
Communications in
Commun. Math. Phys. 125, 227-237 (1989) Mathematical

Physics
© Springer-Verlag 1989

The Topological Sigma Model

L. Baulieu1 and I. M. Singer2*
1 Laboratoire de Physique Theorique et Hautes Energies, Universite Pierre et Marie Curie, Tour 16,4
place Jussieu, F-75252 Paris Cedex 05, France
2 Mathematical Department, MIT, Cambridge, MA 02139 USA

Abstract. We obtain the invariants of Witten's topological σ-model by gauge
fixing a topological action and using BRST symmetry. The fields and the BRST
formalism are interpreted geometrically.

1. Introduction

In [1], Witten introduced the idea of topological quantum field theory and showed
how to obtain the Donaldson polynomials from his action on four dimensional
vector potentials. In [2], we showed how to obtain his result by starting with a
purely topological action /top = (8π)~2 J T Γ F Λ F , i.e. the second chern class.

Ma,

Since the action is a constant function on vector potentials, the path integral
J^4exp - J t o p needs interpretation. We did so by choosing appropriate gauge
functions and applying the BRST formalism. The topological invariance followed
from the BRST symmetry. This symmetry and the ghost fields introduced by gauge
fixing has a geometric interpretation on M4χjtf/y, where M 4 is the 4-manifold
and sίfy is the orbit space of vector potentials equivalent under gauge trans-
formations.

In this paper we present the case of Witten's topological σ-model [3] in the
same spirit. Again we start with a topological action, which we gauge fix. The
resultant ghost fields have a geometric interpretation and the cocycles of the BRST
symmetry lead to topological invariants.

As we might expect, the moduli space of (anti) selfdual Yang Mills fields is
replaced by the space of (antiholomorphic) pseudo-holomorphic maps (in the sense
of Gromov [4]) and the topological invariants are multilinear maps on the
cohomology of M.

As in the case of the topological Yang-Mills theory, the topological properties
of "physical observables" computed by functional integration are guaranteed from
the Ward identities of the BRST symmetry corresponding to the enlarged gauge
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symmetry which characterizes a classical topological action. What truly remain
from functional integration are the contributions from zero modes of Dirac
operators. All other modes compensate one against another due to the BRST
invariance. The existence of these zero modes implies a breaking of ghost number
conservation and leads eventually to non-vanishing expectation value for the
cocycles of the BRST symmetry. This phenomenon is at the heart of the
correspondence between the BRST symmetry cocycles and the cohomology of
moduli space.

When we take the Legendre transform and look at the Hamiltonian formalism,
we find that the classical Hamiltonian Hcl corresponding to the topological action
vanishes. There is no classical time evolution and the functional integral is not
well defined. Our gauge fixing procedure giving an action /G F leads to a
non-vanishing gauge fixed Hamiltonian HG F. Since I G F is 5- and d-exact, we expect
HG F = | [ β , ] +. In fact HGF = \{Q, Q] +, where Q is an adjoint to the topological
BRST charge operator Q. The Hamiltonian form is useful for the geometrical
interpretation of our BRST formalism. We see that the gauge function was (and
should be chosen) so that the anti-BRST charge operator Q is the adjoint of the
BRST charge Q. (Of course, as usual in index theory, the nonzero eigenstates can
be paired into BRST symmetry doublets, and only the zero modes matter.) The
same discussion applies to Yang-Mills topological theory, although we do not
display it here.

Since the σ-model can be interpreted as moving strings, it is instructive to firstly
apply our procedure to the case of particles, i.e. quantum mechanics. Doing so,
we recover supersymmetric quantum mechanics [5]. The σ-model can be seen as
a straightforward generalization, at least when the Riemann surface is a torus.

The paper is organized as follows. In Sect. 2, we set up our formalism by
considering the simplest case of supersymmetric quantum mechanics. This permits
us in Sect. 3 to construct a gauge fixed action from the topological Lagrangian of
a σ-model suitable for functional integration. We determine cocycles in a way
similar to our earlier treatment of the Yang-Mills case. In Sect. 4 we interpret our
results geometrically. (See also Sect. 2.)

Other authors have been studying topological field theories from several
viewpoints. The ones we know about are listed in [6].

2. The Supersymmetric Quantum Action as a Topological Action

Let M be a given manifold with a metric gμv[_X] in local coordinates Xμ. Consider
the space £?(M) of closed parametrized curves Γ in M. It would be natural in
general to consider an action which is constant on components of if (M), i.e.
independent of deformations of ΓeJ£(M). More specifically, the natural topological
actions / come from closed 1-forms ω on M with /[X] = ] dtωμ{X{t))dXμ/dt. Since
/ is topological, any infinitesimal variation Γ

δXμ = εμ (1)

leaves I invariant. Although H^M.K) is interesting, for our purpose we only
consider the case / = 0.
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The BRST symmetry differential operator s associated to the gauge symmetry
(1) is defined as follows:

sXμ = φμ

9 sφμ = 0, sφμ = bμ, sbμ = O. (2)

ψμ(t) is the ghost field associated with εμ in (1) and the 5-variation of Xμ

reproduces (1) when one substitutes φ to ε. The ghost numbers are respectively
0,1,-1,0 for Xμ,φμ,φμ,bμ. As usual, grading properties are determined by the
ghost number plus the form degree modulo two.

In order to gauge fix the symmetry (1) and eventually obtain an action quadratic
in the velocities while maintaining covariance in the target space M we choose as
a gauge function:

^ μ = Xμ + Γμ

σpφ°φί>. (3)

The symbol ' means d/dt, so that Xμ = d/dtXμ. As usual Γμσp = \(dσgμp +
dpQμσ - dμθσp)is t n e Christoffel symbol and Γ\p = gμvΓμσp. In our gauge function
(3) the presence of terms quadratic in the ghosts is necessary for general covariance,
as will be seen geometrically at the end of this section.

To gauge fix the vanishing actions corresponding to the symmetry (1) by means
of the gauge function (3) we postulate BRST invariance. We thus consider as a
gauge fixed action:

/ G F = μts(φμ(gμvX* + \Γμΰpφ°φ? - \gμ^)\ (4-a)

By using the definition (3) of the BRST operation 5 one can easily expand (4).
In doing so, one must vary the metric gμv as well as the Christoffels Γμσp since
these objects depend on Xμ and thus transform under the action of s. One gets
the following action:

IGF = ί dt£gμvb*bμ + bμ(gμvX* + Γμσpφ°φ°)
r

- r(gjx + dpgμvX*φ?) + ±φμφ»φψdτΓμσp). (4-b)

The b dependence of J G F is purely algebraic. One can thus eliminate the field b
from the action by using its equation of motion, bμ= —Xμ — Γμ

σpφ
σφp. One finally

gets:

i r μ

 v + ΓμσpX°φ<>) + ΪRμpστφ
μφpφψ). (5)

In (4) Rμpστ is the Riemann curvature tensor. / G F can be recognized as the
supersymmetric action for quantum mechanics [5]. / G F is invariant under general
coordinate transformations in M, owing to our choice of gauge function J^μ in (3).

Momenta are defined as:

pμ = δIGF/δXμ = gJVX* - Γσμpφ°φ\

= φμ. (6)

The canonical commutation relations are [pμ,X v] = lφμ,φ
v]+ = δμ

v. The Hamil-
tonian ghosts can of course be represented as Pauli matrices. The Hamiltonian
HGF corresponding to 7GF is obtained by the Legendre transform and can be
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written as follows:

As a matter of fact, one has:

Ha* = KQ,Q] + , (7-b)

where

Q = PμΨ
μ, (8-a)

and

The BRST symmetry of JGF implies [β, # G F ] = 0, also obtainable from the
nilpotency property Q2 = \\Q, β] + = 0.

One can furthermore verify the nilpotency of the anti-BRST operator β: β 2 =
i[β>β] + = 0. This result also follows from the fact that the operator β equates
— β*, i.e. minus the adjoint of β, as can be proven directly. In fact, the BRST charge
β is the differential operator d on forms. The dictionary is as follows: φμ is
multiplication by dxμ and φvg

μv is interior product by dxμ. The ψ's being annihilation
operators, a differential form μ in local coordinates is λμi...μrdxμι --dxμr =
λμι...μrιl/

μί- ψμr\θy. The inner product of two forms λ and τ is <A,τ> =

<oιv.^>...^ι^
the exterior differential as d=pμφ

μ = φμd/dxμ. Then d* = ψμ*(d/dxμ)* = gμψ\dldxμ)*.
To check β* = - Q , we need only verify that (d/dxμ)* = -(d/δxμ + Γ% p ^> p ),
which of course is integration by parts. Note that the Hamiltonian HGF

quantizes ^(dd* + d*d). Our choice of gauge function in (3) is the only choice
for which Q= — β*. Other choices of gauge functions would also lead to a
β-invariant Hamiltonian of the form H = i [β,β ' ] + , but the operator Q would
not be nilpotent and our geometrical interpretation of the gauge fixing would be lost.

Notice that the action of β reproduces the action of the operation s, up to the
change of the auxiliary field b into the momentum p. Moreover the expression of
the Hamiltonian in the form HG F = ̂ [β,β]+ means that HGF is β-exact.

Finally, it is of interest to write the equations of motion stemming from our
gauge fixed action:

In the linearized ghost approximation, geodesic motion is a stationary point of
our action.

To conclude this section, let us observe that we can introduce a real potential
V by the standard substitution of β by (exp - V)Q (exp V) and β by

F ) β ( e x p - n
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3. The Topological σ-Model

Let M be a compact n-dimensional manifold with a closed symplectic two form ω
equal to ωμvdXμ A dXv in local coordinates Xμ, 1 rg μ 5̂  n. One has

dω = d{ωμvdXμ A dXv) = 0, (10)

and ωμv is non-singular. The symbol Λ stands for the wedge product.
Consider the space σ of all smooth maps of N into M, where N is a compact

two dimensional oriented manifold. The "winding number" of the map X, a constant
function on components of σ, is defined as follows:

J t[X] = f X*ω = J ωμvdXμ A dX\ (11)
N N

We wish to define J ^ Z e x p — lt[X~\. Although lt[X~\ is independent of metrics,
σ

the "measure" *3)X requires a choice of metric on N and on M. We thus choose
a metric on N making N into a complex manifold with local complex coordinates
z and z and partial derivatives d and d. From a choice of the metric g or <,> and
the given non-singular two form ω, we get the non-singular skewsymmetric linear
transformation W on T(M, N) characterized by ω(u, υ) = (Wu, v}. Let W= J\ W\ =
J(—W2)112 be the polar decomposition, so that J is skew and orthogonal and
J2 — — H. Hence M has an almost complex structure given by the field J. It will
be convenient in what follows to change the metric g to g1 (i.e. <,) to (<,>i)>
where {u,v}1 = <|W^|tι,t;>. Then ω(u,v) = <Wu,v} = (\W\Ju9v) = iJu.υ)^ That
is, relative to gλ the skewsymmetric W becomes J, with J2 = — 1 , and we have a
Hermitian inner product gί-\-iω. In the terminology of Gromov [4], J is tamed
by ω; ω calibrates J. Henceforth we drop the subscript on glm

Generalizing our previous analysis of the Yang-Mills case and the Quantum
Mechanics case we thus consider the gauge fixing problem for the following σ-model
topological action:

It = f ωμvdXμ A dXv = [dzdzωμvdXμdX\ (11)

To determine an action which is suitable for functional integration from (10) we
shall proceed in close analogy with what we have done in Sect. 2. The gauge
symmetry which characterizes the action (11) is:

δXμ = εμ, (12)

where εμ is infinitesimal and satisfies the required boundary conditions. The
corresponding BRST symmetry is thus defined as:

sXμ = ψμ, s\l/μ = 0, sil/μ = bμ, sbμ = O. (13)

We want to probe the moduli space of pseudoholomorphic maps in the sense of
Gromov [4]. That is X is pseudoholomorphic if dX°J = J°dX; In other words
one has - dxX = JdyX with z = x + iy. Equivalently - id X = JdX or (1 - UJdX = 0,
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where dX means dX restricted to T0Λ(N). Let then:1

X = (J - n)dX + (J + it)dX = dyX + JdxX (14)

so that X vanishing means that X is holomorphic. (̂ (H — U) and (̂H + U) are
projectors).

It is easy to check that \X2 Ξ J ( i j ) 1 = -2UμvdXμdX\2glμvdXμdX\
The first term is the integrand of the topological action It and the second
one the bosonic string Lagrangian in the background gλ. In formal analogy
with Yang-Mills, we define F+ =%J-n)dX+%J + iVβX. If we let F. =\{J + U)dX +
%J-U)dX. Then %{F+2 +F J) = 2glμvdXμdXv and i ( F +

2 - F _ 2 ) = -2 iω μ v dXμdX\
Moreover, the energy is minimized when X = 0, i.e. when X is holomorphic. We
have chosen our orientation of N so that It ^ 0.

As in supersymmetric quantum mechanics of Sect. 2, we now add a fermionic
term to X and obtain the gauge function:

Here Γμ

σp is an orthogonal connection compatible with J so that DJ = 0. It is the
unitary connection obtained from reducing the frame bundle with Riemannian
connection to the unitary group. So JΓ = ΓJ and the curvature 2-form has values
in skew adjoint complex matrices. In the Kahler case it is the Riemannian
connection, i.e. the Christoffel symbol computed with the metric gx.

The BRST invariant gauge fixed action corresponding to the gauge function
(15) is obtained as in (4), by adding to the classical action an s-gauge fixing action:

IGF = jdzdzωμvdXμSXv - l-$dzdzs(ήgμvP + \T'μσpψ
σψo -\gμp\ (16)

Using the definition (13) of the BRST operation s, and eliminating_as in Sect. 2
the field b by its algebraic equation of motion bμ= — Xμ — Γμ-σpφ

σιl/p, we can
rewrite the action in (16) as:

Xμ has been defined in (14) and φμ means:

(18)

Analogous to D = d + Γ9 we have S = s + Γ with Γ = Γφ. Since DJ = 0,
S(J) = 0 and J and Γ commute, JΓ = ΓJ. Hence φ = (J- tt)dψ 4- (J + ίί)dφ +
JΓφ(d + d)X. Equation (17) shows that the gauge fixed version of the topological
σ-model action (10) is a string action plus a ghost dependent action. This action can
be used for computing the partition function. The procedure followed here is much
similar to that used in [2] where we showed that the topological Yang-Mills action

1 We have chosen to develop the real version, a chiral version X = (J — iί)dX also works. We have also
chosen to probe the space of holomorphic solutions and its normal boundle. To probe the space of
antiholomorphic maps, change J to - J in (14) with a corresponding change of gauge function
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can be gauge fixed into an ordinary Yang-Mills action plus action plus some ghost
dependent terms. In particular when eliminating the field b, we found that the
classical action It cancels against part of the gauge fixing action, in such a way
that one eventually recovers the ordinary classical string action. As in the
Yang-Mills case, the BRST invariance of the action (17) guarantees that one can
compute from this gauged fixed action a set of expectation values which only
depends on the topology of the target space M. These Green functions will be
shortly determined by closed forms on M.

The action (17) corresponds to a Feynman type gauge with the gauge function
(14). In a Landau type gauge the term quadratic in bμ would have been_omitted
and the b field equation of motion would have enforced <Fμ = Xμ + Γμ

σp φσφp = 0
as a gauge condition. The Feynman type gauge that we have obtained in (17)
smears this gauge condition.

Cocycles such as those discussed in the Yang-Mills case can now be determined.
We first observe that the topological BRST symmetry equations (13) can be
rewritten as:

Equations (19) are similar in nature with those introduced in [2] for the
Yang-Mills theory. We will see in the next section that these equations have a
geometrical interpretation.

Since (d + s)2 = 0, the condition (10) satisfied by the 2-form ωμv can be rewritten
as:

(d + s)(ωμv(d + s)Xμ(d + 5)XV) = 0. (20)

We can replace [d + s)Xμ by dXμ + φμ in (20). This yields:

(d + s){ωμv(dXμ + Ψμ)(dXμ + φμ)} = 0. (21)

This equation is the analog for the σ-model of Eq. (11) in [2]. By expansion in
ghost number, we have:

s(ωμvdXμ A dXv) = - 2d(ωμvdXμφvl

s(ωμvdXμφη=-d(ωμvφ
μφv\

s(ωμvφ
μφη = 0. (22)

Consider now the cocycles Δ2° = ωμvdXμ A dX\ Aγ

x = ωμvdXμφv and Δ0

2 =
ωμvφ

μφv defined in (22) and respectively integrated over JV, on a 1-cycle and at a
point in JV. (In our notation the upper index stands for ghost number and the
lower one for form degree.) The expectation values computed by functionally
integrating these objects with the weight [dX] dφdφexp —IGF will depend only
on the topology of the target space and not on the choice of our adapted metric,
since the metric has been introduced through a s-exact term. To prove this result,
repeat the same argument as in [2] for the Yang-Mills case using the BRST Ward
identities.

Generalizations of the cocycles defined in (12, 13) exist if the target space M
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has Hq(M) # 0 , i.e. forms ωμi...μq[X~\ which satisfy:

d(ωμι...μqdXμι Λ ... Λ dXμή = 0 (23)

but are not globally exact. One gets then the cocyles:

A\~2 = ωμι...μqdXμi A dXμιψμ2- ψμ«,

Δq

0 = ωμι...μqψ
μιφμ2 -\l/μq. (24)

The Green functions we compute are the expectation values of products of the
\q~\ where the σt are ϊ-cycles on N9 i = 0,1,2 with respect to the measure

We turn to the Hamiltonian formalism. The experience gained in Sect. 2 can
now be used to convert our action (17) into a Hamiltonian. We use y as a time
variable for performing the Legendre transform. Momenta are defined as:

Pμ=δiGF/δdgx
μ=gμvd^ - rσμprr,

Pr-=δIGF/δdyψ
μ = gμvψ\ (25)

The Hamiltonian HGF corresponding to J G F is thus:

One has also, using the commutation relations [p μ ,X v ] = [ψv,ψμ] + ~ δv

μ:

H G F = i [ β , β ] + (27)

with

Q = §dxφμ(pμ + JμvdxX
v) (28)

and

Q = ldxψvg
μ*(pμ - JμydxX* + rσ

μβψσψp). (29)

The BRST operators β and β can be reduced to the form given in (8) by a
substitution β -> ev Qe " v , β -> e " v Qe+\ The BRST invariance of the action has been
transposed into the^property that HGF commutes with the nilpotent BRST charge
operators β and β. These results are formally similar to those encountered in
Sect. 2 for the case of supersymmetric quantum mechanics. Of course, the moduli
space can be much richer in the case of the σ-model.

4. Geometrical Interpretation

We now interpret Sect. 3 geometrically.

4a. We first describe the topological invariants that will be obtained from the
functional integral based on the action (17). Let us recall that σ is the space of all
smooth maps X of N into M, N and M being defined in Sect. 3. We have the
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evaluation map e:N x σ -• Λf, where e(n9 X) = X(ή). One pulls back cohomology on
M to cohomology on N. Integration over cycles of N gives cohomology on σ. In
terms of differential forms, take a closed g-form μ (Eq. 23) on M. e*μ is a sum of
three forms μS~2,μ?~\μ$ graded by JV x σ (Eq. 24). Let Ct be i-cycle on N. Then
J μ ? - ί gives a closed q — i form on σ. The interesting case is i = 1.

Let J c α denote the moduli space of pseudo-holomorphic maps.
n N

Suppose £ qk-ik = 6\mJί. We then get a map of (g)Hjk(M,C)->C given by
fc=l 1

i Λ " Λ ί ^iwβw )• Integration over Jt may not be well defined, but

formally this is what the functional integral gives. We do not discuss the infrared
problems in the final integration, and focus only on formal properties. One could
compute the formal dimension of Jί by Riemann Roch [4]. Even when this
dimension is positive, Jί might be empty. Again see [4] for existence theorems.

4b. We have already motivated our choice of gauge function to probe the space
Jί. Let T(σ,X) denote the tangent space of σ at X. An element φeT(σ,X) is a
vector field along σ(JV), i.e. a cross section of the vector bundle X(T(M)). Since
dX:T{N,n)-+ T{M,X{n)\ we can consider dX as a 1-form on Nxσ with values in
T(σ) but with a component only on the N direction.

Normally 3Fμ is a gauge function; here it is a 1-form on N x σ with values in
T(σ). It has two terms, the first Xμ is discussed above. The second term Γμ

σpφ
σφp

expresses in terms of fermionic variables the connection one form on e* T(M)
inherited from T(M). Here ψ is a one form on N x σ with values in T(σ), but with
a component only in the N direction. Note that !F~ ι(0) contains (X, ψ, φ) with X
pseudo-holomorphic and φ = 0, φ = 0.

4c. Once one has a gauge function ^, one proceeds as in the Yang Mills case.
One introduces a Lagrange multiplier b for ^ in order to concentrate the integral
on the zeros of $F. The new action is the old action plus a gauge fixing action
-<fo,&> + <ί?,J Γ >-Logdetd v J Γ = 5(^(JΓ + fc)). In the Yang-Mills case d^
means the differential dyϊF of ^ in the gauge orbit direction and sA = DAp,
sp = — | [ p , p], sp = b, sb = 0. The detdv ϊF is replaced by the fermionic integral of

%
The cohomology interpretation of the above is as follows:2 5 is differentiation

along the gauge orbit βA. Let Ax(a) be forms along the orbits with coboundary
operator s. Let Λ(g) be the Grassmann algebra over g, the Lie algebra of
infinitesimal gauge transformations and S(g) be polynomials over g. We have the
Koszul complex Λ(g) ® S(g) with coboundary operator induced by δ(p (x) 1) = 1 (x) b
and (5(1 ® ft) = 0, for peA^g) = g and beS^g) = g with b = p.

The total complex is Ay(a) ® A{g) ® S(g) with coboundary operator dv®I + I®δ.
Hence the gauge fixing action above is exact in this cohomology and the total
action is closed. The grading is given by degree or ghost number.

2 We have chosen not to develop the equivarient view point
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In our present case we have formally Eq. (13) which we interpret cohomolo-
gically as follows:

(i) s means exterior differentiation on σ and sXμ means the derivative in the
φ direction, φeT(σ,X). Thus 0 = s2X = s{sX) = s{φ).

(ii) φ is a 1-form on JV x σ in the N direction with values in T(σ). Let V denote
the vector space of such forms, sφ = b and sb = 0 is to be interpreted as the
coboundary operator s = δ on the Koszul complex Λ(V)®S(V).

The total complex is Λ(N x σ)(x) Λ(V)®S(V) with d + s the exterior differential
on N x σ and δ on Λ{V) ® S(F). Since H*{Λ(V) ® S(F), σ) is trivial, the cohomology
of this complex is #*(iV)(χ)#*(σ). As mentioned above, integrating over cycles of
JV maps # * (JV) <g> H* (σ) -> if* (σ).

As in Yang Mills, once the gauge function is chosen we set the gauge fixing
action as s(φ_(^ + b)) (Eq. 16). The quadratic part of this action (Eq. 17) is
(dX,dX} + φDφ. Here D means (1 - J)d + (/ + U)d, an elliptic operator. D maps
section of T(σ,X)(χ)C = E into E(S)Λ1(Σ). E has connection inherited from the

unitary connection on T(M) and decomposes into E 1 ' 0 © ^ ' 1 ^>Eι'°_®Λ0Λ(Σ)φ
E0Λ®Λ1'°(Σ). Note that the 0-modes of d\ the kernel of d\ is exactly
T(Jί,X)czT{σ,X).

4d. We finally explain what the path integral does. Consider the weak coupling
limit. That is, replace σ by the normal bundle to the moduli space M of holomorphic
maps and replace the action by the quadratic part of the action normal to the
moduli space at each XeJί. When XeJί is fixed, (17) gives the measure

The fermionic integral §@φ@φQxpφdφφ1 A ••• /\φk will be 0 unless
φ1,..., φkeKeτ D and ψt A - Λ φk Φ 0 in v4dim(KerD)(Ker D), i.e., unless φx,..., φk is
a basis of KerD. In that case the integral is dQt'D(ψl9...,ψk/\όl. elem. KerD).
(We are assuming the kernel of D* is zero for simplicity.)

Consider now a closed form μ on M (Eq. (23) in local coordinates). Pull back
μ to e*(μ) on JV x σ via the evaluation map c. The form e*(μ) can be split into
μ2o + μ11 + Λ of type (2,0) + (1,1) + (0,2) on JV x σ. In local coordinates, e*(dxμ) =
{dN + dσ)(Xμ) = dXμ + φμ. Thus Eq. (24) represents the pull back of a closed form
on M to Nxσ. The fermionic integral gives projection on the zero modes, i.e.
restriction to Ji. Thus the path integral in the weak coupling limit gives the
integrand in (24). This is Witten's formula (3.49) in [1]. The determinant
contribution is cancelled (up to a phase) by det(D*Z))1/2 coming from the kinetic
term in the action (dX,dX}.
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