ ^ 1 / 2 X2 : Xί = isan alternative definition of the generator
corresponding to the third root α3. This is further discussed in Sect. 8. These two
generators are exchanged under the operation of the (skew) antipode.

There is an alternative choice of generators that is very useful. These are defined
as follows:

ea = qHai2Xf, fa = q~Hal2X;, a= 1,2,3. (8)

These satisfy the relations:

^3 = ̂ 2 - q~1e2ex, 0 = e1e3 - qe3eu

0 = e2e3—q~1e3e2 and e-+f9

Ae{ = 1 ® e{ + et®qH\ Δf{ = q~Hi® ft + ft® 1,

—-̂  1, where λ = (l-q~2),

Sofe) = - ^ " H ι ^ ? So(/£) = - β 2 ^ ' / ^ (9)

There is a Borel structure of Uqsl(3) denoted by Uqb±. These are Hopf subalgebras
of Uqsl(3\ Uqb+ being generated by the coroots Hh and the positive root generators
X +. Similarly Uqb- is generated by HtiX~. Since emphasis will now be on the
Borel subalgebra Uqb+ the + superscript will be dropped for these generators.

2. The Dual to Uqb+

The quantum double is isomorphic as a C[[/ϊ]]-module to Uqb+®Uqb°+ [6],
where Uqb% is the dual1 Uqb'+ with reversed comultiplication. Hence it is necessary

1 The dual of a Hopf algebra will always refer to the maximal Hopf algebra contained in the dual
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to evaluate the Hopf structure of Uqb'+; more specifically obtain a basis of Uqb'+
such that the evaluation map is known. In performing this process the generators
are ordered to define a basis of the C[[/ι]]-module Uqb + . The choice of ordering
is initially arbitrary, however a more suitable choice for the general case emerges
from the Uqsl(3) example.

Consider the C[[/ι]]-module structure of Uqb +. Since we may commute any
of the generators Hl9H2,X^,X2,X^ a suitable basis for this module is:

H\Hh

2X\Xά

2X%9 a,b,c,d,eeZ±0. (10)

Any element of the dual is uniquely defined by its values on this system of basis
elements2. Hence define the following dual elements Wu W2, Yu Yi> Y3^Uqb

f

+ by:

WiH^δ^ Ya{Xb) = δab (11)

with all other evaluations being zero on the chosen basis of the C[[/ι]]-module
Uqb+. Choose the following basis for the module generated by these elements:

There is a Hopf algebra structure induced on this C[[/z]]-module; the algebra
structure of Uqb+ induces the coalgebra structure, and likewise the coalgebra
structure of Uqb+ induces the algebra structure. The Hopf structure will be
evaluated, and it turns out to be isomorphic to that of Uqb + . These elements span
the Hopf dual to Uqb + , this being obvious once we have established the existence
of dual bases in Sect. 4a.

The Commutation Rules for Uqb'+. The multiplication structure of the dual is
defined as follows:

YY'(X)=Y®Y'(ΔXl VXeUqb + , VY,Y'eUqb'+9 (12)

with the evaluation Y® Y'{X®X') = (Y,X)(Y',X'). To define YY' the element X
may be taken to lie in the basis.

The duality relationship between the algebra structure of Uqb'+ and the coalgebra
of Uqb+ means that the commutation rules in Uqb'+ will depend on the relationship
between the coalgebra maps A and T°Δ in Uqb+. (T is the transpose operator.)
We note that the generators {ίf^Xj form Hopf subalgebras of Uqb+9 and that
the generators of the dual have been defined such that the following can be deduced
from the Uqsl(2) case [4]:

These are also easy to verify directly, using the techniques demonstrated below.
For the calculation of the commutation rule for Wί and Y2 we observe that

the defining relation: Wt Y2(X) = Wx ® Y2{ΔX) is non-zero only if X = HtX2. This

2 For example if ξeUqb'+ then ξ&^HJ = { ( H ^ ) - 2ξ(X1). All elements of the dual annihilate the
commutation relations
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is because the Y2 requires an X2 in ΔX, and the Wx term requires an Hx. By
reversing the order of H1 and Y2 we have:

W1Y2{H1X2)=1, Y2W1(H1X2)=1.

This implies that: [VFl5 Y2] = 0. A similar calculation holds for W2, Y1 giving the
commutation relation: [W2, Yi] = 0. It can also be proved that [Wl9 W2~] = 0. For
the calculation of the commutation rule for Yl5 Y2 we observe:

Y1Y2(X)=Yι®Y2(ΔX)Φθ only if X = X1X2,X3.

On inserting these two values we obtain:

YlY2(X3) = 0, Y2

 ί

the last two evaluations being deduced from:

Hence this gives: q1/2 Yx Y2 -q~1/2Y2Y1=- q~1/2(q -q~1)Y3.Fov the calculation
of the commutation rule for Yh Y3 we observe:

Y3Yi(X)=Y3®Yi(ΔX)Φθ only if X = XtX3.

This follows on noting that the generator Ya only has a non-zero evaluation on
Xa. (For Y3 this can occur in the combination X2Xγ) Note the occurrence of an
X2XX combination due to the presence of Xl9X2 in ΔX3 (6). The following
evaluation maps are required:

in order to deduce the following structure:

3 = 0, q~"2 Y3Y2 - q"2 Y2Y3 = 0.

This is very similar to the adjoint structure defined before for Uqsl(ί); see (4), (5),
and is in fact that of Uqb_.

The Coalgebra Structure of Uqb'+. The coalgebra structure of the dual to a Hopf
algebra is defined as follows:

ΔY{X®X')=Y{XX'\ MYeΌqb'+, X,XfeUqb + . (13)

Hence we may deduce (by using the evaluation structure given in the appendix) that:

ΔWi=l<8)Wi+Wi<g)l9

AY2 = 1 ® Y2 + Y2®eWί~2W\

ΔY3 = l®Y3+Y3®e-Wί~W2-qY2®eWι-2W2Y1. (14)

For example, to evaluate ΔYX we have:

ΔY1{X®X')=Y1{XX')ΦQ only if XX' = X1H\HS

2.
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X9X' are elements of the chosen basis, but XX' is not necessarily so; hence
reordering using the commutation relations is necessary. The product XX' may
be split in any fashion to give:

This implies: ΔY1 = l®Y1 + Y1®eW2~2Wl.
For A Y3 we may use the commutation relations. However the direct calculation

of both the commutation relations and the comultiplication relations turns out to
be unnecessary since Uqb + is self dual. This is shown in the general case of An.

3. The Quantum Double of Uqb+

The algebra generated by Yί9 Y2 is a QFSH algebra [6]. We require the QUE
algebra equivalent with opposite comultiplication in order to build the quantum
double [6]. The maximal ideal m in Uqb'+ is <W l 9 Wl9 Yl9 Y2, Y?,)> (since
ζWί9W29Yί9Y2} only contains the combination hY3). mr is the obvious
C [ [/z] ] -module, the r t h power of m. So we construct the QUE equivalent as [4,6]:

which is generated by:

In more simplistic terms, the QUE algebra equivalent has a Hopf structure that
is obtained from the commutation and comultiplication relations of the QFSH
algebra by the transformation:

The evaluations between the QUE algebra duals are also weighted by the above
transformation. From now on the dual is interpreted either as the QFSH algebra
or as the QUE algebra equivalent as appropriate.

It is useful to choose the following combinations:

Jί=2(2Wι-W2\ J2 = 2(2W2-W1% J3 = Jί+J2 = 2(W1 + W2). (15)

The generators Ji9 Yα have an Hopf structure isomorphic to that of the Hh fα

generators of Uqb _ (9).
The quantum double D(Uqb + \ can be viewed as a lift of the original Hopf

algebra Uqsl(3) such that it separates the two Borel subalgebras, i.e.
Uqb+ n Uqb- = 0. This can be achieved in an infinite number of isomorphic ways
(cf. separating s/(3) Borel subalgebras b±\ however the requirement that the
quantum double is quasi-triangular with the canonical element of Uqb+ (x) Uqb°+,
[4], Sect. 4a fixes this uniquely. The quasi-triangular condition can be shown to
specify the commutation relations between the sets of generators Hi9 eα and Ji9 Yα
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[4]. The prescription for obtaining these commutation relations can be
manipulated into the following diagram [4]:

Λ=Uqb+

Fig.l

The derivation and explanation of the usage of this diagram appear in [4]. Recall
that in this diagram A0 = Uqb°+ is the QUE algebra, (n, m) is the evaluation between
the entries in positions n and m, and γ is the multiplication map y\a®b->ab.
Knowledge of the Uqsl(2) case [4] and the Hopf subalgebras Uqb + ,Uqb°+ means
that the only relations that need to be calculated are those between the following
pairs of elements:

HhJj Jl9e2 J29ex Hl9Y2 H2,Y1 el9Y2 e29Y, ea,Y3. (16)

The last pair may be evaluated by using the commutation relations from the
previous pairs. The remaining pairs are evaluated by using the above diagram,
Fig. 1. For the pair Jue2 we require the following mappings:

S o ® I 2 ° Δ 2 e 2 = 1 ® 1 ® e2 + 1 <g) e2 ® qHl - q~Hle2 ® q1*2

On performing the evaluations we obtain the commutation rule: [«/i,e2]
 = ~ eτ-

For a more through exposition of this type of calculation see [4].
The only other mapping that is required to complete the algebra structure of

the quantum double is:

A2 Yx = q~Jί (x) q~Jl ® 7X + q~Jί ® Yx ® 1 + Yγ ® 1 ® 1.

This allows us to deduce that: Yίe2 = e2Y1.
All other pairs (16) have a commutation relation that can be obtained by

dualising the two procedures above. Hence the final structure of the quantum
double for Uqsl(3) is:

[#„•/,]=(>,

[Hhei-] = 2eh Uhei-\=2eh

[H l 9 έ? 2 ]= - β 2 , [J i ,έ? 2 ]=-έ>2 (1^2),

[ H i 9 y ί ] = - 2 7 i , [ J i 9 y i ] = - 2 7 i ,

fe,ϊ}]=^y(«flι-ί"Jl). (17)

The triple relations satisfied by Yί9 et have been suppressed.
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It is observed that Hi — Jt commutes with all elements of the quantum double
D(Uqb + ). These generators produce an ideal and coideal, such that:

The Hopf structure for Uqsl(3), as defined in Sect. (9), is reproduced under the
following identification:

Ji9H^Hi9 ea->ea, Yt^fi9 Y3-~γU (18)
h h

4a. The Universal ^-Matrix for D(Uqb + )

The quasi-triangular structure of the quantum double D(Uqb + ) is given by the

canonical element of Uqb+ (x) Uqb°+, i.e. the universal jR-matrix is R = X X ® ( S ,
s

where {ζs}eA, {ζs}eΛ° are dual bases [6]. The practical procedure for finding the
K-matrix is to choose bases for Uqb + , Uqb'+ and to calculate the evaluation matrix.
(Uqb'+ is the QFSH algebra.) This is3:

»{*'} _ Wfc iyl γu γv γwίfjk'rτl'u'v'w'\
D{k} ~ v v 1 v y 2 * 1 * 2 * 3 \ n 1 •" 2 cί e 2 e 3 h

{k1} = {Indices for Uqb + } {k} = {Indices for Uqb°+}.

The i^-matrix is then given by: R = YjB~ls

tζs®ζt, where the bases are no longer
st

necessarily dual. For the Uqsl(3) case this is easily calculated to give:

[«;«]!= Π ft9l ft«] = 7 Γ - i ;

The q ~ 2vw may be removed by a change of ordering of the ea (x) Ya generators from
the 123 ordering to a 132 order. The bases with this ordering are then dual up to
a normalization. Without the choice of ea and Ya as generators, the process of
finding the i^-matrix becomes much harder since the bases are no longer dual; the
Cartan subalgebra generators cause mixing, and hence the semi-infinite matrix B
has to be inverted. The q~2vw factor demonstrates very nicely how important the
ordering is, since now the summations in the β-matrix are independent. For the
general case of An a suitable ordering will be chosen from the outset. The R-matrix
can now be written down as:

3 The generators of Uqh are chosen to be the generators W, as opposed to J. This is because Wt is
dual to Hi
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00

R _ ph(Hι ® W1+H2 ® W2) V Π' PU PV PW &) Yu Yv Yw

0' = ( ~ 1 ) h (19)
[w f̂ 2 ] ! [ i ; ;^ 2]![w;^f 2 ] !

on summing the fc, 1 indices. Note that the descendant of the simple root generators
lies between those simple root generators, and in this form the summations are
independent.

4b. The Universal /^-Matrix for Uqsl(3)

So far we have a quasi-triangular Hopf algebra D(Uqb + ) and a Hopf homo-
morphism D(Uqb + )^Uqsl(3). Hence a quasi-triangular structure is induced on
Uqsl(3) by this homomorphism. The quotient map to Uqsl(3) was obtained earlier,
(18) and this gives the .R-matrix for Uqsl(3), from (19), as:

a,b,c =

This may be rewritten in a more succinct form using one of the ^-analogues of
the exponential function [7]:

where

0 γ

EJx) = f — = — . (20)

The sign in the middle term can be removed by incorporating it in the generator
/ 3 , i.e. by defining the composite root generators as: e12 = &dqe1.e2, f2i = ad^/2 ./i,
in the notation of Sect. 6.

The above /^-matrix has been explicitly checked, and satisfies all the conditions
required of it; thus making Uqsl(3) a quasi-triangular Hopf algebra. We again note
that the descendant of the simple root generators lies between them. This is a
general feature.

5. Classical Limit h -> 0

Recall that as /ι->0 the Lie bialgebra structure of s/(3) is obtained [6]. In particular
we can obtain the classical r-matrix:

R-\
r — h

which gives the Lie coalgebra structure:
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φ: s/(3) -• s/(3) ® s/(3) (a cocycle),

), Vaesl(3)9

By taking the ft-»0 limit:

R = l + */(!?,) + Λ{X+ O X " + X + O X " - X + ®X 3 "} + 0{h2).

Hence, the r-matrix is:

It is easily verified that this is the (quasi-triangular) r-matrix given in [6].

6. A System of Generators for the Quantisation of the Lie Algebras Λn

We have a system of generators for Uqsl(3\ Sect. 1; the ^-analogue of a Chevalley
basis. It is desired to achieve the same structure for An = Uqsl(n + 1) and build a
dual basis for Uqb +, Uqb'+. Then the quantum double and finally the .R-matrix can
be constructed. In order to accomplish this, it is necessary to impose an ordering
on the positive roots, and also on the generators of Uqb+, Uqb'+ corresponding
to these roots. For instance, it is necessary to choose a basis for the C[[/τ]]-module
Uqb+ such that the generators of the dual can be defined; compare this to (10),
(11). This will require an ordering of the generators of Uqb + . An astute choice
of ordering makes the following calculation of a system of dual bases for
Uqb +, Uqb'+ much simpler than it would be on any arbitrarily imposed ordering.

First, we require some notation and conventions for the root system. Any
classical properties of the root system can be found in [10]. Let S be a choice of
simple roots for An; these being numbered along the Dynkin diagram consecutively,
and let Φ+ denote the positive roots. The roots for An have the following form:

asΦ+ iϊΐa = oci + ai + 1 + —hα,- for some j ^ i , (21)

i.e. a consecutive sum of simple roots. Consider the roots being generated from
the ultimate root of the Dynkin diagram αx by an element of the Weyl group:

α = σ (α 1 ) . The Weyl group WAn is generated by the reflections σ{ corresponding
to the simple roots. Define μ(σ) as the length of the word σeWAn with respect to
these generators. Each root has a minimal length word associated with it which
can be proved to be: μ(α) = (j + i) — 2 with α the root defined above. A partial
order4 is imposed by μ: α < β if μ(α) < μ(β). If μ(α) = μ(β) then it can be proved
that (α, β) = 0 and vice versa. Hence this partial order is sufficient for the adjoint
definition below (22). But for convenience we shall order this case by the number
of simple roots in the expansion.

4 This formulation of the ordering in terms of the length of a word in the Weyl group was suggested

by Gerard Watts. The ordering may also be expressed diagrammatically as a pyramid of positive roots

with the simple roots on the base, and projecting horizontally
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Define the adjoint action of the generators in a Borel subalgebra by the
following:

adqPa-Oβ = PaOf-q^OfiPβ, α<β, (22)

where Pα,Oβ are generators corresponding to the roots α,βeΦ + . Supplement the

definition with:

adqPuΌβ=-adq0β Pu. (23)

This is suitable for a Hh eα system of generators, for a Hh Xα system the coefficients
need to be altered. For instance compare the commutation relations in Sect. 1:
(4), (5) and (9).

As in the classical theory the roots are the eigenvalues of the generators in the
Cartan subalgebra. However as we are using the universal enveloping algebra the
eigenvalues now lie in the Z-span of Φ + . We note that the eigenvalue of ad^Pα '0β

is α + β. This definition of adjoint generalises that of [3] and is suitable for all the
quantum versions of the Lie algebras.

To ensure that the Serre triple relations do not appear directly in the algebra
structure, we shall define a generator for each α 6 Φ+, and a corresponding generator
for — α. Within each Borel subalgebra we shall order the generators by the ordering
induced from that of the corresponding roots. Hence we have the following:

Pα<Op iff α<jβ, (24)

for Pα,Oβ any two generators of Uqb+ (or Uqb_) corresponding to the roots
α, βeΦ + . Where necessary, the coroots will always be assumed to be placed before
all other roots.

It is most convenient to extend the Hh eα generator structure, since these led
to dual bases in the Uqsl(3) example, Sect. 4a. Hence define the following:

ei9fi for αt eS,

eα= Γ Γ (adfe,) e,,
se[ι\j-l]

/« = ( - i y " 1 Γ Γ (ad,/,)•/„ where α= £ αs£Φ + . (25)
se[i,j-l] se[i,j]

j>i

The < behind the product implies that the generators are ordered as above, in
an ascending order when read from left to right. This is the successive adjoint
action by descending simple root generators. For example in A3 we have:

and the ordering e1 < e12 <e2< e123 < e23 < e3.
Also note that:

e«= I T (adqesyej = (-iy-i Π" (ad^J ̂  . (26)
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Thus the generators can be expressed either as the successive adjoint action by
descending simple root generators (25), or ascending ones (26). Equation (26) implies
that:

/.= Π > (ad,/,)•/,.
se[i+l,j]

This differs in sign from the generator used in the Uqsl(3) case, this change being
advisable to avoid unpleasant signs in the K-matrix. To emphasise the difference
between the definitions of the generators eα,/α, the notation e12,e23,e123

 a n d
f2i>f32>f32i(A$) is preferred for any specific quantised algebra. The proof of (26)
is a simple consequence of the fact that: SLdqeί'a.dqej = adqej adqei if \i— j\ > 1.
More specifically we require: αf + ajφΦ + ,(ochotj) = 0.

The generators corresponding to the simple roots have a simpler structure than
the other roots because the adjoint structure was defined to reproduce the Serre
triple relations. Thus we have, if α + βφ Φ +:

&dqea eβ = 0 if α or βeS,

&dqea'eβ Φ 0 in general if neither α, βφS. (27)

This is illustrated in A3 by: ad β e 1 2 e23 = (q — q~1)e2e123.
However we have the very important relation:

adqea-ep=±ea+β if oc + βeΦ+, the sign for α § β. (28)

This implies that we may decompose a generator in any manner.
The generators have the following Hopf structure:

[H, / J = - α(

^ Y where λ = (l-q-2),

βi = 1 (x) et + ex ® qH\ Aft = q~Hi®ft + / f ® 1,

ς Γ x ) Σ ^ ® qHβeβ>,

β β
β,β'eΦ+

VαeΦ+. (29)

The last equation can be proved by induction. The reason why the chosen ordering
is useful is because of the structure of Aea. Let p1 be the projector on the first
position of Uqbf2, then the map Pι°A acting on the non-coroot generators
increases the order of the element:

PloΔ(x)^x, xeUqb + . (30)

This is also a characteristic of the dual comultiplication.

7. The Dual Structure of Uqb+

In order to calculate the structure of the dual Uqb'+ it is again necessary to choose
a basis of the corresponding C[[/ι]]-module (10). This basis is chosen by using
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the root ordering above. This turns out to be a very useful choice as the adjoint
structure is then self dual. The basis is:

Y[Hγ ΓΓ4% rhsaeZ>=0. (31)

For example, in the Uqsl(3) case we obtain H^Hfe^e^e^, as suggested in Sect. 4a.
Define the elements Wi9 Yα Vα^eS, αeΦ + by the evaluation maps:

Wi(Hi)=h YΛ(ea)=ί9 (32)

will all other evaluations being zero on the chosen basis of the C[[/z]]-module
Uqb + . Compare this to Eqs. (10) and (11). These generators will generate Uqb'+
as a Hopf algebra, this being obvious once the existence of dual bases is
demonstrated Sect. 8.

The comultiplication structure of Uqb'+ will now be derived. For the generators
W:

ΔWi{X®X')=Wi{XX')

implies that X, X' = Hh 1 or vice versa.

And hence we obtain: AWt = 1 <g) Wt + W(® 1.
Consider the generator 7α for some root oceΦ + :

ΔYa(X®X')=YΛ(XX')Φθ only if XX'^eJiH^

where / an arbitrary function of the coroots. If a root is not simple we may
decompose it into the sum of two other positive roots. This is reflected on the
generator level by the adjoint action (28):

β' + β = a, β' < β.

This is valid for any decomposition of the root; hence in order to specify A Ya we
must consider: X = eβ9 X' = eβ> for β' < β as above (this order is reverse to that of
the basis). This gives; on inserting two arbitrary functions of Ht:

' ( - (αis α)).

Hence it is deduced that:

β,β'eΦ +

(33)

where Ja = 2Σ(a,ock)Wk. Compare this definition to (15).
k

The comultiplication (33), is identical to that of Hhea (29), under the
identification:

where α is a sum of m + 1 simple roots. {Uqb
f

+ is interpreted as the QUE algebra
equivalent.) Hence the commutation structure of the dual is also identical to that
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of Uqb+, being induced by the comultiplication of Uqb+. This demonstrates that
Uqb'+ ^ Uqb +. (The above method of finding the comultiplication can also be used
to show the consistency of the Hopf structure of Uqb + .)

Hence the Hopf structure of Uqb'+ (interpreted as the QUE algebra) is given by:

adβr f t r ,= -^y β + , for

= 0 for &1 + otφΦ+,

(34)

β β
β,β'eΦ+

The adjoint structure of the commutation relations implies that the generators
yα,αeS satisfy the triple relations [11]. Hence we could reverse the sequence of
events in Sect. 1 and drop the non-simple root generators.

It now only remains to choose a basis of the dual, which will again be based
on the root ordering defined in Sect. 6. The most convenient basis to choose is:

Π**? Yl<Y«> ri9saeZ*O9 (35)
αteS αeΦ+

Since it is dual (up to normalisation) to the basis chosen for Uqb+ (31). This is
shown in Sect. 8.

This completes the structure of the dual Uqb'+ and so we may proceed with
the calculation of the β-matrix and the quantum double.

8. The /WMatrix and the Quantum Double

The construction of the β-matrix is again practically trivial because the chosen
bases for Uqb + ,Uqb'+ are dual up to a normalisation. This is a consequence of
the coalgebra structure (30): p1°Δ(x)'^.x9xeA = Uqb+ or Uqb'+ with px the
projector onto the first position of A®2. Observing this, we may calculate the
evaluation matrix. Consider first the following evaluation (all generator products
being assumed as ordered in the ascending fashion, (31), (35)):

Π Π ( Π «)= r/® Π n[4 Π e°A\ (36)

This implies that δ ̂  //, by the above order increasing property of Δ. The reverse
equality is obtained by the dual procedure, and so δ = η. Using the coalgebra
structure (29), we continue this process to obtain:

Yrsδ® Π γr«{Δ{ Π e'A)=Y7® Π n β ( e ? ® 9 β Λ l<8> Π )

(37)
a>δ \<x>δ
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Hence the evaluation matrix splits into several independent parts, one for each
root α.

The final step is to evaluate:

which is identical to a calculation in [4]. Including the Cartan subalgebra
generators is easily accomplished by using a contour integral technique. We
evaluate:

( ) Π ( ( )
αeΦ+ \ \ i / αeΦ+

with wh zt complex variables; the entries of the evaluation matrix being given by
the coefficients of powers in whzι. These can be isolated by a contour integration
about the origin.

The K-matrix for the quantum double can now be written down as:

Π<E

q-Λhea®Ya). (38)
αeΦ+

On passing to the quotient Hopf algebra An we use the following identification:

JhHi-+Hh Ya-+-fa9

which can be verified by a few calculations to obtain the quantum double structure
of D(Uqb + ). These are similar enough to those already evaluated in Sects. 3 and
[4] that the proof is omitted.

Hence we obtain the Universal β-matrix for An9 from (38) as:

ΓV Σj (39)
αeΦ+ ij

where ais is the Cartan matrix and λ= 1 -q~2. Recall that the generators have
been defined differently from Sects. 1-5, see (9), (25), this accounting for the sign
in (20). Without this absorption of the sign in the definition of fa (25), we would
obtain a sign in the arguments of the exponents: (— l)m for α the sum of m + 1
simple roots.

From the universal K-matrix for the quantum double we can also obtain the
^-matrix for any Hopf subalgebra of An that is isomorphic to some quotient Hopf
algebra of the double. This includes Amc An for m<n, the quotient being given
by setting excess generators to zero. Does this suggest some infinitely generated
quantum double?

The above construction probably follows through for the other quantised Lie
algebras, the analysis being more complex because of quadratic/quartic Serre
relations and branched Dynkin diagrams [5].

Reversing the Order of the Roots. The procedure for constructing the quantum
double involved a number of choices to be made; in particular we have ordered
the roots and defined an adjoint structure (22), (23) and (24). The order of the roots
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can be reversed and in doing so we transform the adjoint structure by a q-^q"1

transformation:

3dqPaΌβ = PaOβ-q'^OβPa9 oc<β. (40)

This is achieved by recalling that the antipode is an algebra anti-homomorphism
[6], it exchanges the two definitions of the adjoint and that S®S(R) =
Hence the .R-matrix is also equal to:

q
<xeΦ+

= ΓΓ Eq-2(λq-2m + 2q-H°e'a®qH'f'JqW>\ (41)
aeΦ+

where the only changes are the descending order of the roots in the product of
g-exponentials and the generators e'a, f'a are now defined by the adjoint definition
(40). The positive root α is the sum of m + 1 simple roots.

9. The /^-Matrix in the Fundamental Representation

The H-matrix in some representation p :>!„-• End (KC[[/ι]]) can be obtained by
the projection of the universal .R-matrix obtained above. For example using the
fundamental representation [6]:

p(Hd = Eiti-Ei+ui + 1, p(ed = q1/2Eiti + l9 p(fd=llf2Ei+u,

where Etj is the matrix with value one at position ij, zero elsewhere, we obtain
the R-matrix:

( n ) (42)

as given in [6]. Note that the normalization of the generators is different than those
used in [6].

Conclusion

The K-matrices for the quantised Lie algebras An have been constructed through
the quantum double. The final form involving ^-analogues of the exponential
function was dependent on the summations over generators being independent. A
method for achieving this emerged naturally from the Uqsl(3) example, namely
choosing an ordering of the roots such that their descendants lie between them.
This ordering also allowed the dual structure and the evaluation matrix to be
evaluated. The final form is reminiscent of a symbolic structure R « exp (hr) with
the "exp" suitably interpreted. The extension to the other Lie algebras is an obvious
path to pursue [5], however complications arise: branched Dynkin diagrams do
not allow a consecutive ordering of roots, and non-simply laced Lie algebras do
not have such a concise form of the comultiplication structure (29). It is even
possible that extended Dynkin diagrams can be treated; however the extra root
requires special attention.
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Appendix. The Evaluation Structure of UJb+ and Uqb'+

The evaluation mappings below are necessary for the calculation of the coalgebra
structure of the dual and algebra structure of the quantum double in the Uqsl(3)
example Sects. 2-4.

Wt{H% = δtJδr*rl, YάX^H'z) = (-2)',

Y2{X2H\HS

2) = ( - 2)s, Y3(X3Hΰ = ( - If,

Appendix. Summary of Definitions

The Universal R-matrix for the quantisation of the Lie algebra An has been derived
to be (39):

cceΦ +

The meaning of the various quantities will be collected here for ease of reference.

aVj is the Cartan matrix and λ = 1 — q~2.
U γ r

The g-analogue of the exponential function is [7]: Eq(x) = Σ , where:
r = 0 [fl C[ J .

V = f\U;q],

The roots are ordered in Sect. 6, by the length of the minimal word in the Weyl
group needed to generate it from the end root of the Dynkin diagram; OL1. The
length of the word for the root α = £ α s eΦ + , j ^ ί, is μ{a) = (j -h i) - 2. So α < β
iϊμ((ή<μ{β) se[iJ]

The generators in each Borel subalgebra are ordered by (24): Pa < 0β iff α < β.
Define the ordered products, Sect. Π ' Π > ' where the <, > denote an ascending

order of generators and descending order of generators respectively, when read
from left to right.

The adjoint map is defined, (22) by: ad^Fα Oβ = Pa0β-qiaβ)0βPa for a<β,
with the anti symmetry (23): adqPaOβ= -adq0βPa. The generators are then
defined by (25):

sφ,j-l] se[i+l,j]

The generators eh f{ have a structure given in (29), two generators for each simple
root of An.
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