
Communications in
Commun. Math. Phys. 125, 459-467 (1989) Mathematical

Physics
© Springer-Verlag 1989

On a Certain Value of the Kauffman Polynomial*
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Abstract. If FL(a,x) is the Kauffman polynomial of a link L we show that
FL(l,2cos2π/5) is determind up to a sign by the rank of the homology of the
2-fold cover of the complement of L. This value corresponds to a certain Wenzl
subfactor defined by the Birman-Wenzl algebra, which we describe in simple
terms. There also corresponds a "solvable" model in statistical mechanics
similar to the 5-state Potts model. It is the 5-state case of a general model of
Fateev and Zamolodchikov.

Introduction

This paper is intended to demonstrate the fruitfulness of a correspondence which is
now emerging between knot theory, von Neumann algebras, and statistical
mechanics. We begin by describing a simpler example of this correspondence which
is precisely generalized in this paper. It was already largely present in [Jl].

If VL(t) is the polynomial of [J1 ] for a tame oriented link L in IR3 then VL can be
calculated as the (normalized) trace of a braid α whose closure ά is L, in
representations of the braid groups that arose in von Neumann algebras. In order to
construct interesting subfactors of 1̂  factors the author in [J2] used what was
essentially the following device: Find a suitable Hubert space representation π of
the infinite braid group Bao = (σί,σ2,.. '9 σ i C Γ i + ι σ i= :cr ί + 1σ ίσ ί + 1, σίσj = σjσi for
|/—7'|^2> such that π(B^) generates a type Πx factor. The subgroup of B^
generated by σ2, σ3,... should then generate a subfactor whose index can, under
the right circumstances, be calculated. It was some representations that made the
subfactor construction work which were used to construct the link invari-

ant KL(f)
In the case where the subfactor had integer index (for the definition of index,

see [J2], it was possible to use a braid group representation that had already
been (essentially) discovered by Temperley and Lieb in [TL] in their proof of
the equivalence of the Potts and ice-type models in 2-dimensional square lattice
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equilibrium statistical mechanics. Of special interest was the value index = 3, for it
had been noticed in [J3] that the images of the braid groups B3 and B4 in the
corresponding representations were finite. Complete understanding of this pheno-
menon came in the work of D. Goldschmidt and the author [GJ] where it is shown
that all the Bn's have finite images, essentially the finite groups Sp(2n, 3). The clue to
this result was the special nature of the braid group representation coming from the
three-state Potts model. This model also made it clear that the subf actor of index 3
coming from the braid group construction has the following very special form:
choose an outer action of the symmetric group S3 on hyperfinite type 1̂  factor R.
Then the fixed point algebras RS*<^RS2 give a subfactor of index 3 isomorphic to
the braid group one. Ocneanu has since shown that this subfactor and another one
which also arises naturally in the Potts model context are the only subfactors of
index 3 of R.

Thus we have a pretty and useful correspondence between the 3-state Potts
model on the one hand and the subfactors of index 3 on the other (for more detailed
information on the Potts model, see Sect. 4).

On the knot theory side, the value of / corresponding to index 3 is eiκβ, and it
was noticed by Birman that VL(eίπl3) is always +ί times a power of J/3. The
exponent of 1/3 was understood by Lickorish and Millet in [LM] as the rank of the
homology mod 3 of the (most obvious) 2-fold branched cover of S3 branched over
L. Lipson in [Li] interpreted the ± ΐ factor and in [GJ] a natural formula giving the
whole value was found as (normalization) £ ω<y'y>, where S is a Seifert

ve Hι(S,ΊLβ)

surface for L, ω is a cube root of unity, and <, } is the symmetrized Seifert pairing.
The knot theory picture presents an abvious generalization: replace "3" by

any positive odd integer. In this paper we begin by showing that if this integer
is 5, the knot invariant is a specialization of the Kauffman polynomial, namely

JFL(l,2cos2π/5). In particular, |FL(l,2cos2π/5)| = (]/5)Π, n being the rank of the
homology mod 5 of the 2-fold branched cover. Note that this is more surprising
than the VL(eiπ/3) case since there is no a priori reason for the values of
FL(l,2cos2π/5) to even be discrete!

The proof of the knot theory result will use the Birman-Wenzl algebra of [BW].
Wenzl has also used this algebra to construct many interesting subfactors. Using
[GJ] we show that the Wenzl subfactor corresponding to (1,2 cos 2π/5) can also be
defined as RDs c^z/2Z (where D5 is the dihedral group of order 10 for some (hence
any, see [J4]) outer action of D5 on R.

We also show the existence of a 5-state "solvable" model related to the above
knot invariant/subfactor exactly as in the 3-state case. There is also of course a
corresponding "integrable" quantum spin chain whose Hamiltonian we give. The
model is obtained by "deforming" one of the braid group representations of [GJ].
Here we take advantage of the fact that the braid group representation factors
through the Birman-Wenzl algebra and obtain the Boltzmann weights from a
"universal" Baxter type formula with nontrivial spectral parameter in the Birman-
Wenzl algebra (see [Ba] for the analogous Hecke algebra situation).
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1. The Kauffman Polynomial and the Birman-Wenzl Algebra

The Kauffman polynomial FL(a, x) of a tame oriented link L in 1R3 is defined by the
following procedure (see [K]). First define an invariant «/L of regular isotopy of
unoriented link diagrams L by the following axioms:

(KO) c/L does not change under type II or III Reidemeister moves

(Kl) JU =αJ^ , J^ =α ̂  -

(K2) If L+, L_, LQ, Lx are as below

* x

x
then SL++SL_=x(SLo

(K3) ^0 = 1.

In these axioms we have used the convention that a partial like diagram such as

J/ is imagined to be connected to another partial link diagram which remains

unchanged when the change or changes are performed on the partial diagrams indi-
cated. Then FL(a, x) = a + w(L)</L(fl, x) is an invariant of the oriented link diagram L,

where w(L) is the algebraic crossing number I N, -> + 1, ^S -> — 1 J of L.

The Birman-Wenzl algebra Cn(x, a) is a complex algebra with identity 11
depending (algebraically) on two complex parameters a and x. It was designed
partly to help understand the Kauffman polynomial and has the following
(redundant) presentation :

generators G1,G2...Gn_1 , and their inverses, and

relations
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As shown in [BW], Cn(x, a) embeds in Cn+1 (x, a) in the obvious way and there is a
trace tr: (J Cn(x, #)->C uniquely defined by the following four axioms:

n

(Trl) tr(l) = l ,

(Tr2)

(Tr 3) tr (ΛGB) = V tr (A ) for α e Cn(x, a) ,

(Tr4) tτ(AEn)= tr(A) for

It is then true that if α is a braid in Bn with closure ά and π(α) is the image of α
in Cn(x, a) under the obvious representation σ^G. (see [BW]) then F^(x9ά)
= δn-law(^tr(π(a)).

The structure of the Birman-Wenzl algebra for generic parameter values is
determined in [BW]. The Bratteli diagram for the first three algebras is given below

3 ^-1^2 1

The "1,2,1" part corresponds to the Hecke algebra quotient obtained by putting
EI = 0. See [BW] for details and an elegant formula for the 3-dimensional irreducible
representation of C3.

2. The Metaplectic Representation

We consider a special case of the situation of [GJ]. For each odd integer/? ̂  3 we let
ω be a primitive pth root of unity and ES(ω9n) be the algebra over C with
presentation <w l ,H 2 5 . . . ,w I I ' .«J > = 1l, UjUj+ί=ω2uj+1Uj, uiuj = ujuί if \i— y|^2>.
Obviously dimς(GS(ω9n))=pn and ES(ω,n) embeds in ES(ω,n + l), so let
ES(ω, oo) be the inductive limit. The trace tr on ES(ω, oo) defined by Tr(l) = 1,
Tr(w) = 0 if w is a monomial in the w f's not proportional to H , has the property

p-l

Tr (xy) = Tr (x) Ύτ(y) if x e ES(ω, ri), y= Σ cjuί+ι -
j=o

There are two reasonably obvious braid group representations inside ES(ω, oo).
The first is the "Potts" representation defined by sending σi to (f +1)^ — 11, where

j P-l

et=- Σ uίanc^ ^ + ί + ί 1 =/?. The second is the "Gaussian" defined by sending σf
^ 7=0

p-l

to Σ o } j 2 u f . The (normalized) trace Tr of a braid in the Potts representation gives
j=o
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J^(/), L being the closure of the braid. It is shown in [GJ] that the trace Tr of a braid
in the Gaussian representation gives (constant) ]Γ ω<υ'υ>, where S is any

Seifert surface for the closed braid L and < , > is the Seifert form.
The group theorist will have no difficulty recognizing the algebras ES(ω, ή) and

the Gaussian braid group representation as an algebraic version of the extra-special
p-group and the action of the symplectic group on it. Taking some irreducible
representation of ES(ω, 2ri) we obtain the metaplectic representation of Sp(2n,p),
as always, up to normalization. See [GJ] for details.

3. FL(l,2cos2π/5)

We consider the construction of Sect. 2 with/? = 5. Let δ = (2 — ω — ω
1 4 1 4

(=+ι/5) and define Gt=- £ ωj2u{, Et = - £ u{. Then G^G, satisfy the
ό j=0 _ o j=o

Birman-Wenzl relations for a = ί , x = ω + ω 1. Moreover, the trace on ES(ω, oo)
defined in Sect. 2 satisfies Trl->Tr4 of Sect. 2 when restricted to the algebra
generated by the G^'s. We conclude from [GJ] that for a knot K,

where S is any Seifert surface for K, and

In particular \FK(192 cos 2π/5)| = \FK(1,2 cos 4π/5)| = (j/5)r, where r is the rank of
the first homology mod 5 of the 2-fold branched cover of S3, branched over K.
Similar formulae hold for links.

4. Description of a Wenzl Subfactor

We begin by determining the Bratteli diagram for the algebra generated by the Gf's
we defined in Sect. 3, inside ES(ω, oo). Note that if we define uf=u^1 there is a
unique C*-norm on ES(ω, oo), so it can be completed to a C*-algebra. In fact an
iterated crossed product argument or direct computation show that ES(ω, 2ri) is a
5" x 5" matrix algebra so ES(ω, oo) is a 5°° UHF algebra in standard operator
algebra terminology. Since the G^'s are unitary, the quotient of the Birman-Wenzl
algebra at x = 2 cos 2π/5, a = 1 is thus a C*-algebra, the trace being positive definite
since it is on ES(ω, 2ri).

i
The Bratteli diagram for (CcalglGi} is obviously /|\ , the traces of the

i i i
corresponding minimal projections being 1/5, 2/5 and 2/5. Then by the fact that
E2 alg {Gl}E2 e<CE2 and the analysis of [J2] or [Wl] (see also [GHJ]) we know that

i

the Bratteli diagram for C c alg (GJ c alg (Gt, G2) contains / ] \ as a subdiagram.
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It is easy to exhibit a 2 x 2 matrix quotient of alg (G±, G2), so since it is contained in
the 5 x 5 matrices we see that the full Bratteli diagram for (C c alg (GJ c alg (G2, G^

/ \
is { }y\ , where the trace vectors are (1/5, 1/5, 1/5) and (1/5, 1/5) respectively. As

before the diagram for alg (G±, G2, G3) contains \ }Ji as a subdiagram, and the 2-

Λxf
3 5 5

dimensional representation of alg (G1, G2) extends to alg (G1, G2, G3) so that the full
Bratteli diagram up to Gl,G2, G3 is

/ι\
1 1 1

\ικ\
/ιχ/\'

3 5 5 2

The last trace vector is ̂ -(1,2,2,1). The whole Bratteli diagram is now determined
by iterating the basic construction of [J2] since the vector (1/5,1/5) is an eigenvector

of the matrix AA\ A being ( ). Thus we obtain the diagram

/ι\
1 1 1

3 5 5 2

IX .
13 12

There are many ways to determine the above diagram. The finite group theorist
could obtain it by analyzing the metaplectic representation. Note how we see on the
diagram the splitting of the metaplectic representation of Sp(2n,5) into two

5"±1
irreducible direct summands of dimensions — - — .

If we complete the C*-algebra ES(ω, oo) to obtain the hyperfinite Πj factor, it is
clear from the above diagram that alg (Gx , G2 , . . .) has unique trace and so generates

a subf actor ( = alg(G2, G3,...)). Wenzl has identified it as being one of a series of
subf actors corresponding to the quantized group of Sp(4, R), defined in [W2].

Finally we offer an alternative description of the subfactor. We may define a
period two automorphism of ES(ω, oo) by u^u^1 (corresponding to — id in the
symplectic mod 5 picture) and it is clear that all the G/s are in its fixed point algebra.
There is no shortage of ways to prove that the fixed point algebra ofES(ω, n) for this
involution is precisely alg(G/?...,GM). Moreover the "dual action" defined by
u± \-^ωu1 , Uj^ Uj fory^ 1 defines an outer action of ΊLJ5ΊL on ES(ω, oo) whose fixed
point algebra is generated by {u2 , u3 ,...}. Thus the IIX factor generated by G2 , G3 , . . .
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is the fixed point algebra for the dihedral group D5 of order 10 acting on the IIX

factor defined by ES(ω, oo) so we finally get the model R^^p^β^ for the wenzl
subfactor coming from the quotient of the Birman-Wenzl algebra at 0 = 1,
w = 2cos2π/5, where the outer action of D5 is arbitrary by [J4].

5. A "Solvable" Chiral Potts Model and Quantum Spin Chain

According to [AY -I- ], a chiral Potts model is a statistical mechanical model defined
by atoms on a 2-dimensional square lattice with q spin states, σ = 0, !,...,# — 1 per
atom. The system is then specified by Boltzmann weights wh(σ, σ') and wv(σ, σ') for
the horizontal and vertical directions. The property that makes it a "chiral Potts
model" is that wh(σ,σ') and wv(σ, σ') only depend on (σ — σ')mod#, written
wh(σ — σ'), wv(σ — σ'). This suggests a Fourier analysis of the Boltzmann weights
and this is the connection with the ES(ω, n) algebras. Of course the Boltzmann
weights must be positive.

The partition function for the model, with periodic boundary conditions, can be
calculated as the trace of a power of the diagonal transfer matrix. We now discuss
this matrix, for a lattice of width N, in accordance with [AY + , J 5 ] . Define matrices
Xj and Zj on V ® V ® Vby "A"' and "Z" acting in the/h tensor component where V
is a vector space of dimension q, ω is a primitive qth root of unity, and Xa,b

 = $a,b + i
(a,b,ceTLjqΈ), Za>b = δabω

2a. Now set u2i_ί=Xi and u2i = ZiZi~+\. It is easy to
check that the u^s define a faithful representation of ES(ω, 27V). Let us suppose wh

and wv further depend on a parameter λ and define the elements Rt (λ) o(ES(ω, 2) by

R2ίW= Σ *

where wv is the finite Fourier transform of wυ. Then a sufficient condition for
"solvability" or commuting of the diagonal-to-diagonal transfer matrices is:

If there is a function f ( λ ) such that f(λ)R(λ) has a finite invertible limit as A-> oo
we see that this limit will give a braid group representation. In the case of the
Potts model, the limit exists and the braid group representation calculates VL(t\
2 + t + t~1=q. One might try to invert the process and, given a braid group
representation, "Baxterize" it by finding JR/s whose limit is the original represen-
tation. Our next result shows that this is possible whenever the braid group
representation factors through the Birman-Wenzl algebra.

Theorem. Let GlyG2 be the generators of the algebra C3(x,a) of Sect. 1. Suppose
x = k2a + k~2a~2 and define Ri(λ) = (eλ-l)kGi+x(k+k-1)ϊ+(e-λ-l)k-1Gi-

1

(ϊ = l,2). Then

(i) Λl(0) =
(ii) Ri(λ)Rί(-λ) = f(λ^ for some f(λ\

(iii) R, (λ)R2 (λ + μ)R, (μ) = R2 (μ)R, (λ + μ)R2 (λ) .
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This result is simply a computation, albeit a rather long one. It could also be proved
by invoking the results of Jimbo [Ji] and the faithfulness of certain Birman-Wenzl
representations arising in quantum-group theory.

An immediate consequence for us is that one may obtain Boltzmann weights for
a 5-state chiral Potts model satisfying the "solvability" equations simply by using
the representation of the Birman-Wenzl algebra inside ES(ω, ,00) (ω5 = 1) defined
in Sect. 3. But of course as we noted before the Boltzmann weights must be positive
for the model to have any statistical mechanical meaning. For this we are forced to
choose ω = e±4πί/5 and we obtain the following Boltzmann weights (here k = e2πl/5):

(
Λ \ Λ

^(l+2 f l

2)H + J/5<5Λ,0

and

It is clear that all these Boltzmann weights are positive if λ is small and
positive.

Any "solvable" model as above with properties (i), (ii), and (iii) will
define an "integrable" quantum spin chain with a local Hamiltonian. As in

d
[AY + ] it is given up to constants by —

j — j u A
(Ri(λ)) which in this case gives

N / 4

Σ / v iΣ sm I
j = l \α=0

In fact, J. Perk has pointed out to us that our Boltzmann weights are precisely
the 5-state case of the model of Fateev and Zamolodchikov in [FZ], which is defined
for all integers N. It is easy to show that the appropriate limit of this model gives the
Gaussian invariant of [GJ]. Thus the model of Fateev and Zamolodchikov actually
Baxterizes the Gaussian. It sems to be an interesting problem to try to Baxterize
other knot invariants that can be expressed as the trace of a braid group
representation. That the F-Z model Baxterizes the Gaussian was also noticed
independently in [KMM].
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