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Abstract. We discuss global Laurent expansions for meromorphic /ί-forms on
a compact Riemann surface of genus g ̂  2. Our approach is motivated by
Krichever and Novikov's work on string theory.

I. Introduction

Krichever and Novikov [KN1,2], in their study connected to conformal field
theory on a Riemann surface S of arbitrary genus g, introduced the notion of a
global Laurent expansion of a meromorphic h-ίorm on S. Their approach consists
in the following. Let Po and P^ be two distinguished points on S in general position.
There exists a sequence of /ί-forms f%\ n,heZ, holomorphic on S except, possibly,
for Po and P ^ , where the orders of/^ are prescribed. The forms {/ί,Λ)} serve as
a basis with respect to which an h-ϊorm ω holomorphic in an annulus on S
(see Sect. II for the definition) can be expanded in a convergent series. In the case
of g = 0 these forms are given by /^(x) = xn~h{dx)h. The special feature of these
expansions is that they are formulated in a coordinate independent way. To the
best of our knowledge, global expansion on a Riemann surface were first discussed
in [BS].

The present study is concerned with a detailed analysis of the Krichever-
Novikov (KN) expansions. We find an explicit representation of f™ in terms of
the Riemann theta function and prove pointwise estimates on f^\ It appears that
a complete proof of convergence of the KN expansion is impossible without this
explicit form of f^ In particular, crucial for the convergence is a detailed analysis
of the normalization constants occurring in f%\ This leads to a small denominator
problem which has not been discussed in [KN1,2] and which is settled here.
Furthermore, we define generalized Cauchy kernels K(h)(x,y) which serve to
generate the expansion. Using Fay's trisecant identities [F] we find closed form
expressions for K{h)(x,y). Similar representations of f^ and K{h)(x,y) can be found
in the context of conformal b — c systems [S], [BLMR] (this was brought to our
attention by Hidenori Sonoda); our point is also to address the analytic questions.
We would like to mention that there is a relation between the KN approach to
the chiral algebras on Riemann surfaces and the operator formalism developed in
[AGMV].
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The paper is organized as follows. In Sect. II we review briefly basic facts
about Riemann surfaces and the theta function which are relevant for our study.
Section III contains the construction of the KN basis f%\ In Sect. IV we define
and study the Cauchy kernels K(h)(x, y). Section IV is of technical character and
deals with the small denominators of f%\ Finally, in Sect. IV we describe
rc-dimensional generalizations of the KN expansion.

II. Basic Definitions

Let S be a compact Riemann surface of genus g ^ 2 with a fixed canonical homology
basis {aί9...,ag,bί,...,bg}. Let (J,τ) be the corresponding period matrix. Recall
that τ is a symmetric g x g matrix with Im τ > 0. By Div (S) we denote the (additive)
group of divisors on S. Let φ:Div(S)-> J(S) be the Jacobi map with respect to a
fixed base point, where J(S) is the Jacobi variety. Let θ(ξ% ξeC9 be the
Riemann theta function. By 0[α](£) we denote the Riemann theta function with

/ε ,...,ε \
integer characteristics α = ί , 1 ' ' " ' f I ε/,ε}eZ. Recall that each integer theta

\ å i > > å 0 /

characteristic α determines a spin bundle Lα on S according to

TP F

^(divisor of Lα) = - - - - - K9 (II. 1)

where K = φ(Δ) is the vector of Riemann's constants.
Let Θ(= Θ°) be the sheaf of meromorphic functions on S and let Θ1 be the

sheaf of meromorphic 1-foπns. By Θh:={Θ1)®\ /zeZ\{0}, we denote the sheaf of
meromorphic Worms. Furthermore, let Ωh, h^l, be the sheaf of holomorphic
/z-forms. For a sheaf ^ on S, we denote by Γ(S, J*) the space of its sections. There
is a natural way to define pointwise convergence on Γ(S,Θh). We choose a
Riemannian metric y on S. For definiteness we take

Σ ζ ®0+0®0> (π 2)
J = l

with ζi(x),...,ζg(x) the canonical basis of J Γ ^ J Q 1 ) associated with {αlv..,αff,bl5...,bg}.
Note that y is the pull-back of the canonical flat metric on J(S) via φ. The absolute
value of ωeΓ(S,Θh) at xeS is given by

|ω(x)|:= {ω{x)ω{x)y{xyψ1.

Clearly, |ω(x)| is independent of the choice of coordinates at x. The absolute value
|ω(x)| defines the notion of pointwise convergence of series of meromorphic /i-forms
on5.

In order to find a suitable generalization of a circle and an annulus on S we
adopt an idea of [KN1]. Let P o and P^ be two points on S in general position
(in particular, P o and P^ are no /ι-Weierstrass points). Given Po and P^ there is
a unique ηp^p^eΓiβ.Θ1) such that: (i) it has simple poles at Po and P^ and no
other poles, (ii) ResPof/Po_PQo(x) = 1, (iii) Re j ^p^-p^ = &e f ^PQ-P^ = 0 We choose

a base point Pt,Pi φP0,P1 ΦP^, and set
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Our definition implies that R(x) is a well-defined function on S. Furthermore,
R(po) = 0, jR(PJ = 1 and ̂ ( P J = oo. This function will play the role similar to
that of the absolute value \x\ on CP 1.

The cycle

y(r):={xeS:R(x)=r}, 0<r<oo, (II.5)

is called a circle of radius r. The set

D{r)'={xeS:R{x)<r} (II.6)

is called an (open) disc of radius r. For R > r > 0 the set

Λ(r;R) = DR\Dr (II.7)

is called an (open) annulus of radii r and R.

It is remarkable that R(x) is in fact a proper generalization of |x|. For example,
the following proposition extends the classical Hadamard three circles theorem.

Proposition 11.1. Let f be a function holomorphic in an annulus A(r; R). For r < p < R
we set

M(p):= max log|/(x)|. (II.8)
x:R(x) = p

Then for r <r1<r2<r?)<R,

M(r2) ί M ( r i ) ; ^ 3 l o g r 2 + l o g ^ l o g ^
Iogr 3 - logr 1 \ogr3-\ogr1

X

Proof The function logK( c) = Re J ηP _P is harmonic and thus obeys the
Pi ° °°

maximum principle. The proof of the classical three circles theorem (see e.g., [HCR])
immediately generalizes to our setting.

Of fundamental importance for our study is the prime form on S ([F],[M]).
We review briefly its definition and main properties referring the reader to [F], [M]
for the details.

Let α be a nonsingular odd theta characteristic, i.e., α is integer and ξ = 0 is a
first-order zero of 9[α](ξ). There is a section ha(x) of Lα such that

K(χ)2= Σ j
7 = 1

The prime form E(x, y) is defined by

One can show that E(x, y) is independent of the choice of α. Moreover, E(x, y) is
antisymmetric,

E{x9y)=-E(y,x)9 (11.12)
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and x = y is its only (simple) zero. In local coordinates t around x such that
dt(x) = /iα(x)2 we have for j ; close to x

E(x,y) = Wς'Mn + O((ί(x) - t{y)f). (11.13)

For a fixed x, E(x, y) defines a multivalued holomorphic differential form of weight
— 1/2 in y with multipliers along the a} and bj cycles given by

χ(aj) = l, (11.14)

χ(bj) = exp 2τπ( - ^ - ^ ~ *))• ( Π 1 5 )

The prime form £(x, j/) provides a tool to construct meromorphic forms on S.
For example, for

such that φ(D) = 0, we can explicitly write any / with (/) = D:

f(x) = const. Y\E(xp Pj)/ϊlE(x, Qj). (11.16)

Also, the form ηp _p can be expressed in terms of E. We set

Then ηPo-Poΰ is given by

* / , „ - , > ) = «P 0 -P e W + i Σ ((Imτ)" ^

There is a number of useful identities involving the prime form and the theta
function. The most fundamental is Fay's trisecant identity [F]. Let

S{x):=θ°φ(x). (11.19)

Then for x,y,P,QeS and ZeDiv(S),

d(Z)3(Z + P + Q-X- y)E(P, Q)E(x, y)

= -8(Z + P-x)d(Z + Q- y)E(y, P)E(x, Q)

+ S(Z + P-y)S(Z + Q- x)E(x, P)E(y, Q). (11.20)

Another useful identity is [F]:

d(x-P + Z)d(x-Q-Z) E(P,Q)

Q~ P) E(x, P)E(x, Q)

= ωβ_P(x) + t {djlog9{Z + Q-P)-djlogS(Z)}ζj(x). (11.21)

We shall also need the following (multivalued) gr/2-form σ(x) [F]:

σ(x) = exp { - Σ J ζj(y)log E(y, x)\. (11.22)
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Note that σ(x) has no zeroes and poles on S. Its multipliers along α,- and bj are

χ(aj)=l, (11.23)

χ(bj) = exp2πί{Ug - V)τn + (g - I)φ3(x) - Kj}. (11.24)

The following identity involving σ will also be useful later. For generic P,

σ(x)(E(x,P)\^3(x-gP-Δ)

σ(y)\E(y,P)J 9(y - gP - Δ)' [ ' }

III. The Krichever-Novikov Basis

In this section we prove the existence and construct a Krichever-Novikov (KN)
basis for meromorphic ft-forms with possible poles at P o and P ^ . We consider a
sequence of divisors

DW = fcf)po + m? )Po o, (ΠI.l)

which describe the behavior of the elements of a KN basis at P o and P ^ . Specifically,

Ό , if ft = 0, n = 0,

n P o - ί n + fl + l ) / ^ , if Λ = 0, - f f ^ n g - 1 ,

-Po-^oo, if A=l, n = 0, (ΠI.2)

(n-lJPo-ίn-^P^, if h=l, l^n^^ ?

^ ( n - h)P0 -{n + h-(2h~ ί)g)Pao9 otherwise

The theorem below asserts that /j-forms with the prescribed orders of zeroes
and poles at P o and P ω exist and are essentially unique (except for h = 09

-g^n^-1 and h = 1, n = 0). For DeDiv (S) we write Θh

D to denote the sheaf of
meromorphic /z-forms ω with (ω) ̂  D.

Theorem III . l . (i) Let (h9ή)φ{(0, -g),...9(09 - l),(l,0)}. Then there is a unique
(up to a constant factor) f{^)EΓ(S,Θh

D(h)) such that

ord P o /<*> = k<ΐ\ ordP o o / ? ) = m?>. (III.3)

(ii) For ft = 0, — gf ̂  n ̂  — 1 ίftere are ίwo linearly independent f{°\ g(n]eΓ(S, ΘDw)
such that (III.3) holds. Furthermore,

(iii) For ft = 1, n = 0, there are g + 1 linearly independent / (

0

1 ) G Γ ( 5 , fi^u)) ŵcft ίftaί
(III3) holds. Each of them can be written as

fo} = yocoPo^Poΰ + Σ yU yjec, y 0 Φ O . (111.5)

Proo/. Let us first assume that h ̂  2, and let PeS be non-Weierstrass. We claim that

dim Γ(S9 Θ
h

kP) = max {dh - k9 0}, (III.6)

where rfΛ = dim Γ(S,ί2h) = (2ft - \)(g - 1). In fact, for k ̂  0 (III.6) follows from the
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gap theorem. For k < 0 we use the Riemann-Roch theorem and Serre's duality:

dim Γ(S, Θh

kP) = dh - k + dim Γ(S, Θ L (III.7)

Since dim Γ{S,Ωι ~h) = 0 and - k> 0, it follows that dim Γ(S,Θl~ki) = 0 and (III.6)
is proved. Take now P = P0 and k = n-h, n<dh + h. It follows from (III.6)
that dimΓ(S,Θ*n-h)Po) = dh — n + h and by linear algebra there is precisely one
(up to a constant factor) ωEΓ(S, Θ\n-h)Po) with a zero of order dh — n + h—\ =
— (n + h — (2h— ί)g) at P^. This proves our assertion for n<dh + h.lϊn7?:dh + h,
we use (III.6) with P = Pao,k = dh-n + h-L

We assume now that ft = 1. The statement about n = 0 is well-known. For
nφ{0,1,..., g) we use (III.6) with P = P0?/c = n - l ( i f n < ^ ) o r P = P0O,/c = ^ - n - l
(if n ^ gf). If 1 ̂  n ̂  g, we note that dim Γ(S, Θ{n- 1 ) P o) = ^ — n + 1 and, by linear
algebra, there is precisely one (up to a constant factor) 1-form with a zero of order
g-n at P^.

The proof for ft ^ 0 is similar and we omit the details.
We can partially remove the nonuniqueness of f^] by imposing the following

condition:

It is clear that such a choice is possible. It fixes /J,Λ), h :§ 0, completely and leaves
a freedom of choice of a constant factor in f£\ h^l, and of f^K

Definition III.2. A sequence of meromorphic h-formsf^\neZ, given by Theorem IH.l
and obeying (III.8) is called a KN basis.

We now introduce explicit formulas for f^\x). We set

Ö
-i E(x,Poγ if nφ{-g,...,-1,0},

if n = 0

σ(x)
_1£(x,Po)»£(x,P1)

E(P0,PJσ(x)

E(x,PJn+»+ί

E{x,P0Γ
ι

if - gf ^ n ^ - 1,

(III.9)

if

if n = 0,

E{P0,PJσ{x)-

if l ^ n ^ ,

(III. 10)
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E(x,P0)"-» 9(x + D^ + (2h-ί)Δ) h ^ Q ί ( I Π 1

F(Ύ P Yn + )

Remarks. 1. The choice of P x in (III.9) and (III. 10) is optional. It could be replaced
by any other generic point of S.

2. The singularities of / (

0

1 } at x = Px are removable. The coefficients have been
chosen in such a way that both poles cancel.

Theorem III.3. For each heZ, the set {/ifl)}neZ is a KN basis. Furthermore, there
exist constants Ah,B,ε>0 such that

(A$\BR(x))n(l + BR(x)Y + \ ft = 0, - # __ n __ - 1,

2, ft=l, n = 0, (111.12)

h = 0, n = 0,

+ #R(x)) 2 f ι ~ 2 % + ί 7 , otherwise;,

where

Proof. We prove the first assertion. The proof of (III. 12) requires solving a small
denominators problem and we defer it to Sect. V.

We have to verify that f{n\x) are single-valued and that they obey (III.8). It is
clear that they have correct zeroes and poles at P o and P^. Assume that
nφ{-g,...,- 1,0}, if ft = 0 and that n φ {0,1,...,#}, if ft= 1. Then each f^(x)
has additional zeroes R1,...,Rg except for those prescribed by the divisor
(note that Rx,...,Rg depend on h and ή). Then

P g
f(h)(χ\ __ f(h) ( \2h-l ^\^Γ0) nl _ y R _ A
Jn (X) - ^n σ[X) F ( p )n + h~2hg + g ^1 X L KJ Δ

where C ^ is a constant, is a well-defined ft-form. Using the fact that

we arrive at (IΠ.9-11).
Let h = 0, - g £ n ̂  - 1. Then for f(

n

0)(x) has g + 1 zeroes K 1 ? . . ., i ^ + x except
for those prescribed by D(°\ By means of Theorem IΠ.l(ii) we can choose Rg+1=Pί

and then repeat the above argument.
Similarly we show that /I1}(x) is well-defined for 0 ̂  n ̂  g.
To verify (III.8) we notice that the only nonobvious issue is to show that

/(

0

1)(x) = 0, -g^n^-l.

We write / (

o

υ(x) = ωx(x) - ω2{x)9 in a self-explanatory notation. Using (11.25) with
y = Pu P = Poo, we obtain

_ _ _ _ _ _ _ _
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Hence, /^(xjω^x) ( — g S n ύ ~ 1) is regular everywhere except for x = Po and
thus ResPo/

(

n

O)(x)ω1(x) = 0. Similarly, using (11.25) with y = PuP = P0, we show
that

ResPo fn

0)(x)ω2(x) = - ResPoo /<0)(x)ω2(x) = 0.

IV. The Cauchy Kernels

We set for heZ

Σ/ΪWV'ίΛ if 0<R(x)<R(y)<π,
1 1 = 0 _χ (IV.l)

- Σ f{n\^)f(-nh\y), if 0<R(y)<R(x)< oo.

This definition is meaningful as a consequence of the following

Theorem IV.l. The series defining K{h)(x,y) converge almost uniformly in their
domains. Consequently, K{h)(x,y) is holomorphic in x and y for R(x)/R(y) φ 0,1, oo.

Proof. Let nφ{-g,..., - 1,0), if Λ = 0 and nφ{0,l,...,g} if h=l. Then using
(III. 12) we find that

<AA w ^+my)?¾n2{2^Jm\
= hΛl-h BR(x)h (\+BR(x)Γ2hβ + 2h+ΰ k \R(y)J

Similarly we prove the convergence of the second series in (IV.l). The excluded
cases for h = 0 and h = 1 do not spoil the convergence as they affect only finitely
many terms.

The following theorem provides an explicit expression for K(h)(x,y).

Theorem IV.2. Let R(x)/R{y) Φθ,\,oo. Then

x,y) = coPoo_,(3θ + Σ ί ¥ o g S i - x + gP^ + Δ)-djlog3{-P1 + gPai + Δ)}ζj(y)

(IV.2)

)= -ùPà.y{x)- f }

x .Λ E(y,P0) (E(x,P0)E(X>PJ

*y> E(x,P0)E(y,x)\E(y,P0)E(y,PJ

(IV.3)

(IV.4)
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Proof. We start with h φ 0,1. For 0 < R(x) < R(y) < oo we have

,P0

/E(x,P0)EQ;,Pjγ
E(x,P0)E(x,PJ nf,o

5(x + D\t ~Λ) -(2/ί - l)Δ)9(-y-£><*>„ -(2h -
(IV.5)

We use now the trisecant identity with Z = x + D(

n

1 ~h) - (2h - 1)4 a = P0,b = Poo:

1
S{x + Di1 -« -(2h - l)Δ)S(-y-D<H\ -(2h- ί)Δ) =

E{P0,PJE{x,y)

- S(P0 + D\t ~h) - (2/ί - l)Δ)S(x - y + D^ ' h ) + Px - (2h - ί)Δ)

Noting that

and
JË(1 —h) _é_ p Ã)(l ~h) _é p (TV 7^

We can write the sum (IV. 5) as

1 [ y (E(x,P0)E(y,Pjy 3\

E(P0,Px,)E(x,y)\ M|io(£(x,Poo) E(3'JPo))''~1 <9φ!1

1"'° + Poo

(E(x,P0)E(y,Pjγ+1 9{x-y + D<1

+"i'
1) + P« - ( 2 A -

MM (E(x,PJE(y,P0))"

E(x,PJEjy,Po) S(x-y + Dγ-h) + PX-(2h- ί)Δ)

E(P0, PJE(x,y) SψΫ -« + PM - (2/i - ί)Δ)

Substituting this into (IV.5) yields

σ{x)j \E(y,P0))\E(x,Po0)

E(y,Po) 9(x-y + Dj1 -*> + Px - ( 2 h -

E(x,P0)E(y,x)

Using (11.22) with x -> y, y -+ x, P -> Pm yields

E(y,P0)

E(y,P0)E(y,PO0)J E(x,P0)E(y,x)

"» + P., - (2/ι - l)Δ)3(x - 0PTO - 4) 2*

as claimed. The computation for 0 < R{y) < R(x) < oo is analogous.
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Let h = 0, 0 < R(x) < R(y) < oo. Repeating the steps of the above computation
we find that

Po-Δ) S(y-gPa-A)

which by means of (11.22) equals

ω,o-x(}0+ ί {djl
l

ß
By means of the same identity,

$\y)= -ωPo-Piίy)- f {δjlog3{-P1+gPco+Δ)-dj\og3{-P0

-Pp)+ Ó {d

and consequently,

Km(x,y)

g

+ Ó(
7 = 1

as claimed.

y)-h Σ {δjlogθ(~
7 = 1

djlog3(-P1+9P

For R(y) < R[x) we find that

ZJ fn (X)J
n = — oo

= — COp _ ;

and
- 1

Lu J n \Ë)J --ί(y)= Σ {dj\og»

+ 4)-37.logSi-P^gP^ + 4)}

n=-g

As a consequence,

- Ó /ß.
^ 1

7 = 1

Ó R
7 = 1

in accordance with (IV.2).
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To prove (IV.3) we note that K(1)(x,y) = -K ( 0 ) (y,x) + / (

0

1 ) (4 The proof of
Theorem IV.2 is complete.

C o r o l l a r y I V . 3 . K{h)(x, y) has a first-order pole at x — y ( φ Po, ? « , ) . In the notation

of (IIΛ3),

,y) = - ^ 1 - ^ ( 1 + O(t(x) - tiyMdtixmdtiy))1 ~\ (IV.8)

Definition IV.4. The (h, 1 — h)-form K{h)(x, y) is called the Cauchy kernel of weight h.
The following theorem is the central result of this section. It states that any

h-ϊorm ω holomorphic in an annulus A(r;R) can be expanded in a convergent
Laurent series.

Theorem IV.5. Let ωeΓ(S,Θh) be holomorphic for xeA(r;A) and continuous on

A(r;R). Then

ω(x)=Σ α ? ) /? ) (^ (IV.9)
neZ

where

α?> = (2πiΓ' I fKh)(x)ω(x\ (IV. 10)
y(p)

for any r < p <R. The series (IV.9) converges almost uniformly on A(r;R). The α^Λ)

obey the Cauchy-type bounds

χ(h)\<<

CM0 A{?

CM°A#\ Λ = 0, n = 0, (IV.ll)

CM'Bpil+Bp)'2, h = l n = 0,

, CMhA^{Bpyn + h(l + Bpy2h+{2h~i)g, otherwise,

where C <0 is a constant, and where

Mh:= max |ω(x)|. (IV. 12)
xeA(r;R)

Conversely, any series (IV.9) with coefficients oc^ obeying bounds of the form (IV.ll)
defines an h-form holomorphic in a certain annulus.

Proof We follow the lines of the proof of the standard Laurent expansion. As a
consequence of Corollary IV.3,

ω(x) = (2πiΓί J Kw(x,y)ω(y). (IV. 13)
dA(r;R)

It follows from (IV. 1) and Theorem IV. 1 that

\ã(R) ã(r)J
n e Z

with OL^ given by (IV. 10). Estimates (IV.ll) are direct consequences of (III. 12). The
last statement of the theorem is clear.
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V. The Small Denominators

In this section we complete the proof of Theorem III.3, namely we establish the
bounds (III. 10). The main difficulty here is the fact that S(P0 + D^ + (2ft - 1)4)
occurring in the denominators of (IΠ.7-9), although always nonzero, may approach
zero as n varies. Below we show, however, that for generic Po and P^ the rate at
which S(P0 + D(

n

h) + (2ft — 1)4) approaches zero can be controlled.
To prove (III. 10) we note that /J,Λ) may be regarded as ft-forms on a maximal

compact domain Q) a S in the universal covering S of S with a fixed global
coordinate. Every factor in the definition of/(

n

h) becomes a single-valued form and
can be estimated separately. Independence of the estimate of the choice of 3) is a
consequence of the single-valuedness of /£Λ) or S.

Clearly, for

(V.I)

where cj9 j = 1,...,6, are positive constants. Also, for xeQ) and DeΌi\{S),

\3(x-D-Ä)\^cº. (V.2)

Therefore, (III. 10) follows once we have found a bound from below on | S(P0 + D^ -f
(2ft — 1)4)| (note that the singularity at x = Px in /(

0

1) is removable).
Let eeJ(S) be fixed and let J(S)sξ-^ θ(ξ - e) be a branch of the 0-function. We

consider the set Ωε a J(S) of points / such that there exists a constant 0 < c < oo
such that

\θ(nf - e)\ ̂  c\n\~{2g2+9 + ε\ neZ. (V.3)

Let μ denote the Lebesgue measure on J(S).

Theorem V.I. Ωε has full Lebesgue measure.

Proof. We use an idea taken from [A]. We show that the complement of Ωε has
zero Lebesgue measure. The proof consists of two steps: First we estimate
dist(n/,X), where X is the set of zeroes oϊθ(ξ - e). We claim that the set oϊfeJ{S)
such that there exists 0 < c < oo with the property that

dist (nf, X) ̂  c I n | " { 2 β + 1 + ε) (V.4)

has full Lebesgue measure. Then we use the fact that θ(ξ — e) has zeroes of order
at most g to conclude the proof.

Since the complex structure of J(S) is irrelevant for the present argument, it is
no loss of generality to assume that J(S) — U29/Z2g. Let c> 0 be fixed. We define
the set

U U U {/=.£ tn/J-xJ-mJ|gc|n|-<2 +1+'>j. (V.5)
neZ\{0} xeX me!2 L J 1 J
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Since ΛCί c= ΛC2 if c1 < c2 our assertion is proved once we have shown that

liminfµ(y4c) = 0. (V.6)

Take c sufficiently small. Since - 1 ̂  f } - x Jn g 2, it follows that -n^m^ln
in (V.5). Therefore

ú2Ó Ó ì(\J If- fj
n=l m .-n^mj^ln \xeX I Π Π

We introduce the following notation. For B c J(S),

(V.7)

O^ε}, (V.8)

TaB = a + B, aeJ(S), (V.9)

-B = {ξeJ(S):nξeB}, l<neZ. (V.10)
n

Lemma V.2. Let B be a measurable subset of J(S). Then

(i) μ(Bε) = O(s\ if B is a closed submanifold of codimension 1,
(ii) μ(TaB) = l

(iii)

(v) Ta

l-B=l-TnaB,

1

n

As a consequence of the lemma and the fact that X is a union of finitely many
closed submanifolds,

which proves (V.6). We can now complete the proof of the theorem. Since (V.4)
holds µ-almost everywhere, and the zeroes of θ(ξ — e) are of order at most g,

for almost all /.

Proof of Lemma V.2. Only (i), (iii) and (vi) require arguments.

(i) Locally μ can be written as μB x µ19 where μB is a measure on B and µ± is
transversal to B.
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(ii) We have

U ^ ξ : ξ = Ji + 2itηeBy (v.ii)
w ' J n n '

Therefore

(vi) We infer from (V.ll) that ξe{l/n)B\ iff

n n ' — J —

which is equivalent to

£ = _w+-fc + -w/, πeβ, dist (w', 0) ^ ε.
n n n

This proves the claim.

We can now complete the proof of Theorem II.3. In fact, since φ is continuous in
the metric γ the estimates hold for generic P0,Pι and P^.

VI. Remarks on the Multidimensional Case

The considerations of the previous sections can easily be generalized to a
multi-dimensional context. Let Sm be the m-fold Cartesian power of S. We set

m m

V(r):= X y{rj) and >4(r;R):= X A{r-,R}1 where r = (r l 5 . . .,rO T), R = (Ru...,Rm)9

Tj < Rj. Finally, we set
m

K{h\x,y):= Π Kh>(xj9yj)9 (VI. 1)
J = l

for x, yeSm, and heZm. The following proposition is a consequence of the preceding

sections.

Proposition VI.l. Let ω be an h-form holomorphic in A(r; R) and continuous in A(r; R).

Then

ω(x) = (2πi)-m J K(/I)(x, y)ω(y). (VI.2)
y(R)-y(r)

Clearly, this proposition allows us to generate multidimensional Laurent
expansions with the corresponding estimates on the coefficients. We omit the details.
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