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Abstract. In this paper we prove that the one dimensional Schrόdinger
operator on 12(Z) with potential given by:

Φ) = Λ fti -α, i[(* + na) α φ Q

has a Cantor spectrum of zero Lebesgue measure for any irrational α and any
λ>0. We can thus extend the Kotani result on the absence of absolutely
continuous spectrum for this model, to all xeT.

1. Model and Results

In this paper we consider the discrete one dimensional Schrόdinger hamiltonian
with quasi-periodic potential, acting on /2(Z) and given by:

H(x, α, λ, I)ψ(n) = ψ(n + ί) + ψ(n-ί) + λv(n, x)ψ(n) , (1)

where

(2)

χl is the characteristic function of the interval / in the torus [0, 1]: T. / will be
chosen equal to [1 — α, 1[CTΓ, α is a fixed irrational number in [0, 1].

Quasi periodic structures play an important role in solid state physics [J.D,
S.O], in particular after the experimental discovery of quasi-crystals, that is of a
metallic solid (an Al-Mn alloy) [Sh.Bl.Gr.Ca.] diffracting electrons like a crystal
but with symmetry properties inconsistent with lattice translations. Schrόdinger
operators with quasi-periodic potentials taking only a finite number of values, like
(2), can be used for instance to describe the properties of quasi-crystals.

In [Lu.Pe.] Luck and Petritis considered the phonon spectra in a one
dimensional quasi-crystal. An almost periodic tiling of the line is constructed
through a cut and projection method of a periodic 2-dim. structure on a one
dimensional straight line with an irrational slope and the e.v. equation for the
Laplace operator defined on this one dimensional almost periodic lattice, can be
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reduced exactly to Eq. (1) (see also [Be.] for references on quasicrystals and on
almost periodicity in solid state physics). Moreover this kind of model seems to
appear as an effective 1 electron hamiltonian in the description of the Peierls
instability [Ma.Na.] at least in a mean field theory. The effective potential found by
Machida-Nakano turns out to be discontinuous and qualitatively close to the
model (1), in contrast with Aubry's choice ι;(n,x) = 2cos2π(nα-hx) [A.A]. The
overall band structure obtained in that way looks very similar to that given in
[Os.Kim]. Note in particular that there is no transition from a pure point
spectrum when λ varies.

Model (1), at last, provides a good example of a system with an exact
renormalization group. This has been found first in Jacobi matrices associated
with the Julia set of a polynomial [Be.B.M, BGH], the Laplacian of a Sierpinsky
gasket without [Ra.] or with a magnetic field [Al, G.W.R.P.B, T.L.R], in the
hierarchical model [J-L.Ma.Sc, H.K, K.L.S], with selfsimilar sequences generated
by substitutions [Lu, A.A.K.M-F.P]. In this case an exact renormalization group
transformation can be provided through transfer matrices.

Model (1) has been extensively investigated numerically and rigorously.
A lot of physical properties have been investigated for a one dimensional

quasiperiodic lattice: electronic and phonon properties [K.B], localization of
photons in optical layers [K.S.I], electrical resistance [S.K].

As far as the nature of the spectrum is concerned, we recall first of all [De.Pe.]
where the absence of localization is proved for each λ and for Lebesgue almost α
and x, and where the characteristic function is taken over every interval / C [0,1].

See also [Sϋ] for the case α= ̂ —— not contained in the set of zero measure of
\ 2

[De.Pe.].

More recently in [Ko] a more general case is discussed, including the random
potential given by independent identically distributed random variables, and the
absence of absolutely continuous spectrum is proved for almost every x and for
every irrational α. Combining these two results the spectrum of H(x, α, λ) turns out
to be purely singular continuous for a.e. x and α.

As far as the structure of the spectrum of H as set is concerned, there are a lot of

numerical and rigorous papers concerning the golden case where α = ^—^— and

J = [-α3,α2[. In [Ka.Ko.Ta.] (see also [O.P.R.S.S, R.O.S.S, K]) the relations for
the transfer matrices and their traces are given on the Fibonacci sequence of
numbers. In [G.A, G.A1] the relations for the transfer matrices are obtained for α
equal to the silver and bronze mean and the model is also analyzed numerically. In
[Kal.Ki.Le] recursive relations are given in the general case and the Hausdorff
dimension of the spectrum is estimated. In [Ost.Kim] numerical computations of
the spectrum are given for 7 = (0,α) and α varying through 1024 rational values,
related to the binary Farey address which is used in that paper instead of the usual
fraction representation.

More recently the golden case has been rigorously investigated by Casdagli
[Ca]. Using symbolic dynamics techniques he proves that the dynamical spectrum

; |trMJ is bdd as rc->oo}, (3)
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(where Mqn denotes the product of the first qn transfer matrices and qn is the
Fibonacci sequence qn + 1 = qn + qn _ l qί = 1 = q0) is a Cantor set for λ ̂  1 6. After this
paper Sϋto proved that for the same model (α: golden, / = [ — α3, α2]) the spectrum
of H coincides with the dynamical spectrum B^ and it is a Cantor set for λ ̂  4. The
proof given by Sϋto is "soft," involving only standard arguments in functional
analysis.

We want also to mention the recent paper by Luck [Lu] studying the location
of gaps and the dependence of gap widths on the potential strength.

In this paper we prove the following:

Theorem. V irrational α, let /==[l-α,l[, Vλ>0, VxeTΓ,

where σ(H) denotes the spectrum of H and y(E) is the Lyapunov exponent related to
H.

Corollary. V irrational α, VΛ>0, VxeTΓ, σ(H(x, α, λ, /)) is a Cantor set of zero
Lebesgue measure.

Remark, This result can also be applied to extend to all x e T the result of Kotani on
the absence of absolutely continuous spectrum in this quasi-periodic case; for
instance Kotani asks in his paper if the spectrum in the golden case with x = 0 is
sing. cont. \fλ > 0. We can answer yes. However our result seems to be insufficient in
order to extend to all x the absence of localization because we cannot exclude
polynomially bounded eigenfunctions.

The proof of our theorem is based upon the following idea: for each irrational α
and for x = 0 it is possible to find explicitly recursive relations for the transfer
matrices. With these relations it is possible to extend the results of Sϋto to each α
using quite the same ideas, obtaining the first identity of the theorem. As far as the
second identity is concerned the non-trivial problem is to prove that

that is, to show that the transfer matrices with exponentially growing norm cannot
have bounded traces satisfying suitable recursive relations. In fact the following is
a delicate point : from standard results the positivity of Lyapunov exponent implies
exponential growth of the norm of transfer matrices only for a set of full Lebesgue
measure of values of x in T. In particular, x = 0 does not necessarily belong in this
set. To solve this problem we needed a very detailed analysis, involving number
theory, of the realization of the potential for arbitrary x.

Once the theorem is proved the corollary easily follows from the second part of
the theorem and the following Kotani result [Ko.] :

where | | denotes the Lebesgue measure.
In Sect. 2 we recall the main definitions and results related to number theory

while in Sect. 3 we extend to all irrationals α the results given by Sϋto and prove the
first identity of the theorem. In Sect. 4 we prove the second part of the theorem, and
in Sect. 5 we briefly discuss some open problems.
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2. Periodic Approximations

Let us consider the expansion of α in continued fraction (see e.g. [La]):

«= - ί-— , (4)

-[3-where a1 = \ - |, [ ] denotes the integer part

1

andG(α)=-- - .

In order to construct the rational approximations of α, we define:

^Pn + i Po = 0>Pι = l (5)

It is well known that (see [La])

:--^^—, (6)
qn qnqn+ι

| |kα||^||gMα|| Vfce[l, ...,gΛ+1[, (7)

where ||x|| = inf |x + w| is the distance of x to Z.
«eZ

Lemma 1. a) φ,0) = φ) = [(n + l)α]-[nα] V n e Z , n Φ - l .
b) φn-fk) = ι;(k)
c) ι?( — n) = φ-l)

/. a) φ) =

with nα<m + l <(n + l)α, i.e. m = [nα]. On the other hand

[(n + !)«]- [««] = {?.

In fact

where { } is the fractional part,

[(n+l)α] — [nα] = lo 3meN;

b) From Eq. (6) and (7) and part a) we have:

since 4nα-pπ = (-l)π ||^πα|| and by (7) ||mα|| > ||^πα||
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c) Is an immediate consequence of a).
Let

π, n ™ fE — λυ(n,x) —
Tin, x, λ, E) = [

\ 1 0

be the transfer matrix associated to H, that is

= T(n, x, λ 1
l) /

where ψE(n) is a solution of

We have det T(n, x, λ, E) = 1 .
Let T(n) = T(n,(U,

, α, λ,

M(π) = Mβm(0, A, £) Ξ ΓfeJ - . . . Γ(2)

M(0)=T(1)=^ ~^, M(1)=T(α1).... T(l). (8)

Proposition 1.

The proof of this proposition is an easy consequence of Lemma Ib). By using the
definition

1 Λ0 l)<

Proposition (1) can be extended also to the case n = 0. We remark at this point that
the order from left to right in the values of the potential correspond to the order
from right to left in the product of transfer matrices.

In the same way we can define

L(n) = [T(l) ... T(qJ] ~1 and we have, by using Lemma Ic), and Proposition 1):

Lemma 2. For each 2 x 2 matrix M with detM = 1 and VαeN:

with ξ = tτM and Sa(ξ) the Chebyshev polynomials:

Sa_2(ξ), Sί(ξ)=ξ, S

and for these polynomials, using the recursive relation, it is immediate to prove that
the quantity SaSa_2 — Sa-ι *5 independent of α, this is

SίS.1-S2

0=-l. (9)
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ii) If\ξ\ = \tτM\>2then

where θ>0 is such that ξ= ±2ch0. Moreover Sa(ξ)<\ξ\a

If\ξ\ = 2then

if\ξ\<2ξ = 2cosθ, 0e(0,π) then

sιn(α+l)0 ^
sine/

Proof of Lemma 2. By induction on a:

Point ii) can be easily verified using the recursive relations.

Proposition 2. Vn^l let ξn = tτM(n). // |ξn_ 1 |>2 then

ς (? Λ
£ £ C (
S w + 1 — Sti^Λ.. . , -1V

SflM-ι(£«-l) " Λ n + 1 " " Sαn-ι(£n-l)

(10)

Remark 1. We observe that in Lemma4 we assumed \ξn,ί\>2 in order to have
Sβn-ι(£ιt-ι)φO, while in the case ^αn_1(^n-ι) = 0 using Lemma 2 we have M^
= — ^αn-2(^11- ι)l = San(ζn- ι)l = ±^ that is ξn = ± ξn_2, and it is possible to find a
relation between ξn+1 and £n_2, ^n-3.

Remark 2. If αn = 1 Vn, that is in the case of the golden number, Eq. (10) becomes:

as in [Ka.Ko.Ta, Ca., Su.].

Proof of Proposition 2. By Proposition 1 and Lemma 2:

M^^M^Mft^M^ (11)

M^M^M^^M^^ (12)
M(B)M(B_1) = M(B.2)M^i) = M(B_2)M(B_1)SJίB_1)-M^^

(13)
From (12)

From (13) and (14)

M Λ/f ς' r^ ^ ^(n) + M(n - 2)San _ 2(ξn _
M - = C - - - 7T - x
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Taking the trace of (11) and using (15),

— £ _ \ v (t \ ζ* "* ζ* ~ 2 «n - 2^n ~ V t c (t \ c r£ \
= S«+1 — ύαnlsπ-lJ ^ 77 x S/j-2 ύα n-ιVSn-J ύαn+ i - ΛsJ

L ύ a n -Λs«-lJ J

. ,: ~ (fJS^ξ^l Ί—J— (~ TJJx, 1 1 C *• J I ' *J/1 I CM 1 I ίj n 1 ( C M l ) l1 ^n — Z Un + 1 ~ 1 \^W/ I o / ί; \ Qn\^n I/ fln — I V ^ M I/ I
I ^ - ι\ζ — 1 / I

+ -£B-1San + 1_2(4), (16)

and by (9)

Proposition 3. Lei {ξn}f ί>e (fte sequence generated iry (10) wiί/z

ξ_ 1 = 2, ^0 = £, ίι =

ί/ien t/ze quantity:

l + [tr(M(n)M(n+ υ)]
2 - £,+ ,£, tr[M(n)M(n+ υ]

_ 2ln = λ

Proof of Proposition 3. Using the identity

is constant in n and _ 2ln = λ +4.

= tr(A)tr(B)-tr(AB-i) (17)

which holds for 2x2 matrices with detA =detΰ = 1 (see Lemma 2), we can prove
the following:

In fact using (17) three times:

tr[M(;i 1)M(;)

1M(n+ ̂ M ]̂ = [tr(M(n+ υM(π))]
2 -tr(M(

2

B)M(

2

n+ υ)

= [tr(M(H+ υM(π))]
2- {tr(M(n))tr(M(n)M

2

 + υ)-tr(M2

 + 1})}

= [tr(M(n+1)M(π))]2 + tr(M2

+1))

-tr(M(w)) [tr(M(n)M(B+ υ) tr(M(π+ υ-trM(B))]

= [tr(M(B+ υM(B))]
2 + [tr(M(B+ υ)]

2 + [tr(M(B))]
2

- tr(M(B)) tr(M(B)M(n + υ) tr (M(B + υ) - 2 .

Moreover the recursive relation gives:

tr(M(;i 1)M(B)

1M(B+ l}M{a)) = tr(M(B+ ̂ M^M,̂  1}M^)

= trM(π_ ̂ M^V ' + Wfc rlM^ 1)M(;)

1)

= tr(M(B_1)M(B)M(;i1)M( n)

1) = /B_ 1-2,
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We remark that the quantity /„ is also equal to

3. The Spectrum of H(x, α, A, /)

The study of the spectrum of H(x, α, A, /) can be done following step by step Suto's
paper. First we extend to right-continuous potentials the well known result of
quasi-periodic hamiltonians about the independence of x, for all xeTΓ, of the
spectrum, as closed set, (see e.g. [Si]).

Lemma 3. For any x, y in T we have σ(H(x, α, A, /)) = σ(H(y, α, A, /)).

Proof of Lemma 3. Since H(x + nα,α,A,/)=Tπ~1H(x,α,A,/)Tπ, where Tn is the
translation by n in /2(Z) σ(H(x + nα, α, A, /)) = σ(H(x, α, A, /)) for any rceZ, the
potential being pointwise right-continuous in x, the Hamiltonian H(x, α, A, /) is
strongly right-continuous. Moreover if A and ^4m are bounded selfadjoint
operators on a Hubert space such that A = s — lim^4m, then σ(A)Cσ(Am) for some
large m (see e.g. [Re.Si, p. 290]). α being irrational, there exists (nk)keZ such that
0 ̂  x + nka — y ->0 when fe -> oo . Thus σ(H(y, α, A, /)) C σ(H(x + nka, α, A, /)) for large k
and σ(H(y, α, A, /)) C σ(H(x, α, A, /)).

We can then consider the case x = 0 for which we have all the recursive relations
on the traces of the transfer matrices shown in the previous section.

The only non-trivial point in the proof of the first identity in the theorem, is the
proof of the following result analogous of Lemma 2 in [Sύ.] :

Proposition 4. Let {£jf be the sequence generated by (10) with

A sufficient and necessary condition that {ξn} be unbounded is that for some Af^O,

(18)

This N is unique, \ξn+2\ > ' * l > + * * >2\/n^Nand there exists C > 1 such that

ί >0. // {ξn} is bounded then:

With this proposition the construction of Sϋto can be repeated exactly in the
same way in order to show that the spectrum coincides with the set
B^ = {E; \ξn\ bdd), hence the first part of the theorem.

We do not give here all the details and we refer to the very clear Sύto paper
[Sύ].

We want to remark at this point that it would be possible to extend also the
proof of the Cantor spectrum for A > 4 using the same simple strategy as in [Su].
However this strategy will definitively not work for A < 4, and we shall prove in the
following section, by using different ideas, the stronger result on the Cantor
spectrum, with A>0.
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Proof of Proposition 4. Suppose (18) true for some N^O, then by (10) and by the
relation:

+ ι* )0*=chg jv+ch%+A

we have

(19)

since

and

ch0j v+i shθ

y J V + l

N+ί sh0Λ Γ + 1

shθ
shα j v+2θ jj v + 2 j v + 1

N + l

shθN + 1

From (19) by induction Vn > N we have |
is

shθΛ Γ + 1

IfJIί,n + l l that

ϊ ±2l> lί ? l / l ί«+ι \ξn\, ίΛws ^->Cqn with C>1.

For n =

Clearly these inequalities cannot hold for other values of n.
If (18) doesn't hold for every ΛΓ^rO this means that:

if |ξ B |>2 then B _ 1 | g2 and (20)

otherwise we would get (18) for JVrgn; in fact |£_ 1 | = 2, let n0 = min{neN;
n^O \ξn\ >2}. This implies |ξπo_ J ̂ 2 and by the opposite of (18) |ξπo+ J ̂ 2 and so
on for n x = min {n e N; n > n0 + 1 \ξn\ > 2}, w2, etc ..... This argument proves that
the opposite of (1 8) implies (20). We must now distinguish between two possibilities

i) (20) holds and |tr(MBMII_1)|^2,
ϋ) (20) holds and |tr(MBMB_1)|>2.
In case i) using Proposition (3)

ξ2

n MMn _ x)]2 - ξnξn_, tr(MBMB_

= λ2 + 4^ξ2

n-4\ξn\, which implies |̂ |̂
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Case ii) is impossible since (11), (20) and |tr(MπMn_1)|>2 imply:

in contradiction with (20).

4. Proof of the Second Part of the Theorem: σ(H(x, α, A, /)) = {Ee R; γ(E) = 0}

The inclusion {E eR; γ(E) = 0} C σ(H(x, α, λ, /)) is trivial, in fact let E be an energy
contained in the resolvent set of H, we know, by the Combes-Thomas argument
(see e.g. [Ma.Sc.]) that the corresponding Green's function, solution of the
equation (H— E)G(x,y) = δXty, decay exponentially:

|G(x, y)\ < const, exp { — m\x — y\}> where m = ln(c dist(£, σ(H)) -hi).

This implies that the solution of the equation (H — E)φ = Q with conditions
ψ(0) = 1, </>(—!) = 0 grows exponentially with strictly positive mass (since, for
instance, the Wronskian is constant W(G(x,Q), φ(x)) = const.). On the other hand
we know that for almost all x

lim
L-+OO L

and

that isy(£)>0.
As far as the opposite inclusion is concerned, by using the first part of the

theorem, we have to show that: for each irrational αeTΓ, VA>0,

where γ(E) = γ(E,λ) is the Lyapunov exponent, that is: [see e.g. [Bou.Lac]]) for
Lebesgue almost all xeT,

lim ln||ML(x,A,£)||=y(£). (21)
L->oo L

We will prove that

{£;y(£)>0}cBc

co. (22)

Let us fix E such that y(£)>0, then by (21) there exists a set ί20cT of Lebesgue
measure |Ω0| = 1 such that Vx e Ω0 Vε > 0 3JV(x, ε); VL> N(x9 ε),

)L. (23)

Lemma 4. V irrational α, Vn 3,4nCT wiί/ι

ε(N)->0 as N-^oo,
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such thatVxel[\An:

3LeN;

ML+Jx,λ,E) = Mqn(Q,λ,E)ML(x,λ,E) with qn^L^4qn.

Lemma 5. For every irrational α and for each energy EeB^,

ϋmlln| |M ( l l ) | |=0.

The proof of (22) goes as follows: suppose that there exists an energy

Let now ε>0 be fixed and N sufficiently large.

/ oo \

For xe(T\ (J ^nlnί2 0,

we know that VL'>JV(x,ε) (23) holds.
On the other hand if n is large enough (say qn > N(x9 ε)) the above lemmas imply

the existence of L satisfying qn^L^4qn and

qn)^ ||ML+ Jx, A, £)|| ̂  ||MJO, A,

Thus

since ε is arbitrarily small and yn-»0 as n-^ oo we get a contradiction with y(E) > 0.

S°

Proof o/ Lemma 4. Let ,Rα : T-^T be the rotation of α : RΛ(x) = x + α and let || x - y ||
be the distance between x and y on the torus that is ||x|| = inf |

peZ

We have:

Lemma 6.

VαeT, VMeN, V<5eR,

if we define

M
A(δ,Λ,M)= U R-^-δ,δ-]^l-a-δ,-a

i = 0

ί/zen:

VxeΊ\A(δ,A,M),Vy; \\x-y\\<δ

v(x + /α) = v(y + /α) V/ e [0, M]

Assuming Lemma 6 we complete the proof of Lemma 4.
For a fixed irrational α and for δ, M and xeTΓV4((5,α,Aί) fixed, by the

ergodicity of Ra) there exists an integer JV((5,α,x) sufficiently large such that
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By using Lemma 6 the sequences of values of the potential starting from x or
from ΛΓ(<5,α,x)α are equal for a length M.

Thus in order to study the sequence of potential starting from x we can
consider the history starting from zero and with a shift N(δ, α, x).

For the trajectory starting from zero we have the recursion relations on the
transfer matrices:

This means that for each n we can assemble the infinite product of transfer matrices
in products of blocks M (B) and M(n_ υ; in fact for any / arbitrarily large M(I) can be
written as a series of products of matrices M(ϊl) and M(n_1)?

Fig.l

In other words for each n we can consider a tiling of the lattice with only two types
of tiles of length qnvτqn-ι By the recursive relations of the matrices M (Λ) we know
that blocks of type M(M_ υ are separated one from the other by a sequence of blocks
M(n} of length an+1 or an + ί + l.

Let us now consider the block, of type M(n) or M(n_1)9 in which the point
N(δ, α, x) falls, say M (s|l), and let b E TL be the first point of the second block of type
M(n} on the right-hand side of Af(j|t). (see Fig. 1).

Let L = b — N(δ, α, x), by the definition of b,qn<L in fact b is the starting point of
the second block of type Af (II) on the right-hand side of M (s|t), that is between
JV((5, α, x) and b there will be surely another block M (II). On the other hand L<2qn

n-ι because each block of type M ( n_υ is isolated and so the longest string
between M(s|s) and b would be

M(*)M(n-l)M(ri)M(n-l)

(remark that here we have used the order from left to right which would not be
correct for matrices).

By the definition of b and by Lemma 6 with

we have

ML+4n(x, A, E)=ML+qn(N(δ, α, x)α, A, E) = M(n}ML(N(δ, α, x)α, A, E)

= Mβn(0, A, £)Mt(x, !,£)).
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This means that if we choose the set An as the set A(δ, α, M) of Lemma 6 with the
previous choice of M and δ we have

20 as

and the lemma is proved.

Proof of Lemma 5. Let

y (=-log||Λf { 0 | | .
Ίϊ

By using the recursive relation and Lemma 2 we have

^ I I Af <,_„!! ||MW|| l^-iίtrΛf^l + IIM,..!,!! |San+1_2(trM(n))|
< gVn - l«n - 1 gVnβn^βn + 1 _j_ gVn - iβn - 1 (^«n + 1 ~ 1

Since by Lemma2 |Sα(ξ)|^α + l if |ξ|^2, and |5α(ξ)|^|ξ|α + 1 if |ξ|>2, and by
Proposition 4 if {\ξn\} is bounded then |ξΛ| <2 + |/8 + A2 ^C.

Thus

Ifα π + 1 >l,

2 C_
Y"-1'7n*3 + qtt

In fact

Λ . ίn-l

since - is a monotone increasing function for xe(0, 1).

If an> 1 the previous argument can be repeated to obtain:

n + 1 π + 1 / n + 1 n + 1
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and

2+^-^-

βM£/« - ι 4- Qt, - ι + Qt, - 7 Λ Qn--> ~ 4

If also απ = l we have to consider the previous scales:

l|M(n+1)|| = l|M(il.1)M(ll_2)M(ll.1)|| = ||M(π_3)M^i)

applying always the same argument we have:

||

that is:

?.+ !

and

χe(0)1);

which is maximum for x = 1 that is rg f. Thus yn-^0 as n-^ oo, and thus the lemma is
proved.

Proof of Lemma 6. By definition two points at a distance δ, which obviously
are always at the same distance under successive rotations, have a different
history only if they or their evolutions under #α fall in [—δ, <5]u[—α — <5,
— α + δ]. But the set ^4(<5, α, ,4) is constructed explicitly in order to avoid this on a
sequence of length M.

5. Remarks and Open Problems

In this final section we want to point out some open problems.
1. We have considered in this paper the special model (1), (2) with the
particular choice of the interval /: [1 — α, 1 [. First of all we want to remark that our
choice is essentially identical to that of all the people working in the golden case, in
fact for the golden number α2 -hα = 1.

Different choices of the interval / would be possible (see for instance [Be.Sc.])
and different choices of the potential as well, but the recursive relations could
become much more difficult.
2. This proof of Cantor spectrum is not constructive as in the paper by
Casdagli and as it would be expected to be by numerical results, and thus the
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problem of the control of the Hausdorff dimension of the spectrum is completely
open. We believe that an alternative, more constructive proof, can be done in the
same generality as the proof given in this paper.
3. As far as the nature of the spectrum is concerned, as mentioned in the
introduction, we cannot conclude that the spectrum is singular continuous for all
x eT since the problem of the extension of the proof of the absence of localization
to all xeT is still open.
4. The study of the spectrum as a set does not give a complete physical
description of the model. One can look, for instance, at the diffusion properties of
the model, that is at the evolution of a wave packet. We want to emphasize here
that the diffusion properties can be very peculiar also in cases in which the nature
of the spectrum is known. We mention, as an example, the hierarchical case [J.-L.,
Ma.Sc.] where the spectrum turns out to be singular and with a Cantor structure,
and the diffusion has a logarithmic low.
5. Always in the one dimensional case, one can look at other almost periodic
problems. The simplest example can be done by the Laplace operator, mentioned
in the introduction, defined on the almost periodic lattice [Lu.Pe.] which, by a
suitable change of variables can be reduced to our model. The eigenvalue problem
for the original model is not completely solved from a rigorous point of view, (see
[Le]).
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