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Abstract. The theory of superselection sectors is generalized to situations in
which normal statistics has to be replaced by braid group statistics. The essential
role of the positive Markov trace of algebraic quantum field theory for this
analysis is explained, and the relation to exchange algebras is established.

1. Introduction

Superselection sectors in 4 dimensional quantum field theories are classified by the
equivalence classes of irreducible representations of some compact group, the group
of internal symmetries. All models seem to have this property, and recently,
Doplicher and Roberts succeeded in deriving the existence of such a group from first
principles [1]. Their treatment is based on the theory of superselection sectors [2]
which has been developed in the framework of algebraic quantum field theory [3].
The basic result of the theory of superselection sectors is the intrinsic definition of
statistics. There is, associated with each sector, an - up to equivalence - unique
representation of the permutation group which describes the statistics of multi-
particle states. In principle, the theory can be applied also to models in lower
dimensional space time, however, there statistics has to be described, in general, by a
representation of the braid group.1

In view of the recent progress in the analysis of representations of the braid
group [4] it seems to be worthwhile to analyze those representations which occur in
quantum field theory more closely. On the other hand, nowadays a lot of models are
known, especially conformally covariant field theories in two dimensions, which
exhibit a rich structure of superselection sectors which does not seem to fit the
representation theory of some group. Actually, representations of the braid group

* Adress from October l s ί, 1988: Inst. for Theor. Physics, Rijksuniversiteit, Princetonplein 5, P.B.
80.006, NL-3508 TA Utrecht, The Netherlands
1 This fact seems to be well known to the experts. We thank D. Buchholz, S. Doplicher, J.
Frόhlich, J. Roberts, and R. Tscheuschner for helpful discussions on this point
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have been found in these models [5] which look very similar to the intrinsically
defined representations arising from the algebraic framework.

It is the aim of this paper to utilize the results of the abstract analysis of first
principles for the investigation of concrete models. After a brief description of the
algebraic framework we introduce the statistics operators and show that they
generate a representation of the braid group. We then consider the trace functional
on the algebra of statistics operators which had been used in the normal statistics
case for the analysis of possible representations of the permutation group. This
functional is shown to define a Markov trace on the braid algebra, i.e. its value is
determined up to some rescaling by the link which is obtained by closing the braid.
The functional can be used to measure relative dimensions and is relevant for the
metric in the space of scattering states.

We then describe how the R matrices in exchange algebras [5] are connected
with the statistics operators. We show that the exchange algebra is equivalent to a
reduced version of the field bundle of DHR II [2]. This implies unitarity of the
/^-matrices and provides us with a Markov trace on the ̂ -matrices. Finally we
outline how fusion rules define a sequence of subalgebras of the algebras of
observables and compare the structure with V. Jones' treatment of towers of
algebras. Applications to low dimensional (Z> = 2,3) quantum field theories, in
particular to the (d=l) exchange algebras of light-cone fields, which are the
building blocks of conformal QFT2, will be dealt with in a second part. For an
outlook we refer to the concluding remarks of this paper.

Our work might be compared with the recent work of Buchholz et al. [6],
These authors analyze the superselection structure of the U(l) current algebra on a
1-dimensional light cone. As a matter of fact all sectors of this model are abelian (see
footnote 4) so only one-dimensional representations of the braid group occur. In
contrast to this the main emphasis of our work lies on the analysis of nonabelian
sectors.

Another recent approach to the understanding of superselection sectors in 2 and
3 dimensional theories is due to Frohlich [7,25]. Working in a Wightman frame-
work, Frόhlich formulates commutation relations for charged fields which involve
a matrix representation of the braid group and which are consistent with locality of
observables (leaving aside the positivity issue). This looks similar but is not identical
to the exchange algebras introduced in [5].

2. Statistics

Let us briefly describe the algebraic framework of quantum field theory.2 There is a
family of v. Neumann algebras stf{0) in a Hubert space 3tf indexed by the closed
double cones in Minkowski space such that the following properties hold:

(i) stf(01)asrf(02) if 0^02 (isotony) .

= \Jstf(O) is called the algebra of observables.

(ii) <*/(£>!)c=j/(02)' i(O1c:O2

> (locality) .

1 For a more detailed description see [2]
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Here stf(O2)' is the commutant of stf(O2), i.e. the set of all bounded operators in Jf
which commute with stf(O2)\ O2 denotes the spacelike complement of O2.

(ii) is strengthened by the requirement that srf{O) is the maximal algebra
satisfying (ii).

(iii) s/(OfY = s/(O) (Haag - duality) , (2.2)

where srf(O') is the algebra generated by the algebras $4(0^) with double cones
0^0'.

(iv) There is a representation x^κxx of the translation group by automorphisms
of s/ such that Λ

(2.3)

(v) Moreover, there is a strongly continuous unitary representation x-+ U(x) of
the translation group in jtf* implementing αx, i.e.

<*X(A)= U(x)A U( - x) (2.4)

such that the generators of U(i.e. the energy-momentum operators) have spectrum
in the closed forward light cone.

(vi) There is a vector Ω e ffl (representing the vacuum) such that

U(x)Ω = Ω . (2.5)
Ω is unique up to a phase.

The Haag duality property (iii) requires some explanation. It should not be
confused with other concepts of duality abundant in the literature. It may happen
that the originally chosen net of observable algebras (e.g. the net generated by the
energy-momentum tensor in conformal QFT2) does not have this property of
duality. But Bisognano and Wichmann [8] have shown that for a net generated by
Wightman fields one always can pass to the bidual net @t{0): = stf(O')' which then
has the desired property. The issue of maximalization of observable algebras in
order to achieve Haag duality is in a subtle way related to the possible occurence of
spontaneous symmetry breakdown [9] and (in two-dimensional situations) to
Kramers-Wannier-Kadanoff duality. For the general analysis and classification of
superselection sectors, it is only important that a Haag dual observable algebra
exists for discussing concrete models however [done in Part II] one is obliged to say
something more specific.

The theory of locally generated superselection sectors to which we restrict
ourselves in this paper analyzes representations π of A which have positive energy in
the sense of (v) and are unitarily equivalent to the (identical) vacuum representation
on the spacelike complement O' of any double cone O, i.e. to each double cone O
there is a unitary V: JFπ-+Jt with

Vπ(A) = AV , Aes/(O') . (2.6)

This unitary equivalence can be used to define a representation ρ in the vacuum
Hubert space Jf which is equivalent to π,

Q(A)=Vn(A)V~1 , AEΛ? . (2.7)

Due to (2.6), ρ acts trivially on srf(O') and because of duality (2.2) it is actually an
endomorphism of si, ρ is called a "localized morphism." The fact that en-
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domorphisms can be composed leads to a composition rule of sectors. A composed
sector may be reducible, but all subrepresentations still have property (2.6)3, and are
therefore also equivalent to some localized morphism. Morphisms localized in
spacelike separated regions commute (DHRI [2]).

Charged fields which interpolate between different superselection sectors can be
defined in the so-called field bundle J* introduced in D H R I I [2]. State vectors are
pairs {ρ, φ}, where ρ is a localized morphism and φeJ^. Fields are pairs { ρ, A } with
A E stf and act on vectors according to

{ρ,A}{ρ',φ} = {ρfρ,ρ'(A)φ} . (2.8)

Observables are fields with ρ = ι (the identity morphism). There is a large
redundancy in this formalism which can be described by the action of intertwiners:
if Testf satisfies

Q'(A)T=TQ(A) , Aesrf , (2.9)

we call T an intertwiner from ρ to ρ' and use the notation

T=(ρ'\T\Q) (2-10)

Intertwiners act on vectors by

(ρ'\Ί]ρ){ρ,φ} = {ρ\Tφ} (2.11)

and on fields by

{Q,A} = {Q',TA} . (2.12)

They commute with observables. Fields {ρ,A} are said to be localized in O if they
commute with all observables {i,2?},Bes#(O'). By (2.8) this means

AB = ρ(B)A , Bestf(Of) . (2.13)

Let U be a unitary intertwiner from ρ to ρ, where ρ is localized in O. Then ρ(B)
= U~1BU for Bed{0'\ and thus from (2.13)

UAB = BUA , (2.14)

which implies U A e s/(O) by duality. Thus fields localized in O are of the form

F={ρ,A} = {ρ,U~ίC} (2.15)

with Ces/(O) and a unitary intertwiner U from ρ to some morphism ρ which is
localized in O.

We now analyze the commutation rules for fields which are localized in
spacelike separated regions. Let OγaO'2, and let {ρi,Ai}=Fi be localized in
0 ί ? / = l , 2 . Choose as in (2.15) unitary intertwiners Ui from ρt to "spectator"
morphisms ρt localized in Ot and C^s^iQd^ Ui~~1Ci = Ai. Then

F2F19 (2.16)

3 This follows from Borchers' result that each projection EGS#(O), Eή=0 can be written in the
form E= WW* with an isometry We s0(O + Og\ Og being an arbitrary neighbourhood of the
origin [10]
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where s = ρ2(U^1)U2~
ίU1ρί(U2) is an intertwiner from ρίρ2 to £2£i £ does not

depend on the choice of the unitary intertwiners Ui9 i=ί,2. This is obvious from
(2.16) and may also be verified by direct computation. Moreover, ε does not change
if one replaces Ox by Ox with O1 c O1 a O2 since then one can use the same
intertwiners in the formula for ε. The same holds if one replaces O2 by O2 with
0 2 c 0 2 c O[. By iteration one finds that ε is independent of Oί, O2 if the spacetime
dimension is at least 3 (this is the situation analyzed in [2]) and that it depends only
on the spatial order in a theory in two space time dimensions or in a theory on a one
dimensional light cone. In the following we will pay attention to this spatial order.
We use the notation

ε = ε ( ρ i , ρ 2 ) (2.17)

if O1 is to the right of O2{Oγ >O2). If O1 is to the left of O2 we have

β = β(ρ 2 ,ρ 1 )~ 1 . (2.18)

Using the elementary transposition ε f e ^ ) one can permute the factors in any
product of mutually spacelike localized fields {ρi,A}=Fi,i=ί,...9n.

Let n = 3 and let the localization regions be in the order 01>02>03. Then one
finds two representations of the operator ε in

which implies

e = fo(β(βiJβ2))e(βiϊβ3)βi(ε(β2>β3)) = ete2Jβ3)β2(e(βiJβ3))e(βi>β2) ( 2 2 0 )

Equation (2.20) corresponds to an equivalence relation for coloured braids (Fig. 1):

9, 9*

93 92 9) 93 92 9λ Fig. 1. Artin relation for coloured braids

We define a groupoid representation for coloured braids as follows:
For localized morphisms ρx,..., ρn we represent the generators σf, / = 1,..., n — 1,

of the braid group on n threads Bn [11] by

£<ri(Qi>-->Qn) = Qi--Qi-iWQi,Qi+i)) (2.21)

which are unitary intertwiners from ρι...ρn to ρi ..ρI - i ρ ι +iρ ι ρI +2 ' «̂ These
intertwining properties yield also the second equivalence relation for z ^ 3 :

(2.22)

Hence the multiplication law
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for bieBn, where π 2 = π(ft2) is the image of b2 under the natural homomorphism
π:Bn^Sn, respects all equivalence relations of the groupoid of coloured braids
and induces therefore a unitary representation by intertwiners εb(ρί,...,ρn) from

For ρ t = . . . =ρ Π = ρ this yields a homomorphism of Bn into ρ"(

^ViW"1^) , (2.24)

with ερ = ε(ρ, ρ). The above equivalence relations read

ρ(ερ)ερρ(ερ) = ερρ(ερ)ερ , (2.25)

ερρ
k(ερ) = ρk(ερ)εe , (*^2) . (2.26)

This representation characterizes the statistics associated with ρ. Up to unitary
equivalence it only depends on the equivalence class of ρ. As in the case of the
permutation group [2], positivity leads to restrictions. These will be discussed in
Sect. 3, but the full range of admissible representations is not yet known.

3. Left Inverses of Localized Morphism and the Markov Trace
of Algebraic QFT

In this chapter we discuss the theory of left-inverses of localized morphisms.
Remarkably, left-inverses give rise to special Markov traces (or link-invariants) on
the braid group, and the positivity of the latter restricts the values of the relevant
physical parameters. We illustrate this fact by the explicit analysis of Markov traces
on the Hecke algebra. Then we proceed by the presentation of general properties of
left-inverses such as existence, uniqueness, and behaviour under composition and
reduction of morphisms. We end the section with the definition of the quantum field
theoretical Markov trace in the general case.

The localized morphisms ρ are isomorphisms of si into some subalgebra ρ(sl)
oistf which in general does not coincide with si* In such a case ρ does not have an
inverse on si. There are, however, so called left-inverses, i.e. positive linear
mappings φ from si to si with the properties

(i) φ(ρ(A)Bρ(C)) = Aφ(B)C , A,
(3.1)

(ii) 0(1) = 1 .

The existence of φ follows from certain compactness properties (see DHRI [2]).
ρ ° φ is a conditional expectation from si onto ρ(stf). In the case of normal sta-
tistics analyzed in [DHRI] the arising representation of the permutation group
associated to an irreducible ρ can be characterized in terms of the so-called statistics
parameter λQ,

λρl = φ(ερ) . (3.2)

4 If ρ(ji) = sly ρ is an automorphism. This case is characterized by the equivalent conditions: (i) ρ2

is irreducible, (ii) εβ = λ l ,λeC, (iii) Q{sl(O')y = Q(si{O)) for all O (see DHR). Sectors of this
form are called abelian in conformal field theories they have recently been studied by Buchholz et
al. [6]
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Also in the more general case considered here, φ{ερ) is a multiple of the identity
(it commutes with ρ ( ^ ) since ερ commutes with ρ 2 ( j/)); however the representa-
tion of the braid group is not determined by λρ alone.

Nevertheless, we will show that in the case λρή=0 the iterated left inverses φn

converge to a trace state φ on the braid group algebra possessing the so-called
Markov property

φ(εβQ(sρ(b)))=λβφ(ερ(b)) , beB* . (3.3)

There is an important special case which can be treated in essentially the same way
as the normal statistics case. Assume that ρ2 has exactly two nonzero irreducible
subrepresentations. The eigenprojections of ερ reduce ρ2, hence ερ can have at most
two different eigenvalues λ1, λ2. On the other hand, ερ is not a multiple of the
identity since then ρ2 would be irreducible (cf. footnote 4). The equation

(ε ρ -A 1 l )(ε ρ -A 2 l ) = 0 (3.4)

implies that the operators gk= —/l^"1ρfc~1(ερ),A:G]N, fulfill the defining relations
of the generators of the Hecke algebra H(t) [4],

(0 0fc0fc+i0fc=0fc+i0fc0fc+i ,

(ϋ) Qkθj = 0j0k > I / - * I £ 2 , (3.5)

with t= —A1A^1+ — 1. We have ρ(gk) = gk+1 and

=-λρλ^U Φ(gk+1)=gk, k*ι . (3.6)

The positivity of φ leads to restrictions on the allowed parameter values of t and λρ

which have been obtained by Ocneanu and Wenzl [12]. It is an amusing observation
that essentially the same methods had been used in the 1971 paper of Doplicher
et al. [2] where they proved that in the case t = 1 the only possible values of λρ are
irf'UeN, andO.

The idea is to evaluate the left inverse φ on the projections is/^onto the
intersection of eigenspaces of ρk(ερ),k = o,...,n — 2 with eigenvalue Ai5i = 1,2. In
the case of the permutation group (t = 1) these are the projections corresponding to
the totally symmetric and the totally antisymmetric representation of the permuta-
tion group.

The computation of E\n) is slightly more tedious in the general case than in the
case of the permutation group. We start by noting that E\l) = \ and

j ρ J (3.7)

The projections Et = El2) have the following property:

(3.8)

with τ = ί(l +1)~ 2 , as may be easily verified from (3.7), the definition of t in the line
before Eq. (3.6), and the braid relation (2.25). The projections Eln) satisfy the
following recursion relation which is due to Wenzl [12].
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3.1. Proposition. Let t = e2ia, — < α < —, and let q = inf {n e N, n\a\ ̂  π}for α =t= 0 and

q = oo /or α = 0. Then (with the convention sin «α/sin (w + l)α = n/n + lfor <x = 0)

Erv-Qm-^^ζgmEjQm, »•*; (3.9)

/or n + \ <q and

Elq) = Q(E}q-X)) . (3.10)

For the convenience of the reader we include a proof in Appendix A.
We now evaluate the left inverse φ on the projections E\n). From (3.1) and (3.9)

we get the recursion relation

with ηj = φ(Ej), O^f/^1, η1+η2 = l

In the case α = 0, Doplicher et al. used (3.11) to prove that positivity of φ restricts

the possible values of ηs to - and - ί 1 ± - j , rfeN [DHRI, Lemma 5.3]. In the case

αφO one first notes that from (3.10) and (3.1),

ηjEr^ = φ(Ejρ(E^)) = φ(EjE^) = 0 , ί*j , (3.12)

where the last equality comes from the definition of the projections E\n). Since

ηi+η2 = \ w e must have Ei

i

q~1) = 0 for i=\ or i = 2. £ '^~ 1 ) φ0 would imply ^ = 0
and Ef~γ) = 0. But this leads to E<j2) = Ej = Q in contradiction to the assumption
that ερ has two different eigenvalues. For q = 3 this is obvious, and for q > 3 we infer
from (3.11),

^ ) = έ ^ 2 ) ' (3 13)

so £ j 2 ) = θ is required by positivity of φ.
We therefore have E\q~l) = Q, /=1,2, q^4. Using (3.11) several times we

conclude that there are Â  e N , l^k^q — 2, such that

s i r^+l)^

zcosαsin^α

Summing over / we find the condition

A:2)α = 0 . (3.15)

The only solutions are α = + - , k1=d, k2 = q-d, deN, 2^d^q-2. For the

statistics parameter λρ we find

i ^ (3.10
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π/q

Fig. 2. The admissible values of the eigenvalues of ερ and the statistics parameter λρ (marked by O)
as points in the unit disc of the complex plane in the case q = 7. The real axis is an arbitrary straight
line through the center of the disc

We summarize the results in the following

3.2. Theorem. Let ρ be an irreducible localizedmorphism such that ρ2 has exactly two
irreducible subrepresentations.
Then

(i) ερ has two different eigenvalues λί9 λ2 with ratio

λ2

(3.17)

(ii) The modulus of the statistics parameter λρ = φ(ερ) has the possible values

sin π/q

«**/,' ( 3 1 8 )

(iii) The representation ερ

n) of the braid group Bn which is generated by
ρk~x (ερ), k = 1,..., n — 1 is an infinite multiple of the Ocneanu- Wenzl representation
tensored with a one dimensional representation.

(iv) The projections E%"\ d<m^n and E[m\ q — d<m^n vanish.
(v) The iterated left inverse φ — φn defines a Markov trace tr on the braid group Bn

tr(b) = φoεβ(b) . (3.19)

The Markov trace property in (v) requires some comment. Whereas the Markov II
property (3.3) is a straightforward consequence of the property (3.1) for φ (and its
iteration φ), the trace property

MI φ(βQ(b2)εQ(b1)) = φ(εβφ1)εβφ2)) (3.20)

follows in a purely algebraic manner by the use of the Hecke relation as shown by
Ocneanu et al. [12]. We shall show at the end of this section that MI remains true in
the general case. The Hecke relations allow to write a word in the braid group in a
completely analogous manner as for the permutation group. In fact the representa-
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tions in both cases can be labelled by Young tableaux [12]. The quantization
(positivity) cuts off the height of the tableaux as in the case of the permutation group

( where only the heights (- I occur 1, but in addition for the Hecke case there is

V W /
also a cutoff (analogous to the RSOS condition in statistical mechanics) in the
horizontal direction. The unitary representation ε£° of QFT is quasi-equivalent to
the representation defined via the Gelfand-Neumark-Segal construction from the
faithful trace. This parallels the argument of DHR and means unitary equivalence
up to multiplicities which in QFT as a result of the structure of si are always infinite.
The algebra generated by the braid group representation is isomorphic to the Hecke
algebra divided by the annihilator ideal of φ. In part II of this work, we will show
that all the "quantized" traces originate from the Lie-Hopf5 algebras associated to
su{n).

There exists a two-parametric algebra, the Birman-Wenzl algebra BW(α,m)
[13], in which ερ has three instead of two eigenvalues which generalizes the Hecke
algebra (it contains H as a factor):

For this algebra no direct calculation of a positive Markov functional has been
carried out. Using however our general analysis of the Markov functional of
algebraic quantum field theory (see below) leading to the path representation in
terms of /^-matrices in Sect. 4, and combining this with the finite dimensional
representation theory of the BW algebra by Murakami [14] (it is easy to extract the
unitary representation on the restricted (RSOS) paths for q = mth unit root and to
determine positive semidefmite Markov traces from Murakami's work), one can
easily determine all quantum field theoretical Markov traces on the BW algebra.
Again this trace is faithful on the BW algebra divided by the annihilator of φ. A
more detailed discussion of the case of the BW algebra will appear in model
discussion in part II where the relation of these "quantized" traces with Lie-Hopf
algebras of the Bn, Dn type is discussed.

We continue this section by collecting some general results on the left-inverses φ.
To a certain degree we can base our discussion on the work of Doplicher et al. [2],
but there are also some modifications due to the more complicated structure of the
braid group compared to the permutation group.

The existence of left inverses is tied to the existence of conjugate representations.
Let ρ be a localized morphism and R an isometry such that

(i) ρρ(A)R = RA , Aestf (3.21)

(so ρρ contains a subrepresentation equivalent to the vacuum representation),

(ii) ρ{srf)RΩ is dense in Jf . (3.22)

Then
φ(A) = R*ρ(A)R , Aest (3.23)

is a left inverse of ρ, and, on the other hand, ρ is the GNS representation induced by
the state ω0 ° φ, ω0 denoting the vacuum, with cyclic vector RΩ.

5 See for example [28]
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3.3. Definition. Let ρ be a localized morphism satisfying the spectrum condition. A
left inverse φ of ρ is called regular if it is of the form (3.23) where ρ satisfies the
spectrum condition.

A criterion for the existence of regular left inverses and hence for the existence of
a conjugate positive energy representation is provided, as in DHR by the non-
vanishing of the statistics parameter.

3.4. Theorem. Let ρ be an irreducible localized morphism satisfying the spectrum
condition. Then either φ(ερ) = 0for all left inverses φ of ρ or there exists a unique
regular left inverse φ of ρ, and φ(ερ)ή=0.

The proof of this theorem will be given in Appendix B.
For representations containing massive one particle states the first alternative of

the theorem can be excluded, hence antiparticles always exist [20] (in many models
as boundstates of particles). We will consider in the following only those localized
morphisms which satisfy the spectrum condition, are finite direct sums of
irreducible representations and have regular left inverses. As in [21, Sect. 7] one can
show that this set is stable under composition, taking subrepresentations and
conjugates.

For reducible morphisms ρ the regular left inverses φ with φ(ερ)ή=0 are no
longer unique. In analogy to [DHR I] we define a standard left-inverse φ of ρ to be a
regular left-inverse with

φ(εQ)*φ(εQ) = φ(εQ)φ(εQ)*eC l . (3.24)

The following proposition shows that as in the DHR case [2] products of standard
left inverses are standard. The rule of composition for the statistics parameters is,
however, more complicated due to the nontrivial structure of the braid group (cf.
DHR I, Lemma 6.7 [2]).

3.5. Proposition. Let φ be a standard left-inverse of ρ, and let φt be a standard left
inverse of ρt with φt(ερ.) = λil9i=l...n. Then

(i) φφ1 is a standard left-inverse of ρλ ρ satisfying

ρίρ ρ (3.25)

(ii) φn...φι is a standard left inverse of ρί...ρn satisfying

Φn. Φi(εβί...J = λί..Λnεφn(ρί,...,ρn) , (3.26)

where Cn = (σ 1 . . .σ n _ 1 )" is the generator of the center of the braid group Bn.

Proof. From the definition of statistics operators in Sect. 2,

^ 2 ( 3 2 7 )

Applying φ1 and using (3.1) and the equivalence relation for coloured braids (2.20)
yields

ρ)) • (3-28)

Applying φ and using (3.1) yields (3.25). If φ, φx are regular,

φ(A) = R*ρ(A)R , φ1(A) = R*ρ1(A)R1 , Aes/ (3.29)
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with conjugate morphisms ρ and ρί and isometries R, i ^ satisfying (3.21) for ρ and
ρ x, respectively then

1(A) = R*ρ(Rΐ)ρρί(A)ρ(R1)R , (3.30)

hence φφx is regular with conjugate morphism ρρ1 and isometry ρiR^R. By

iteration of (i) it is evident that φn... φx is a standard left inverse of ρ1... ρn. Equa-

tion (3.26) follows inductively from (3.25) with ρ = ρ2 ί?n> Φ — φn-"Φ2:

φn...φ2Φi(ερiβ2. ρJ = λίλ2..Λnε(ρ2...ρn/ρ1)ε%-_\)(ρ2,...,ρn)ε(ρ1,ρ2...ρn)

(3.31)

if one inserts

(3.32)

and uses (2.23) with Cll = σ 1 . . .σ π _ 1 C Λ _ 1 σ π _ 1 . . .σ 1 . q.e.d.

It is amusing to visualize the process of successive evaluation of φt ,i= 1,...,«, with
(3.1) pictorially as some "interpolation" between braids and links. Starting from

„ ff, Fig. 3

εQi...Qn written as the 2«-braid (Fig. 3) every step corresponds to short-circuiting the
rightmost string φ( and undoing the resulting loop at the price of a factor of λ{, while
the thus processed lines organize into Cn, see Fig. 4.

Fig. 4
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Now let φ be a standard left inverse of ρ. The norm of φ(ερ) can be interpreted as the
inverse of the "statistical dimension" of ρ

d(ρ)=\\φ(εβ)\\-1 . (3.33)

F r o m Proposition 3.5 we see that for irreducible representations ρ i , . . , ρ π the
statistical dimension of ρ1...ρn is

d(ρ1 ..ρn) = d(ρ1)...d(ρn) . (3.34)

We now decompose a reducible representation ρ into irreducible ones. Let φ be a
standard left inverse and φ(ερ) Φ 0. Then using (DHRI, Lemma 6.1 [2]) one gets for
any projection Eeρ(stf)',

. (3.35)

Since φ(l) = l (3.1), ρ is a direct sum of at most d(ρ)2 subrepresentations. Let

® (3.36)
iel

be the decomposition of ρ into irreducible representations. There are isometric
intertwiners Wt from ρt to ρ

ρ{A)Wi=Wiρi{A) , Aes/ , iel (3.37)

with W?Wj = δijl and ^f
We may choose these intertwiners such that each projection Et = W{ Wf is

bounded by some spectral projection of φ(ερ). Then φ{&ρ)Ei = μid(ρ)~1Ei for some
eigenvalue μt of φ(ε ρ) | |φ(ε ρ) | |~ 1 . A left-inverse φt of ρf can be defined by

φi(A) = φ(Eiy
1Φ(WiAWn (3.38)

Actually, 0 t is the unique regular left inverse of ρ f. Namely, ω 0 ° φ f is induced by the
vector

W ] ] 1 (3.39)

in the representation ρ. Let Et denote the projection onto the closure of
According to the theorem of Borchers [10] (cf. footnote 3 in Sect. 2) there is an
isometry W{ with W{ Wf — Et, and W{ can be found in si (O1), where O1 contains the
localization region of ρ in its interior. Then

ρi{A)=Wfρ{A)Wi , Aes/ (3.40)

is conjugate to ρt with isometric intertwiner

R . (3.41)

ρt is equivalent to a subrepresentation of ρ and therefore a positive energy
representation. Since

φi(A) = R?ρi(A)Ri , Azsd , (3.42)

φι is a regular left inverse. One finds (see DHRI [2], cf. also [21])

1 (3.43)
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Since λρ. depends only on the equivalence class of ρh representations belonging to
different eigenvalues of φ(εe) must be inequivalent. Hence φ(ερ) belongs to the
center of ρ(<srf)f. Moreover

* * (3.44)> -

is invariant under inner automorphisms of ρ(s/)\ hence φ defines a trace state on
)'. Summing (3.44) over / el and using ΣE^l a n d $ ( l ) = l yield the formula

Σ ( 3 4 5 )
iel

for the statistical dimensions of ρ and ρ i3 iel. If ρ is a product of the irreducible
morphisms ρjJeJ, (3.45) and (3.34) yield the following "sum rule" for the
statistical dimensions:

KΣ (3.46)
jeJ iel

We now define the quantum field theoretical Markov trace induced by the regular
left-inverse of an irreducible localized morphism ρ.

3.6. Proposition. Let φ be a standard left-inverse of ρ.
(i) Then

(3.47)

defines a faithful trace state on \jn

(ii) Let ρ be irreducible and φ(ερ) = λi+0. Then

φoef (3.48)

defines a nonnegatίve Markov trace on the group algebra of BO0 = uBn (where
BnczBn + 1 in the natural way), satisfying

MI:tτ(ab) = tr(ba) ,

MΠ:tr(aσn) =
(3.49)

/ λ\n+~n~
In particular, oc(b) = \λ\~(n~ί)l —- I tr(b),beBn, where n+ count the generators

σf- in b as a word in σ*, is a link invariant.

Proof (i) For Bed and Aeρn(stf)' we have ρn(B)A=Aρn(B). Equation (3.1)
implies Bφn (A) = φn(A)B,i.e. φn (A) is a multiple φ (A) of 1. φ is a state because φn is
positive and satisfies φn(\) = \. φ is faithful because φn is a standard left-inverse
(Proposition 3.5) and is therefore faithful [Eq. (3.35)]. Since φn+ί(A) = φn(A) for
Aeρn(s/y, φ is compatible with the inclusion ρn( tβ/) /c=ρ"+ 1(j/) /. The trace
property finally follows from the remark after Eq. (3.44).
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(ii) As an intertwiner from ρn to ρ", εf\b) is an element of ρn(stf)'. εf] is a unitary
representation and φ is a state, hence tr \Bn = φ ° ε£° is a function of positive type
with tr(£) = l. Moreover, for beBn,

φ(^+ί)(b)) = φ(ε^(b)) , (3.50)

hence tr extends to B^. Property MI follows from (i). Using MI and the fact that
the automorphism ~ :Bn-+Bn, σι-^σπ_ί is inner, the first relation in M i l is
equivalent to

tv(bσί) = λtv(b) (3.51)

for all beBn + 1 which are words in σ ί

±1,/ = 2,...«. For such a b we have

βf+ 1 )(6) = β(4" )(*')) (3-52)

for some b'eBn, hence (3.51) follows from

< H 4 " + 1 ) W = Φ(Q(e^Φ'))εe) = λεf{b')
and

The second relation in M i l follows by unitarity of εf] and positivity of φ.
The functional α on the braid group B^ is invariant under the Markov moves

ab-+ba, a^aσ^1, aeBn, and is therefore, according to Markov's theorem [4], a link
invariant, q.e.d.

With the present methods we cannot make similar predictions about the phases of λρ

unless there is some information about the phases in the central element (3.26). Such
information is expected to arise from a generalized spin-statistics theorem (e.g.
Proposition 2 in [5]) associated with the covariance properties of the theory. We
shall come back to this point in part II of this paper.

4. Statistics Operators and /^-Matrices

It is not obvious how the statistics operators of the preceeding sections might be
calculated in a given model. We therefore present here an explicit matrix
representation which can be compared with the Tί-matrices occurring in several
models.

Let us choose from each equivalence class of irreducible localized morphisms
one representative ρα. Then, for a given morphism ρ the composed representation
ραρ may be decomposed into irreducible ones which are unitarily equivalent to
localized morphisms ρβ. Thus, there are intertwiners Taβ from ρ^ to ραρ,

(4.1)

Let Taβ and T^β be two such intertwiners. Then T*β T^β commutes with ρβ(<stf), thus it
is a multiple of the identity since ρ^ is irreducible. Following ideas of Doplicher and
Roberts [13] one considers this multiple as a scalar product,

T*βT^(TΛβ,T;β)\ , (4.2)
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hence the set of intertwiners from ρβ to ραρ gets the structure of a Hubert space J^aβ.
Its dimension N^ is the multiplicity of ρβ in ραρ,

N=(Naβ) is called the fusion (or incidence) matrix of ρ. We may now choose an
orthonormal basis {T$, / = 1,..., Naβ} in each Hubert space Jfaβ. Then, we have the
completeness relation

and the orthogonality relation

T{i)*T^) = o δ (4-5)

Iterating the intertwining relation (4.1) we find that the space of intertwiners from
ραρ2 to ρβ is

where product and sum of Hubert spaces are the sets of products and sums of
intertwiners as elements of sd. Actually by (4.4) and (4.5),

In the same way we observe that the space of intertwiners from ρβ to ρaρ
n is

*$= Σ •*•.,,-•*%.-,/> ( 4 8)
yi y n - i

The statistics operators ρα(ε<,w)(&)), beBn, are intertwiners from ραρ" to ραρ".
Therefore, the maps

T-+QΛ(βfΦ))T (4.9)

are unitary operators in Jf j^. Thus one obtains in this way a unitary representation
of Bn in the finite dimensional Hubert space 3tf${ά\mtf$ = (Nn)aβ).

A convenient orthonormal basis in #C$ is the set of products of the
distinguished basis elements in the spaces 3tfyδ. Following ideas of Ocneanu [16] we
describe this set in the following way. Let G be a graph whose vertices are the labels
of morphisms α and where Nδy directed edges e go from δ to y, each of which
corresponds to an intertwiner

Te = T$ , (4.10)

e = (δ, i, y) being the / th edge from δ to y. A path ξ of length n from α to β is a sequence

ξ = (eί,...,en) (4.11)

of edges et where eγ starts at α, the endpoint of ek is the initial point of ek+ί,
k = 1... n -1, and en ends at β. Let Path$ denotes the set of all these paths. Then the
intertwiners

= Teι...Ten , ξePathgl (4.12)
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are an orthonormal basis of 3Ίf$. The matrix elements of ρα(ε£°(Z>)) with respect to
this basis are

Rξξ,(b)l = T(ξ)*ρoί(εϊ\b))T(ξ') ί,ξ'ePath# . (4.13)

These are the .R-matrices in the so-called path language. They are unitary matrices
and can be identified with the i^-matrices occurring in the exchange algebras (see
below). Using the orthogonality and completeness relations of the intertwiners we
find

Σ Rξξ>Φ)T(ξ)T(ξγ , (4.14)
(ξ,ξ')E String?

where

String^ = {(&£'), & ξ ' e P a t h $ for some β]

(hence String^ consists of pairs of paths of length n with source α and a common
range). Note that the operators T(ξ)T(ξ')* have the multiplication law

T(ξ) T(ξ ')* T(η) T(ηT = δζ.η T(ξ) T(η')* , (4.15)

which is a discrete form of Witten's product rule for strings [17].
Instead of multiplying ρ from the right in (4.1) we can equally well multiply from

the left. We get intertwiners Saβ from ρ^ to ρρα

QQΛΛ)Saβ = Saβρβ(A) , (4.16)

which form a Hubert space Jf7^. Iterating (4.16) we find

ρ2ρa(A)Q(SJSγβ = ρ(Say)Syβρβ(A) , Aes/ , (4.17)

and we finally get a space of intertwiners from ρ ^ to ρα,

n)^β= Σ Q"'1^)...*^ (4.18)o
yi . Vn-1

with orthonormal basis

= ρn-\Seί)...Sen , ξ = (* ! , . . . ,e jePath$ . (4.19)

The operators S(ξ)S(ξ')*9 (ξ, ξ')eString^, satisfy again (4.15) and are a linear
basis of the algebras ρnρ(x{^)'. They have a simple transformation property under ρ
and φ:

ρ(S(ξ)S(ξT) = Σ S(ξoe)S(ξΌer , (4.20)
e

where the sum is over all edges emanating from the endpoint of ξ, and by (3.1), (3.44)
and (4.20) for (ξ °e, ξ' °e')eString^

/y * , (4.21)

where β is the endpoint and γ is the starting point of e.
The bases (4.12) and (4.19) are related by the braid group. We are free to choose

(4.22)
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Then one finds the following formula:

S(ξ) = β(ρβ, Q
n)Qa(^(bn))T(ζ) , ξePathg , (4.23)

where bn is the following element of the braid group

, (4.24)

σf denoting the elementary transposition represented by ρi~1(ερ).

Proof of (4.23). For n = 1 (4.23) reduces to (4.22) which is true by our choice of
S $ W e m a Y t n e n assume that (4.23) holds for {ePath^" 1 *. We have for an edge
e from δ to α

(4.25)

We use the following formulae for commutation properties of an intertwiner Vt

from ρ<0 to ρ*0 with the statistics operators,

β O ) ,β ( 2 ) ) = 8(β ( 1 ),(? ( 2 ))K ,

which may be checked by inserting the definition of ε and using the properties of
intertwiners (see [DHR] and [21] where these calculations are performed. Note,
however, that Theorem 4.3 of DHR I does not remain valid in our more general
context). Inserting (4.26) with V=Te,ρ

{2) = ρn~ι, ρ{1) = ρa and ρ ( 1 ) = ρ^ρ we find

S(eoξ) = ρ^(e(ρδ,ρ))e(ρδρ,ρn-1)ρMeri^-i))neoξ) , (4.27)

where we used the intertwining property of Te to move it to the right. It remains to
check the form of the braid group element occurring in (4.27) which amounts to
simple manipulations in the braid group, q.e.d.

So the matrices R in the S-basis are related to the i^-matrices in the Γ-basis by the
formula

f f ί (4-28)
From (4.26)

^ ^ (4.29)
hence

Riξ,(b) = Rξξ,ψ-1bbn) = Rξξ,φ) , (4.30)

where ~ :Bn-* i?n denotes the isomorphism σi-^σn_i. Formulae (4.30) and (4.21) are
very convenient for the computation of the Markov trace. We have

4.1. Proposition. The Markov trace associated with an irreducible morphism ρ is a
weighted sum over characters of finite dimensional representations of Bn:

J Σ *«<*) (4-31)
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independently of the choice of ρα. The vector (d(ρβ)) is the Frobenius vector of the
fusion matrix Naβ with eigenvalue d(ρ).

Proof From the completeness of the basis S(ξ) we have

ε£\b)= X Rζζ.φ)S(ξ)S(ξ')*
(& H e String?)

for any choice of α. Evaluating φn with the help of (4.21) yields (4.31) with Rξξ(b)
instead of Rξξ(b). By virtue of (4.20), Rξξ(b) = Rξξφ), and by virtue of Proposi-
tion 3.6 (MI), ΐ may be replaced by b. The last statement is just a reformulation of
(3.46), (3.47) for the reducible morphism ρaρ = θβNaβρβ. q.e.d.

We conjecture that the particular form (4.31) of quantum field theoretical
Markov traces is crucial for their classification beyond the Hecke case; cf.[14].

With the help of the path formalism part of the redundancy of the field bundle
may be removed. On the Hubert space

JtT = ® {ρa^0}= θ ^ α (4.32)
α α

with a choice of one representative ρα from each equivalence class of irreducible
morphisms, observables act by

(4-33)

One now can introduce reduced field bundle elements

Fe, F={Q,A},Aes*, (4.34)

with e = (oc, i, β) as before. Fe annihilates J^γ for γΦα and acts on J^a as

{} { (4.35)

The translation of (2.16) to the reduced fields F® localized in Oi,Oί> O2 yields the
exchange algebra [5] with numerical i?-matrices

= Σ R^σJFgF^, (4.36)

where ξ = e2 ° eγ e Pathg } and ξ' = e[°e2. Hence the exchange algebra [5] which has
first been observed as the algebraic structure underlying the eigenspaces of the
center of the conformal covering group [18], in more recent times known under the
name of conformal blocks[18], is identical to the reduced field bundle described
above. In the case of permutation group statistics, one can go a step further and
construct a field algebra where the commutation rules of fields are simply of Bose-
or Fermi type, and where the statistical dimensions occur as multiplicities of the
corresponding representations [1]. It is an interesting question whether a similar
construction can also be conceived for noninteger statistical dimensions d.

Another application of the path formalism is the study of the sequence of
inclusions of algebras,

ρ:Mn-+Mn+ι, (4.37)
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where Mn = ρn(s/)'. According to DHR I [cf. (3.35)] each algebra Mn is a finite
direct sum of full matrix algebras. Using the Markov trace

φ = l i m φn (4.38)
n-+oo

we can enlarge uM n to a hyperfinite type IIX v. Neumann algebra M. The inclusion

ρ(M)c:M (4.39)

turns out to have index d(ρ)2 in the sense of Jones [4]:

[M:Q{M)]= lim ^ % ^ = lim * '" =d{Q? , (4.40)
dimM Σ(Nκ)2

where ρ = ρ̂  since d(ρ) is the Frobenius eigenvalue of the fusion matrix TV.
Actually, there is also a sequence of projections En satisfying the Temperley-

Lieb-Jones relations. They occur naturally in a sequence of algebras where also the
conjugate morphism is used.

Let ρ be irreducible and let ρ be a conjugate of ρ with

ρρ(A)R = RA , Aesrf (4.41)

for some isometry R. Then R = ε(ρ,ρ)R satisfies

ρρ(A)R = RA , Aesd . (4.42)

4.2. Proposition. Let ρ be irreducible and let ρ, R and R be as above. Then
(i) The statistics parameters λρ and λ- coincide,

(ii) Q(K)*R = λβl=R*Q(R),
(iii) Let E2i^1=(ρρ)i~1(RR*), E2i = (ρρ)i-1ρ(RR*\ / e N . Then the sequence

{£B , / i€N} satisfies the Temper ley-Lieb-Jones relations

EnEm = EmEn , | n - | ^ ,
(4.43)

E

Proof, (i) and (ii) are proven in DHR II, Theorem 3.3 where, however, the
intertwiners R and R are differently normalized. A direct proof may be found in [21,
Proposition 6.4]. (iii) is an easy consequence of (ii). q.e.d.

Using the sequence of projections {En} constructed in Proposition 4.2 we can

apply the result of Jones [4] and find that either d(ρ)^2 or d(ρ) = 2cos —, qelN;
q

Concluding Remarks

The main topic of this work is the generalization and application of the DHR
framework of superselection sectors to low dimensional quantum field theories. In
addition to those statements about exchange algebras which were obtained
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previously [5] within the standard framework of correlation functions (the
Wightman framework [22]), the algebraic approach shows that the exchange
algebra is a necessary consequence of the Einstein causality of local observables.
Furthermore the ^-matrices are necessarily unitary as a consequence of the
quantum (positivity) aspect of the observable algebras. Finally one obtains a
consistent picture about the composition of "charge" sectors which, using the
braid-group terminology, amounts to "strand-formation" [5]. In order to apply
these ideas to the problem of classification of two-dimensional conformal field
theories, we only have to add the requirement of global conformal invariance which
then leads to the previously derived decomposition theory in terms of light-cone
fields obeying two "one-dimensional" exchange algebras [5]. This discussion
including the role of the "quantization" of the field theoretic Markov trace as a
generalization of the Friedan-Qiu-Shenker quantization [23] (which was limited to
c<\) will be the subject of the second part II. The main difference to other
approaches, which emphasize more the analytic aspects of correlation functions,
lies in the physical interpretation. For us a quantum field theory is characterized by
physical principles as discussed in the second section of this paper, possibly enlarged
by covariance properties (as in the case of conformal field theories). Braid and
"strand" identities (e.g. the pentagon identity [24]) are not part of the physical
characterization, they are rather derived by mathematical arguments using
additional definitions suggested from the physical postulates. We deliberately
separated the presentation of the general framework from two dimensional
conformal field theory (to be discussed in part II) in order to avoid the impression
that the "new structures" come from coϋformal invariance. However the simplest
explicit illustrations are certainly given by massless conformal exchange algebras. In
fact, since the local observables (e. g. the energy momentum tensor or currents) of
conformal QFT2 contain no algebraic interactions (i.e. the commutators are, as in
Huygens' principle localized solely on the light cone), the field algebra in this case is
given by a new sort of "sophisticated free field." Only for the abelian case of "exotic
spin" or "anyon" statistics there are conjectured Lagrangian scenarios [25] of this
"new structure." The exchange algebras are also expected to appear in two
dimensional massive theories for which the localization regions (i.e. the arguments
of point-like localized fields) can be ordered for space-like separations. Formally
such situations can be imagined as arising from the conformal QFT2 by a "relevant
perturbation" around the Kadanoff-Wilson fixed point. The perturbation destroys
the conformal invariance, but a subgroup of the center (Z+Z_) of the universal
covering of the left-right Mόbius group:

Z+ZI1

may remain unbroken and hence serve as a label for massive superselection sectors
(this picture has been checked for the massive Ising field theory [26]).6 2-hi
dimensional scenarios for the "new structure" are more subtle. In this case the
elements of the field algebra (which applied to the vacuum create finite energy
states), if they are not localized in bounded regions such that permutation group

6 However such a picture must also explain the occurence of "shadow operators" in the massive
theory [26]
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statistics applies, yet are at least localized in thin space-like cones ("strings") [21]
and the localization in the formulation of the exchange algebra refers to directions
rather than small regions or points. Again Lagrangian scenarios seem to be
restricted to the special case where /^-matrices are just numerical phases, i.e.
"anyons" [25]. The explanation for the extraordinary power and potentiality of
algebraic quantum field theory (say compared with the Lagrangian approach)
should be seen in the economic separation of the full problem into two steps:

(a) The specification of the observable algebra which encodes the space-time
(Einstein causality) as well as the quantum aspects of (C* algebra, positivity)
quantum field theory.
(b) The construction of representations of "physical interest" by encoding
representation theory into "localized morphism of the observable algebra."

This dichotomy (or duality) is best pictured by associating "charge measuring"
operators as ideal i.e. limiting elements with an enlarged observable algebra.
The carrier-fields for these charges are related to the localized morphisms. This
space-time aspect is already contained in (a), whereas their additional discrete
composition structure is best described in terms of the path-space formalism of
Sect. 4. It is in this discrete superselecting structure (b), that non-perturbative deep
ideas as those of Yang Baxter and Faddeev [27] which hitherto appeared in a
different and more special physical context are naturally incorporated. The
principles of algebraic quantum field theory point clearly in the direction of a
generalization of these ideas. In the simpler case of charge superselection in higher
dimensional QFT for which permutation group statistics makes its appearance,
Doplicher and Roberts succeeded to prove that the charge measuring operators are
belonging to compact Lie groups. In order to achieve this, they had to go beyond the
Tanaka-Krein duality theory and develop a new theory (adapted more to the
requirements of algebraic field theory) which used the universal C* Cuntz algebra
as the relevant mathematical tool [1]. In a forthcoming paper we will take up this
discussion of the analogous duality problem for the braid group statistics. In the
language of Doplicher and Roberts this amounts to the question of which is the dual
structure to the "monoidal braid-like category."

Appendix A

Proof of Proposition 3.1. We follow Wenzl [12] who proved (3.9) under the more
restrictive condition that both sides in Eq. (3.8) vanish separately. (In this case the
projections ρk(Ei), λτ = O, 1,... satisfy the defining relations of the Temperley-Lieb
algebra [18].)

For n = \ Eq. (3.9) means

E^ί-Ej , / + ; , i,7 = l,2 (A.I)

which is evidently true. We now proceed by induction and assume that Eq. (3.9)
holds for n — ί, n^2. Let

) . (A.2)



S1Ω flCC

Superselection Sectors with Braid Group Statistics 223

In the computation of F2 we replace the first factor ρ(E$n)) according to the
induction hypothesis by

2 C O S * ή a { n 1 ) % Γ 1 ) ) (A.3)

ρ2(Eln~1)) commutes with Ejβρ2^)' and its range contains the range of ρ(2sίn)),
i.e.

ρ 2 ( ^ - 1 ) ) ρ ( ^ ( n ) ) = ρ ( ^ π ) ) , (A.4)
hence

2 2 C O S S i n ( W ~ 1 ) g f ^ m . ( A . 5 )
s i n JTOC

In the second term on the right-hand side we now can apply relation (3.8) with τ
= (2cosα)" 2 . Since ρ ^ ) is orthogonal to ρ(£'^~ 1 )) by definition, the terms
corresponding to the right-hand side of (3.8) vanish, and one gets as in the
Temperley-Lieb case,

Using again Ejβρ2^)' and (A.4) we finally obtain

rin(« + l)«

zcosαsmwα

where we used the relation

2cosαsinnα —sin(n —l)α = sin(n + l)α . (A.8)

For n = q — 1 the factor multiplying Fin (A.7) is nonpositive. Since F2Ej = (FF*)2

and FEj=FF* are positive, this implies F=0, hence Ej is orthogonal to ρ(Ejq~1)).
This proves (3.10).

For n < q — 1 we consider the operator E on the right-hand side of Eq. (3.9). E is
selfadjoint, and Eq. (A.2) and (A.7) imply E2 = E, hence E is an orthogonal
projection. Clearly is is orthogonal to ρk(Ej), fc = l,...,w —2, and from (A.7),

EjE=0 , (A.9)

i.e. E is also orthogonal to Ej. Moreover, E is the largest projection with this
n-2

property. Namely, let χs f] ρk(Ei)J^. Then by definition of E\n\

and Ejψ = 09 since EjE—0, thus we obtain Eψ=φ. Hence E=E\n + 1) by definition

Appendix B

Proof of Theorem 3.4. Assume that ρ has a left inverse which does not vanish on ερ.
The set of left inverses of ρ is convex, and it is a compact subset of the space Jt of all
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bounded linear mappings from si to 2?(jf) equipped with the pointwise weak
topology, i.e. the topology induced by the family of seminorms

\\Λ\\Afφ>Ψ = (Φ,Λ(A)Ψ) , AeΛf,Φ,Ψetf> . (B.I)

According to the Krein-Milman Theorem a compact convex set contains extremal
points, so there are extremal left inverses, and at least for one of them, say φ9 is
φ (ερ) = λ 1 φ 0. Let β% denote the automorphism of si which is implemented by the
unitary representation UQ of the translation group in the representation ρ of si
(hence βx

tρ = ρax). Then &_xβ%eJl, and the weak limit points for x tending to
spacelike infinity are left inverses of ρ. From DHRI,

Φ^\λ\2φ0 (B.2)

for any limit point φ0 of ((x_xβ^). Since φ was assumed to be extremal this means
φ = φ0, so in particular all limit points of (oc-xβx') coincide, hence

limα_xβ
Q

x = φ . (B.3)

Moreover, φ is locally normal [i.e. normal on each subalgebra si{0)] as limit of a
sequence of locally normal maps.

We now can construct the conjugate sector. The state ωo°φis invariant under
βx, hence in the GNS representation (π, Jfπ,Ώπ),

= (Ωπ,π(A)Ωπ) , Aes/ (B.4)

π(si)Ωπ dense in jTπ , (B.5)

the automorphism βl can be unitarily implemented by

Uπρ(x)π(A)Ωπ = πβx(A)Ωπ . (B.6)

Uπρ is strongly continuous since π is locally normal, and it satisfies the spectrum
condition since Uρ does. One then can show as in [20] that π is equivalent to a
localized morphism ρ. The automorphism αx is implemented by

Uπ(x) = π(U(x) Uρ(-x)) Uπρ(x) (B.7)

and Uπ satisfies again the spectrum condition since

spUπ+spUρ^spUπρ (B.8)

[20,21]. Let R be defined by

RAΩ = nρ(A)Ωπ . (B.9)

Then R is an isometric intertwiner from πρ to the identity

πρ(A)R = RA , (B.10)

hence π is a conjugate representation. Finally we find

φ(A) = R*π(A)R , (B.ll)

so φ is a regular left inverse, and 0(ερ)φO.
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Actually, by the spectrum condition, any regular left inverse cannot vanish on ερ

[20]. Now let φx be some regular left inverse. Since φ is the only extremal left inverse

which does not vanish on ερ, we have

φ1(ερ) =

If μ< 1, ôo = (1 —μ)~ί(φ1—μφ) is also a left inverse, and one can show that φ^ is

regular in contradiction to the fact that φ^iSρ) = 0. Thus μ = 1 and φ1 = φ. q.e.d.
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Note added in proof. After submitting this paper we received a preprint of Longo [29] which also
treats the superselection structure of 2-dimensional quantum field theories. Among other results
he proved the quantization of the statistical dimension d(ρ) (cf. the remark after Proposition 4.2)
by identifying it with the square root of the index of the inclusion {?($l(0))<=21(0), where ρ is
localized in Θ. Moreover, his new results and ideas on the space of conditional expectations
improve and simplify our discussion of left inverses. The statement of Theorem 3.4, e.g., can be
sharpened in the following way: if φ(ερ) φO for some left inverse φ, then φ is the only left inverse
(hence the hypothetical nonregular left inverses do not exist). Actually, this follows directly from
the equality (cf. Proposition 4.2)

A = ρ(R*)ρρ(A)Fρ(R)d(ρ)R

[i.e. $ί is generated by ρ(2l) and F(Fis the "Jones projection" for the inclusion ρρ(2Γ)c=ρ($l))].
Applying a left inverse φ' of ρ yields

φ'(A)=R*ρ(A)Rφ'(F)d(ρ)2 ,

where ψ'(F)eρ(<H)' = Cl. φ'(ί)=ί implies φ\F)=d{ρY2, hence




