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Abstract. We study the general mathematical structure of unitary rational
conformal field theories in two dimensions, starting from the Euclidean Green
functions of the scaling fields. We show that, under certain assumptions, the
scaling fields of such theories can be written as sums of products of chiral
fields. The chiral fields satisfy an algebra whose structure constants are the
matrix elements of Yang-Baxter- or braid-matrices whose properties we
analyze. The upshot of our analysis is that two-dimensional conformal field
theories of the type considered in this paper appear to be constructible from
the representation theory of a pair of chiral algebras.

1. Introduction

In this paper we study the general structure of unitary rational conformal field
theories in two dimensions. The starting point of our analysis is motivated by
concepts of two-dimensional statistical mechanics: The basic properties of a
statistical system are coded into its thermodynamic and correlation functions.
The correlation functions are expectations of products of local order- and disorder
variables in a Gibbs equilibrium state. If the system is at a critical point its
correlation functions tend to exhibit asymptotic Euclidean- and scale invariance,
as one learns from the study of exactly solved models and the renormalization
group. Scaling limits of the correlation functions then exist. They turn out to be
the Euclidean Green functions of some Euclidean field theory. If the underlying
statistical system has a self-adjoint transfer matrix, the scaling limits of its
correlation functions satisfy reflection positivity. A variant of Osterwalder—
Schrader reconstruction then permits us to associate with the sequence of scaling
limits of correlation functions of such a system a unitary relativistic quantum field
theory. At a critical point the scaling limits of correlation functions of scaling
operators are Mobius-invariant. This invariance property, combined with reflection
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positivity, permits us to associate a quantum field theory with every parametrized
disk on the Riemann sphere. Our construction proves, in particular, that standard
Osterwalder—Schrader quantization and radial quantization provide equivalent
descriptions of the quantum field theory. See Sect. 2.

Points in the two-dimensional Euclidean domain are conveniently parametrized
by complex numbers z =t + ix, z* =t — ix, where t is the time- and x the space
component of a point x = (t, x)eE2. The variables z and z* are the Euclidean
versions of the standard light cone variables.

One of the objectives of our paper is to analytically continue the Euclidean
Green functions of two-dimensional conformal field theory in the light cone
variables z,Z to a maximal domain of holomorphy. A point (z,z) belongs to the
Euclidean domain if Z=z* = complex conjugate of z. This process of analytic
continuation of the Green functions is started in Sect. 2.

Let L, and L, be the generators of the transformations (z,z)r(e%z, 2),
(2,2 (z, €%2), respectively. We show that, in a unitary conformal field theory, L,
and L, are positive operators on the Hilbert space of radial quantization, under
natural regularity assumptions on the Euclidean Green functions.

In Sect. 3, we consider unitary conformal field theories with a symmetric,
conserved energy-momentum tensor of dimension 2. We recall the Liischer—-Mack
theorem which shows that, in such theories, the energy-momentum tensor has only
two independent components T(z) (independent of z) and T(Z) (independent of z)
which generate two commuting, unitary representations of Virasoro algebras, Vir
and Vir, on the Hilbert space, 5, of radial quantization. We show that these
representations are completely reducible into direct sums (or -integrals) of
irreducible, unitary highest-weight representations.

We then proceed to study the notion of chiral algebras: Given some unitary
conformal field theory, we consider all those scaling fields whicii are independent
of Z (independent of z). Among these fields are of course T(z) (T(2), respectively).
They generate algebras .o, (=7, respectively) which we call chira' algebras. We
define the symmetry algebra, 2, of the conformal field theory to consist of all local
operators in &/ ® /.

An important aspect of the notion of rational conformal field theory, as used
in this paper, is that the Hilbert space, #, of the theory splits into finitely many
irreducible subspaces for 2. This assumption is made more precise in Sect. 3. There
we also formulate the Ward identities which describe how the symmetry algebra
A acts on the scaling fields, ¢,(z, 2), of the theory. The main result of Sect. 3 is the
existence of chiral intertwiner fields: We show that under natural assumptions on
the structure of the symmetry algebra 2 and the algebra of scaling fields {¢,(z,2)}
of the theory, every field ¢,(z,2z) can be written as a sum of products of chiral
intertwiner fields ¢,(z) (independent of z) and ¢,(2) (independent of z).

In Sect. 4, we study the vacuum expectation values of products of chiral
intertwiner fields ¢,(z) (or of products of fields ¢,Z)) which we call conformal
blocks. We then determine the envelope of holomorphy of the conformal blocks.
For an n-point conformal block this is the domain

M,={(zy,...,z,) z; # zj, for i #]},
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whose fundamental group is the pure braid group, P,. The conformal blocks are
multi-valued analytic functions on M,. The different branches of these functions
are connected to one another by matrix representations of the braid group B,
generated by a Yang—Baxter (or braid-) matrix R = (R%). This matrix can be viewed
as a matrix of structure constants for the algebra generated by the chiral intertwiner
fields: A product, @,(z)@,(w), of two such fields is well defined, a priori, only if (for
example) Re z < Re w. But it has a multivalued analytic continuation to the space
M,. If @ (w)p,(z) is defined by analytic continuation of ¢,(z')p,(w) in z’ from z to
w and in w' from w to z along paths shown in the following figure:

) lz
=
then
?W)@y(z) = RiGp2)pw). (1)

This equation captures the basic structure of the algebra of chiral intertwiner fields.
In Sect. 4, we specify a class of unitary conformal field theories which we call
rational theories for which Eq. (1) can be proven. We also derive some of the
simplest properties of those R-matrices which can appear as structure constants
in Eq. (1). A more systematic study of the properties of R will appear in a separate
paper.

As a consequence of our analysis we are able to determine the envelopes of
holomorphy of the Euclidean Green functions of rational, unitary conformal field
theories and to calculate their monodromy in terms of the braid-matrices R and
R, where R is the matrix of structure constants for the algebra generated by the
fields @ (W), i.e.

0i(W)e5(2) = Ri0(2)03(%) )

In the final section (Sect. 5) of this paper, we extract the basic mathematical
structure of rational, unitary conformal field theory from the results in Sects. 2, 3
and 4. We show that in a sense to be made more precise in future work on the
subject, two-dimensional conformal field theory can be viewed as the representation
theory of a pair of abstract chiral algebras .«7,.o/. Examples of such algebras are
the Virasoro algebra, current algebra, algebras of higher-spin currents, or of
parafermions. The chiral intertwiner fields are then viewed as “tensor operators”
for a chiral algebra /. Products of such fields are sections of bundles whose base
spaces are the spaces M, and whose fibres consist of tensor operators for &/ which
intertwine different representations of /. These bundles carry flat connections
whose holonomy generates a representation of the braid group B,. Under suitable
hypotheses (which will require further study) these representations are generated
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by Yang-Baxter matrices, R, which appear as structure constants in a quadratic
relation between chiral intertwiner fields, ¢,, of the form (1). Finally, we show how
one can reconstruct local fields ¢,(z,Z) out of the chiral intertwiner fields ¢,(z),
¢,(2) associated with the algebras ./, /.

In separate publications the structure described in Sect. 5 will be investigated
in more detail and an application to minimal models will be given.

2. Quantum Field Theory on the Riemann Sphere

2.1. In this section we review some fundamental properties of two-dimensional,
unitary conformal field theory in a mathematically precise form. In view of the
basic significance of conformal field theory for the theory of two-dimensional
critical phenomena and string theory, the Euclidean formulation of conformal field
theory [ 1] is an appropriate formalism. It is based on work in [2, 3] which develops
the Euclidean description of relativistic quantum field theory. Our analysis will
show that, given Euclidean Green functions of a two-dimensional conformal field
theory satisfying reflection positivity [2], one can associate with each parametrized
disk on the Riemann sphere a conformal quantum theory, or “quantization.”
Different quantizations are intertwined by isometries which form a representation
of the Mobius group, PSL (2, C). Special cases are Osterwalder—Schrader quantiza-
tion [2,3] corresponding to the right half plane {z=1t+ix:t> 0}, and radial
quantization [1] corresponding to the unit disk {z:|z| < 1}.

In two dimensions, quantum field theory has peculiar features intimately
connected with the fact that the complement of the closure of the light cone is
disconnected: The statistics of fields is not limited to Bose- or Fermi statistics—as
it was in higher+dimensions. This is related to the property of Euclidean Green
functions to be, in general, multi-valued functions on the space

M,={x=(x1,. ., X):x;€E% x; # x;, for i #j} 2.1

corresponding to single-valued functions on the universal cover, M,, of M,. [The
fundamental group of M, is the pure braid group on n strings [4].] Different
branches of a Green function are connected to each other by a matrix representation
of the braid group on n strings, [4]. In statistical mechanics, multi-valued Green
functions appear as order-disorder and parafermion correlation functions. These
features are discussed in some detailed in [5]. In the following, we shall assume
that Euclidean Green functions are single-valued functions on M, symmetric under
permutations of their arguments. This will merely simplify text and notations. The
general case will be discussed elsewhere; see also [5].

It will be convenient to write points, x = (t,x)eE% as complex numbers,
z=t+4ix, z¥ =t — ix = complex conjugate of z. Here x is the space component of
x and ¢ its (imaginary-) time component. Both parametrizations will be used.

Next, we describe some basic properties of Euclidean Green functions of unitary
conformal field theory. These properties are variants of the Osterwalder—Schrader
axioms [2]. In order to describe them, we require some notation and definitions: Let

M} ={zeM,:t;=Rez;>0,fori=1,...,n}. (22
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We set

and
St ={feL([E"):supp f= M, }. 2.3)

Here #(E?") is the Schwartz test function space over E2". We also introduce some
transformations of E%:

o, x)=(—t,x), ie. 0z=—z*, (2.4)
(time reflection)

n(t,x)=(, —x), ie. nz=z* (2.5)
(space reflection)

Mobius transformations are denoted by

az+b a b
: = 2,0), 2.6
wiz—w(z) ol < d)GSL( ) (2.6)
with z*—w(z)*. Special cases are
ty:z—z+a, aeC, 2.7

(space-time translations)

roiz—e¥z, 0< ¢ <2nm, 2.8
(rotations = Euclidean boosts)
and
dz—e "z 2.9)
(dilatations)

We shall study theories given in terms of a sequence, {G,, ..., (X155 X,) }n %0,
of Euclidean Green functions of scaling fields with the following properties which
are motivated by the analysis of models, like the two-dimensional Ising-, Potts-
or six-vertex models , at a critical point.

(P1) G(&) =1; G,,...,(x1,...,X,) is a well defined, continuous, polynomially
bounded function on M,, for arbitrary ay,...,a, and all n=1,2,3,.... [The
subscripts a, ..., «, label different scaling fields and range over a finite or countably
infinite index set A,.] It is also assumed that

Gar--an(')_cl AR Xn) = Ga"(l,...an(")()_cn(l)v R )_Cn(n))a (210)

for arbitrary permutations, 7, of n elements.

In statistical mechanics, (P1) expresses the property that the scaling limits of
order- or disorder correlation functions of a statistical system at a critical point
exist and are well defined, symmetric functions on M,. [Mixed order-disorder
correlation functions are discussed in [5].]

(P2) There are real numbers h(x) and h(«), x€ A, called conformal weights, such
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that, under a Mobius transformation w, see (2.6),

dw\"  (dw\P
Galman(zl,z}r,---’Zmzt)=l—iI(E> (A)(E) (zi)*Gal~~'an(Wl,WTa'--,wnaw:)’
(2.11)

where w; = w(z,), h; = h(a;) and h; = h(a,).

Assumption (P2) expresses the property of scaling limits or correlation functions
of critical statistical systems to be Mobius-invariant. Actually, full Mobius
invariance pre-supposes that one works with order parameters which, in the scaling
limit, transform tensorially under Mobius transformations. This is more than what
is needed in many parts of our analysis. Often it would be enough to assume

(P2%) Euclidean Green functions are translation-invariant
(P2%) Rotation invariance:

G, q,(€92,,67%2F,..., 692,67 %2F) = e“""‘zS‘)G,l...an(zl,z’{‘,.. 2 z¥), (2.12)

where s; = s(o;) = h(o;) — h(e;), i = 1,...,n; () is called “spin.”
(P2°) Dilatation invariance:

Gau"'an(e—t)_ch LK ,e_t>_cn) = et(Zdi)Gar“an()_Clw .. »"_Cn)’ (213)

where d; = d(;) = h(«;) + h(e;) is the so-called “scaling dimension,” i = 1,...,n.

Next, we formulate a property, reflection positivity [2,3], which is somewhat
unnatural from the point of view of statistical mechanics, but plays an important
role in our analysis of conformal field theory; see also [1]. By #* we denote the
space of finite sequences of test functions,

{fa;wa,.(-)_cl"'"J_Cn)ey:aaiEAO’i'_‘ 1""’n}n=0,1,2....' (214)

[“Finite” means that f, .., (x;,...,x,) =0, except for finitely many choices of
(oq,...,0,) and finitely many n.]
(P3) We assume that there is an involution, *: Ao+ A4y, a—a*, such that

Gopoat(0Xpy ..., 0x1) = Gy . (X1 X0)*, (2.15)

and, for arbitrary sequences _f es,
Y G rp g (0% 0%, Y15 s V)

nm a_z,t.i
Saran® o X g Q15 Ym)d 2 xd?My 2 0. (2.16)

Reflection positivity (P3) can be derived from the selfadjointness of the transfer
matrix of an underlying statistical system. This is a frequent, but not a fundamental
property of lattice systems. [It fails e.g. in the theory of selfavoiding walks.] But
without assumption (P3), it is more difficult to undertake a general analysis of
conformal field theory; but see [6].

2.2. Next, we review some important consequences of assumptions (P1)—(P3),
(i.e. we sketch Osterwalder—Schrader reconstruction, [2,3]).
Assumption (P3) permits us to define an inner product, (-,->,,, on &£ *: For
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fand gin &7, we define
<;f’€>y+ EZZIGG:“-OITﬂl ﬁm(gzm-'-,e{l,l}lw--5Xm)

nm a,p

'far“a,.(El’ tee ’Zn)*gﬂl "'ﬂm(XI’ cre .Xm)dandzmy' (217)

Here y, denotes the right half-plane {z:Rez > 0}. Let 4#"* be the kernel of (-, ),
in &#*. An equivalence class of a sequence fe& ", mod, 4", is denoted by

i(f)=1i,,(f) Then
Hy, =i, () feLT}, (2.18)

where the closure is taken in the norm induced by <-,-), ., is a separable Hilbert
space. We let 2=,  denote the image under i,, of the sequence f with
f(@)=1and f, . ., (x,...,%,) =0, for all n = 1; 2 is called vacuum. -

Assuming (P1), (P2°) and (P3), #,, can be shown to carry a representation of
space-time translations, constructed as follows: Given fe&™*, let f be given
by the sequence - N

{fax'“a,.()_cl =G Xy Q)C_l = (ao’a)ElEz}n=O,l.2,...,' (219)
If a° =0 then fesL”, for feS*, and we define
e~ ®HWPi(f) = i(*f), a®20. (220)

A standard result of Osterwalder—Schrader reconstruction says that (2.20) defines
a semigroup on #, generated by selfadjoint operators H and P, and

H=0; (2.21)
see [2]. If, in addition, (P2°) holds we may define an operator M by setting
e?Mi( £ =iCf), (2.22)

where f is given by the sequence
) . . . )
{ew(ZSlfar“a"(e "I’zhe"ﬂz’f,'“,e wzmewz:)}n=0,1,2,‘..'

Clearly, for fe& *, °f is contained in &*, provided || is small enough. A
theorem in [3] then says that (2.22) defines a selfadjoint operator M. It is the
generator of boosts. It is easy to conclude now that

H+P=0, (2.23)

which is the relativistic spectrum condition, [2,3]. Assuming also property (P2°),
the equation

éPi(f) = i(*f), (2.24)

where f+-7f represents dilatations on & *, defines a selfadjoint operator D
generating a unitary representation of dilatations on .
By construction, 2 is invariant under the operators e *H P oM apd ¢itP 1

' If (P2°) holds 2 is the unique invariant state in #,,
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Since {e~"°H~1%P:q% >0} is a contraction semigroup on J#,,, and since i(£*) is
dense in 4, , by construction, the subspace i(*.¥ ") is dense in #,,, for
all a® = 0. Here

st = {fes o e,
and, by (2.20),

(L) =e I FT), (2.25)
Let f be a test function with

supp f < {x:0 < x° < a®},

for some a® < co. Let fe®’# ", and define f, x fe#* to be the sequence

{f()_cl)éalafaz--~a,,+ 1('3:.2’ LR ] )_Cn+ 1)}n=0,1.2,... . (226)
We define an operator ¢,(f) by the equation
e N)i(f)=i(fox f), fe'L". (2.27)

Since i(“# ") is dense in ., ¢,(f) is densely defined. Since the Green functions
G,,...q,(Xy,...,X,) are continuous on M,, we may let f approach a é-function at
some point x = (x° x), x° >0, and obtain a densely defined operator

Pu(X) = @ (f =9,). (2.28)
This is the Euclidean field operator.
We define
K=%H+P), K=3H-P) (229)

By (2.19) and (2.20), e "X, Re { 2 0, represents the transformation z+>z + {, z*¥>z*
on #,, , and by (2.23) the operator norm of e~*¥ is bounded by 1, for Re{ = 0.
Similarly, e *¥ represents the transformation z—z, z*—z*+{ on #,, and is
bounded in norm by 1, for Re{>0.

We define some subspaces of C":

En={z,z:Z;=z}i=1,...,n}, (2.30)
M; ={z:Rez,>--->Rez,},
M; " ={z:Rez,-1(yy> - >Re€Z- 14y} (2.31)
where © is a permutation of {1,...,n},
M™% = M2 x M2, (2.32)
and
ME™(w) = M "(w) x M7 " (w¥), (2.33)
where
M, ™(w) = {z:(W(zy),...,w(z,))eM, "}, (2.34)

with w:z—w(z) a Mobius transformation.
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Proposition 2.1. Let {G,, ..., (X;,-..,X,)}:-0 be a sequence of Euclidean Green
functions satisfying properties (P1), (P27), (P2°) and (P3). Then G, .., (z1,2%,..., 24 2¥)
is the restriction of a function

Ha,'“an(zpz—l)---,Zmz_n)

holomorphic in (z,,...,z,) and (z,,...,2,) on the domain
U U Mw (2.35)
neSn w:Euc!idean
motion

to the Euclidean domain &,. If the Green functions are Mébius invariant, see (2.11),
then w in (2.35) can be an arbitrary Mdbius transformation.

Sketch of Proof. A complete proof of Proposition 2.1 can easily be inferred from
[2]. Here we sketch the heuristic ideas on which the proof is based. From (2.27),
(2.28) and translation invariance, (P2%), we conclude that if Rez,> --- > Rez,,

Guproan(1 2o 22 = (D, (20, 2) - G, 2 2D, (236)
From (2.19), (2.20), (2.27), (2.28) and (2.29), i.e. K =0, K >0, it follows that
buz+e7+e)=e KK (6)eK K, (2.37)

for Rez=0, Rez =0, ¢ >0, as an operator equation on the dense domain i(*.¥ "),
where a° > max (Re z, Re 2) + &. We have set ¢,(¢, &) = ¢,(¢). Hence, using (P27),

L RN
Goyooa(21:2%, . 20y 28) = (2, by, (£) e KT8 ()
* *\
- 722K +(E2 —23)K ...(j)a"(s).Q) (2.38)

if Rez, > --- > Rez,. By (2.23) the norm of e~ ?K~#K is bounded by 1, for Rez =0,
Re z = 0. Hence, formally, the right-hand side of (2.38) extends to a function

Hax -~~a,.(Zl’ ZisenesZns z_,,) = (_(2, ¢a1 (8)6(21 —z2)K+(21 —z’z)Kd)uz(s)
.e (F2—z3)K— (22— zZ3)K | . ¢a"(3)0> (239)

holomorphic in (z,Z) on M, x M, . Due to difficulties with domains of definition
of the unbounded operators ¢, (¢), the formal arguments leading to (2.39) are
untenable. But the considerations in [2] show that (2.39) is correct anyway. [Our
formal arguments would be correct if the operators ¢,(e)e ¥, ¢ >0, & >0, were
bounded operators. This would follow from a sharper version of property (P1)
sketched in [7].]

In order to complete the proof of Proposition 2.1, we note that, by (P2¢) and
(P2), the domain of definition of H,(z, ) extends to

U Mot (w), (M (w) = M, (W) x M7 (W),

where w is an arbitrary Euclidean motion. But <U M ,f"(w))m( U U M:"‘(w')>

w n¥El w

is non-empty. Since G,, ..., (z,2¥,...,2, zF) is symmetric under arbitrary permu-

tations of {1,...,n}, H, .,(2,Z},...,2,2,) is symmetric on | | ) My'(w) )N
w
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< Uum :,""(w’)) By a little geometrical argument (see also Sect. 4) it then follows

nEl w
that H,(z, ) extends to a function that is holomorphicin (z, 2)e( ) | ) My ™(w), where

w n

the w’s are Euclidean motions. W

Our goal will be to extend H,(z, Z) to a multi-valued holomorphic function on
the domain M, x M,, corresponding to a single-valued holomorphic function on
M,xM,. [Recall that M, = {z:z; # z;, for i # j}, and M, is the universal cover of
M,.] This will require further assumptions on the Green functions G,(z,z*) and
a considerable amount of additional work. )

Let M be a non-empty open subset of M, = {zeM,:Rez;>0},n=1,2,3,.
and let M = (M, 1o 4 be a sequence of such subsets. We deﬁne a subspace & ( )
of £* to consist of all sequences fe&" with the property that supp f,...,, © M,,
for all n > 1. It is an elementary consequence of Proposition 2.1 (see e.g. [18]) that

iS*(M)) is dense in # (2.40)

for arbitrary sequences M with the properties specified above.

We may now exploit consequences of full Mobius invariance, Eq. (2.11),
assumption (P2). [This was irrelevant for Proposition 2.1 which required only
translation- and rotation invariance.] Because of (2.11), it is natural to view test
functions, f,,...,,(2;,...,2,), as the components of a tensor with conformal weights
(1 = h;, 1 —h;), h; = h(a;), h; = h(x;). For a M6bius transformation w, we define

n d 1—h; d 1—h;
ootz = 11 (%) (zi)(d—g ) s mm W21 Wz
(2.41)

Given a M&bius transformation w close to the identity, let M be a sequence of
non-empty subsets, M,, of M} with the property that

M"(W = {g.(W(Zl),...,W(Zn))GM,,}

is contained in M,’, for all n= 1,2, 3,....
For fe& " (M), we define -

wWi(f) =i(*"'f). (242)

Thanks to property (2.40), this detefm?ries a densely defined operator U(w)on 3,
If w, and w, are two Md&bius transformations close to the identity, then it
follows directly from (2.42) and (2.41)’>tllat

U(wl)U(w’z)‘= U(wyow,), (2.43)

V4

as an equation between densely de’ﬁﬁetd—operators on #,, . Thus U defines what
in [3] is called a virtual representation of the universal cover of the Mobius group,
SL(2,C). The generators of infinitesimal Mobius transformations are denoted by
L_,,Ly,L,,L_,,Ly,L,. We define

we(z) = 0w~ 1(0z) = —w™1(—z*)*

Returning to the definition (2.17) of the scalar product <-,-), ., changing variables
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and using (2.11) we easily verify that

L7g0y. =<"f9>,.. (2.44)
This identity and (2.42) show that
U(w)* = U(wy) (2.45)

on some domain dense in #, . One can choose the generators L_,Lo,L;,L_,Ly,L;
in such a way that (2.45) and Proposition 2.1 imply that
=) =) ) (o) =) =)
L¥=L,, L¥=L_,, and L* = L,.
This will be discussed in more detail below.
Equations (2.20), (2.22) and (2.24) are special cases of (2.42), (2.43). Obviously,
the vacuum € is invariant under U. It follows from results in [3] and [9] that U

can be analytically continued to a unitary representation of the group of
pseudo-Mobius transformations on #,,

2.3. We now show how to associate a quantization consisting of a Hilbert space
H# ,, a vacuum 2, , a virtual representation U, of SL(2,C) on J#, leaving 2,
invariant, and Euclidean field operators ¢}, aeA,, with every parametrized disk,
7, on the Riemann sphere. Let y be the image of y, ={z:Rez >0} under a
Mobius transformation w™'=w, . Let f—>"f be given by (2.41). We define a
reflection 6, at the boundary, dy, of y by setting
Ow(z) = w(l,z), ie.
0,z=w"1(Ow(z)) = w1 (— w(2)*); (2.46)
see (2.4) for the definition of 6=6,,
We define
FL={f"fesL"}. (247

The space & carries an inner product defined by

<f g>y ZZIGa a,ﬂ, B (Byzm(eyzn)*a'"’z:mz:n*)

mmg B

n hi . hi ]*

D( 2* > [<_Z_*Hyz) ] Jaran (215 2a)*
gy g2 ,Zm)ﬂd2 Hdz’ (2.48)

Here d?z = d*x = dtdx. By a careful change of variables, w = w(z), and by using
that w is a Mobius transformation, one finds that

L9y =<"1.790,. (2.49)

Since the image of &, under w is &7, see (247), <"f,"f),, 20, by (2.17)
and (2.16). Hence (',"), is positive semi-definite on . A Hilbert space #, can
now be constructed by the same reasoning that gave J, . The injection of &
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into J#, is denoted by i,. The map I,,, defined by

Ly, i(f)=i""'f), (2.50)

where w is the Mdbius transformation mapping y to y,, defines an isomorphism
from #,, onto s, which by (2.49) preserves scalar products. We set

Q Q,,.

Then €, is the image under i, of the sequence feZ; given by f(Q)=1,
Joroa(Z1s--52,) =0, for all n=> 1. We also define

y =1,

dw \'@ dw \H®
w@ﬁﬂm=hm(a) u(E) (2 pulw. W) (251)
This definition is consistent with Egs. (2.27), (definition of ¢, on ', ), (2.41),
(definition of fi—"f), and (2.50), (definition of I,,,).

Every Hilbert space #, carries a virtual representation, U, of the universal
cover of the Mobius group, given by

U,whiy(f) =i, f), (2.52)

for f in a subspace of #; whose image under w is still contained in &} . Let w,
be the Mobius transformation taking y to y . Combining (2.50) and (2.52), we find
;1 . ((wow,) ! . ow Lowow,) tow !
U (W), i(f) = Uy (wliy (7 f) = i,(%0 ') = i, (*5 "ovomd ™ "ows ')
-1 -1
= Iw+ i((wy oo f) = I)’}’+ U'H (W}'— ‘owowy)i(_f).
Hence

U,w)l

as an operator equation on a dense domain in #, .

We conclude this section by discussing a special example: y =y, = {z:|z| < 1}.
In this example, which corresponds to radial quantization [1], the transformation
w,, = W, is given by

=1,,,U,, (w, 'owow,) (2.53)

Y+

z—1

wo(z) = — m,

(2.54)
mapping the unit disk to the half plane {Re wy >0} withz=1w=0,z= —lWw=
ico. The space & is given by sequences of test functions, f,, ..., (215 .-, 2,), With
supportin M, n{z:|z;| < l,i=1,...,n},n=0,1,2,...,and the scalar product {," >,
is

r90r0= 2 D Gotoatpron (28 T 20 s 2o ZF)
mmzé

n -
'(HI(ZE*)‘2'"252"‘>fa1~-a.,(21,-.-,z,,)*
i=

n m

GprgiEiner Zi) [] 422 [] d%2. (2.55)

i=1 j=1

The Hilbert space 4, carries a virtual representation, U, of SL(2,C). The
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generators L™, L}, L}°, L™, Ly and L}® of U, are chosen as follows; (we drop
the superscript y,):

e’lo represents z+se'z, z*r>z¥, (2.56)
e’l- ' represents zr>z + 1, z¥oz¥ (2.57)
rL1 2z * *
represents ZHT__’ z¥ > 2%, (2.58)
—1z

The action of the generators L_,,L, and L, is obtained by exchanging z and z*
in the above formulas. Using the analyticity properties of the Green functions
established in Proposition 2.1, one verifies that the operators e*°, ¢®L~1 and e*X
are densely defined operators on . , for | 7| small enough. Using (2.55), one shows
that

Lt=L, L¥=L_,, L* =L, (2.59)

and similarly for L_,, L, L,. From the definition of the generators and (2.59) one
may conclude that

[L,L,]=0, nm=—1,0,1 (2.60)

in the sense that the spectral projections of the selfadjoint generators Lo, L; + L,
i(L, — L_,), commute with those of Lo, L, + L_,i(L, — L_,). It also follows easily
from (2.56)—(2.58) and Proposition 2.1 that on some natural domain & dense in #

Y0?

L@l = giootm], = Imaw = 0. (2.61)

See [3] for techniques useful to prove these claims.
Note that, by (2.56), e~ *to*L0 represents the dilatation z—e ™"z, z*e ™ z* on
H ,,. It is shown in [10] that

Lo+ Ly=0. (2.62)

This can also be proven by using arguments of [2]. First one notices that the
scaling dimensions, d(a), x€ A, are all positive. This follows from the fact that, by
assumptions (P2) and (P3),

Ga*a(z’ Z*, 0’ 0) ~ lZ i - 2d(a)e— 2iargzs(a)

must tend to 0, as |z| - co. It is then consistent to sharpen assumption (P1) by
requiring the bounds

GayoeanX s X X1, or e, e Ei 1% < Clg) (min | x; — x;) ),

itj
(2.63)

uniformly in 7= 0, provided |x,|>|x,|>--->|x,|, n=1,2,3,...; (here C(z) and
N(g) are some finite constants). Using (2.52) and the Schwartz inequality with
respect to {+,">,, repeatedly, as in [2], one shows that (2.63) implies (2.62).

Since L, and L, commute, the joint spectrum of (L,, L,) is a subset of R%, and
by (2.62)

spec (Lo, Lo) S {(h, h):h + h = 0}.



430 G. Felder, J. Frohlich and G. Keller
Let {Eo(A4)} denote the joint spectral projections of (Lo, L). It follows from (2.61)
by Fourier transformation that, on the dense domain 2,
L,Eo(A) = Eo(A(n,0))L,, L,E,(A)=EyA(0,n))L,, (2.64)
for n=—1,0,1, where
A(n,m)={(h,h):(h+ n,h + m)eA}. (2.65)
We now prove the following general result.

Proposition 2.2. Let # be a separable Hilbert space carrying two commuting
representations {L,},_ _,, {L,}»~ _, of the Mbius algebra sl(2, C) with the following
properties:

(@ L¥=Lo, L¥=L_,,L¥=Ly, L¥=L_,,

(b) Eq. (2.64) holds on some domain 9 dense in #,
(€ Lo+Lo20.

Then Ly 20 and L, = 0.

Proof. Let A be the joint spectrum of (Lo, Lo). By hypothesis (c), A is contained
in the set {(h, h):h + h = 0}. Hence we may find a non-empty subset 4 of A such that

A(1,0)= {(h,h):(h + LLh)eA}nA= . (2.66)
Let ¢ be an arbitrary vector in 9 with E (A} = . We claim that
Ly =0. (2.67)

To prove (2.67), we note that
L.y = L, Eo(A) = E(A(1,0))L, Y,
by hypothesis (b). But by (2.66), A(1,0)nA = &, so Ey(A(1,0))L,y =0.
Next, let hy,, = max {h:(h,h) = A}. Then

0=<L_\yY,L_¥>=<y,LyL_1y), by(a)
=Y, [Ly, L1 1Y), by (2.67)
=24y, Lo¥ > < 2o Y5 ¥ ).

Hence h,,,, = 0. Clearly, given any ¢ > 0, we can find a set A with all the properties

max =

stated above such that min {h:(h,h)eA} = h,,, — ¢ = —e. Since ¢ > 0 can be chosen
arbitrarily small, it follows that

min {h:(h,h)eA} 2 0.
The same arguments apply to Lo, L,. Thus
Ac{(hh):h20,h20}. W

Remarks. 1. The properties of the representation U, of SL(2, C) established above
can be transferred to quantizations associated with arbitrary parametrized disks,
y, on the Riemann sphere. Let w,,  be a Mobius transformation mapping y to y,,
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and let I, be the corresponding isomorphism from 5, to #,. As in (2.53) one finds

Uwl,,,=I,,U, (Wyyo OWOW,,,).
It is compatible with this equation to define the generators L}, L}, n= —1,0,1, by
setting
770 = IvroLyo EZIY’VO - IvvoL ° (2~68)
forn=—-1,0,1.

2. Using Proposition 2.2, one can prove an analogue of Proposition 2.1 in radial
quantization by working with the semigroups z-° and zZo which are contractions
for |z| £1 and |z] £ 1. One notices that by (2.56) and property (P2), Eq. (2.11),

G2, 2) = zhozLogh (1, 1)z~ Lo~ H@zLo—he)  qe A, (2.69)

provided —n <argz<m, —n <argZ <m. As in (2.39), one then finds that G(z, z*)
is the restriction of a function Hy(z,Zz) holomorphic and single-valued in z and z
on K, x K, where

=(z:|zy|> - >|z,|, —n<argz;<m i=1,...,n}. (2.70)
The function H (z,2) can obviously be extended to the domain K> x K., where
K7 ={z:|z1|> - >z}

But since K, is not contractible, Hy/(z, z) may and does have non-trivial monodromy
onK} x K,,> ; see Sect. 4. Its monodromy can be removed by passing to the covering
space K> x K, where

K> ={z:|z;|> - >|z,, —0 <argz; < 0,i=1,...,n},

and extending the definition of ¢,(z, Z) to the domain {z,z: — 0 < argz, argz < oo}.
These features were a source of confusion in the early days of conformal field
theory which was resolved e.g. in [9].

3. The Chiral Structure of Conformal Field Theory

The goal of this section is to show that, under certain additional assumptions
concerning the existence of a conserved energy-momentum tensor and possibly
further conserved “currents,” every field ¢,(z,Z) has a holomorphic factorization

bz, 2) =Y. £,:0,(2) ® 0(2) G.1)

for some complex coefficients f,,, and chiral fields ¢,(z), p,(z). The sum in (3.1)
extends over multi-indices x and v. If the theory is a so-called rational conformal
field theory that sum is finite, for all aeA,, and Eq. (3.1) becomes an extremely
powerful tool in the study of conformal field theory.

The derivation of (3.1) rests on first finding all chiral fields already contained
in the operator algebra generated by {@,(z, 2) },e4,- The most prominent example
of such a field is the energy—momentum tensor which we now study. Its existence
is guaranteed by the following additional assumption typically made in conformal
field theory [10]:
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(P4) In the operator algebra generated by the fields {$,(x)} .4, there are local
fields T,,(x), u,v=0,1, with the following properties:

Tuv()_c) = Tvu()_c)’ T:v(t’ -)_C) = Tuv(_t, X), (32)
00Ty —0,T,; =0, (ie. T, is conserved), (3.3)
d(T,)=2, s(Too— Ty, £2iToy)= %2, (34)
where d is the scaling dimension and s the spin. N
It is assumed, moreover, that the generators L,,L,, n= —1,0,1, can be

expressed in terms of T,
(y=y+={z:Rez>0}),

uv» iD particular, in Osterwalder—Schrader quantization,

H = [dxT,(0,x), and
P = [dxT,, (0, x). (3.5)

Finally, it is assumed (temporarily) that the Green functions (vacuum expectation
values) of T, are parity-invariant.

Remarks. 1. Eqations (3.2), (3.3) and (3.5) hold in the sense of densely defined
sesqui-linear forms on # x .

2. Assumption (P4) can be rewritten as an assumption on Green functions
Gyyoooa(X15-.,%,),n=0,1,2,..., in the Euclidean domain. But such a formulation
is more cumbersome; (see also [1]).

It follows from assumptions (P1)—(P3), Sect. 2, and (P4) that T, is traceless, i.e.

Th =0, (3.6)
and hence, using in addition (3.3), that T, has only two independent components,
T=Ty+iTy,, onlydepending on z=t+ix,

T=Ty—iTy,, onlydepending on z*=t—ix. (3.7
In Osterwalder—Schrader quantization (y =y,), we define operators

(=1

_(=1 _Aal-n A1 +n
L,= ™ fdx(x — i)' ~"(x + i)' *"T(0, x),

=77

jdx(x H(x + )T, x). (3.8)
Then {L,},.; and {L,},.; satisfy two commuting Virasoro algebras

c
+ 51 =16, 1m0,

[LmLm] = (n - m)Ln+m 12

(3.9)

c
-'(n3 - n)én +m,0>

[I'mz:m] = (n - m)z-‘n+m + 12

for some central charge ¢ 2
Results (3.6)—(3.9) form the contents of a general theorem due to Liischer and
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Mack [11]; see also [12] for some earlier partial result. It is easy to show, using
(3.4) and (3.7), that

L2 =0 for nz -1 (3.10)

The vacuum expectation values (2, L, ---L, £ can be computed recursively from
(3.9) and (3.10); see [11,1]. We now extend the intertwining relations (2.68) from
n=—1,0,1 to all neZ. For example,

LI I, . Le, neZ, (3.11)

y+v0 = Lyivo

where {L}* },.; are the generators introduced in (3.8); (similar relations are required
for L)+, L}°, neZ). Using that, by (3.4), (3.7) and (3.9), T(z) transforms tensorially
under Mobius transformations with conformal weights h(T)=2, h(T)=0, we
conclude from (3.11) that

L= § z"*'T(z)dz, neZ, (3.12)

lz|=1
in radial quantization, and similarly for L°.
More generally, if

a0
gw= Y ew't!
n=-—oo
is an infinitesimal conformal transformation and v is a disk on the Riemann sphere,
we set

T'(e) = § e(w) T(w)dw.

oy

If w,, is a MObius transformation mapping a disk y’ to y then
TYe)l,, =1,, T ((eow,.,) (W) ") (3.13)

This can be derived from (3.11) or, more simply, from the transformation law of T,
dw\? .
T(w)= 5 ) UWT()U(w) (3.14)

under Mobius transformations. [If ¢ is an infinitesimal Mobius transformation
then (3.13) is consistent with (2.53) (with y, replaced by y") and with (2.68)!].

From now on we shall drop the superscripts, y, from L}, L}, T?, #7,..., whenever
they are clear from the context.

We now study the representation theory of the Lie algebra Vir@ Vir with
generators {L,,L,},, on the Hilbert space # of some conformal field theory
satisfying assumptions (P1)—(P4). In the following discussion it may be convenient
to think of radial quantization (y = y, = {z:|z| < 1}). The generators L,, L, are then
given by Eq. (3.12). Using the facts that T(z) and T(Z) are local fields and using
the analyticity properties of the Green functions H,,..., (z;,Z;,...,2,,2,) (trans-
ferred to radial quantization; with o = 1 being the index for T and « = 1 being the

index for T), one can easily prove that Vir and Vir have a common invariant

domain, 2, dense in 2 on which all the generators, L,, L,, are defined, satisfy the
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unitarity condition

L¥=L_, L*=L_, neZ (3.15)

and the Virasoro algebra (3.9).

By (2.56) and assumption (P4), e*l° represents the transformation z —»e'z,z -z,
and eo represents z —z, Z—e'z. From this and Proposition 2.2 one derives that
the domain 2 can be chosen to be invariant under ¢°% and, using the Virasoro
algebra (3.9), that

LneiwLo — eiw(Lu+n)Lm (316)

for Imw 20, as an operator equation on £. Similar observations hold for the

generators L, of Vir. [Detailed proofs of these claims are somewhat lengthy, but
follow from Proposition 2.1 and the contour integral techniques in [1].]

Proposition 3.1. Let # be a separable Hilbert space, and let Vir and Vir be two
commuting Virasoro algebras with central charge c, defined on a common invariant
domain, 9, dense in # . Suppose that L, and L are positive operators and that (3.15)
and (3.16) hold on 2.

Then the representation of Vir@® Vir on 5 is completely reducible, i.e. # is a
direct sum or integral of spaces #, ® H';, where #, is the completion of an irreducible,
unitary highest-weight module.

Proof. Let A, be a non-empty open subset of A = spec(Ly, L) such that
A (n,m) = {(h,h):(h+nh+ med, }nA=, (3.17)

for all n =1 or m = 1. Since L, and L, are positive operators, by Proposition 2.2,
such a set A, exists. Let 9, = Eq(4,)2 = 9, where Eo() are the joint spectral
projections of (Lg, Ly). Let €2, and n> 0. Then, by (3.16) and (3.17),

Ly = L,Eo(A,)¥ = Eo(4,(n,0)) L,y =0, (3.18)

for all n> 1. Similarly, L,y =0, for all n> 1. Hence  is a direct sum or integral

of highest-weight vectors for Vir @ Vir, (labelled by points (h, h) in the support of
the measure d{y, Eq(h, h){y ). Let 5, be the closure of the linear span of

{L—m ...L_"kf,_m‘ ...[_ml,/,},

for arbitrary positive n,,...,n,my,...,m;, and arbitrary ye2,. Clearly, 5, is

invariant under Vir @ Vir. We note that since the scalar product on # is positive
definite and by (3.15), a singular vector contained in 5, is necessarily the zero
vector. Thus 4, is a direct sum or integral of (completions of) irreducible, unitary
highest weight modules.

Now, consider the orthogonal complement, # © #;, of #,. Let A, < A\4,
be the joint spectrum of (Ly, Lo) on # © ;. Let A, be a non-empty open subset
of A, such that

A,(n,m)nAy=F, forall n=1 or m=1.

Again, such a set A, exists, unless #°, = #. We define 2, = Ey(4,) (X O H# )= D.
The construction described above can now be repeated, and we obtain a closed

subspace, ¢ ,, of # © # ,, invariant under VirG—)V—ir,.... This process can be
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continued inductively at most countably many times. This completes the proof of
the proposition. W

Remarks. 1. If the spectrum of (Ly, L,) is discrete, then the arguments used in the
proof of Proposition 3.1 yield a direct sum decomposition
H=PHQH, (3.19)
@0
where #; is isomorphic to the completion of an irreducible, unitary highest-weight
module for Vir.

2. Unitary, irreducible highest-weight Virasoro modules, M, ., have been classified
in [13,14,15]. They are uniquely specified, up to isomorphism, by the central
charge, c, and the highest weight, h, (the smallest eigenvalue of L, on M, ). If ¢ > 1
M, is isomorphic to the Verma module with highest weight h and central charge
c. If ¢ <1 only a discrete series of values of c,
6
c=1——, p=3,4,...,
(p+1)

and of values of h, depending on ¢, is possible [14], and M, is a quotient of the
corresponding Verma module by a maximal submodule generated by two singular
vectors.

3. The unitarity assumption (3.15) is essential for complete reducibility. Non-
unitary Fock space representations which are not completely reducible are
known [13].

4. It is natural to ask whether the representation of Vir@ Vir on 4 can be
integrated to a virtual representation of I ® I', where I” is a central extension of
the group of conformal transformations, z — w(z), which can be continued to a
projective, unitary representation of Diff S' ® Diff S*. The answer is affirmative,
see [16]. By Proposition 3.1, it is enough to study the integrability problem on
irreducible subspaces for Vir @ Vir.
One may now ask whether the fields {$,(z, Z) },. 4, transform tensorially under
I'®Tr,ie.
_ ~ oy [aw '@ (dw
U(W, W)¢a(Z’Z)U(W’ W) - < dZ > (Z)< df
if w and w are conformal transformations close to the identity in a neighborhood
of z, z, respectively. This does not follow automatically from assumptions (P1)-(P4).
It is customary to make the additional assumption [1] that {$,(z,Z) },c 4, contains
a subset of so-called primary fields {0(2,2) }yea,» A1 & Ao for which (3.20) holds.
[Note that T and T are not primary, since the central charge c is non-zero [1, 14].]
The infinitesimal version of (3.20) is [1]

Tl(a)
) (@) pa(w, W), (3.20)

(Lo (2,21 =212 6,6,2) + (14 D h(2,)

) 2 ) (3.21)
[L,, ¢.(z,2)]=2"""1 Fr $o(2,2) + (n + 1)2"h(0) ,(z, 2),
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for all xeA4,, neZ. Note that if ¢,(z,Z) is primary the vector

) Z\Lo—h@ /> Lo—ha)
¢.(0)2= lim 7 1 ¢.(4,2)02, (3.22)

2,70

A <1, is a highest-weight state for Vir@® Vir, with
- )
Lo 9,(0)2= h (2)¢,(0)£2,
as follows from (3.21). For ae A, we define 5, to be the closure of

{L—nx "'L—nkz‘—mx "'E—m;¢a(0)g},

for arbitrary positive integers n,,...,m,.

One may now ask whether

# =D, (3.23)
acAy

A theory is called (Vir @ Vir)—minimal if (3.23) holds, with 4, a finite set. The
minimal models analyzed in [1] are (Vir @ Vir)—minimal theories. Unfortunately,
most theories are not (Vir@ﬁ)—~minimal, A, will be infinite. For example, the
Wess—Zumino—Witten models are not (Vir @ Vir)—minimal theories [17].

Structure analysis of conformal field theory is simple for (Vir @ Vir)—minimal
theories. However, we do not wish to confine our analysis to this class. Our strategy
is to look for a larger “symmetry algebra,” U, containing Vir@® Vir, with the
property that J# splits into a finite direct sum of irreducible subspace for .
Accordingly, such a theory is called -minimal. The construction and classification
of appropriate symmetry algebras will be the subject of another publication. Here
we just describe some basic features of U relevant for our purpose.

Let # be the operator algebra generated by {¢,(z, 2) },c 4,- By assumption (P4),
& contains Vir @ Vir. Let &/, be the subalgebra of all fields in # commuting with
Vir, and let </, be the subalgebra of fields commuting with Vir. More precisely,
we define </, to be that subalgebra of # generated by fields, Ji(z), which are
independent of Z; 7, is defined similarly. Clearly &/, contains Vir. Depending on
the theory we study, .o/, may contain further currents, J%(z), of spin s=1 [17]
(current algebra) and/or of higher spin s =3,4,... [18]. A simple lemma says that
if o/, contains a primary current, J(z), of spin 2 then the theory is reducible, in the
sense that the Virasoro generators, L,, can be decomposed,

L,=L\+--+Lk neZ k22, (3.24)
where {L.},.;, i=1,...,k, are commuting Virasoro algebras with central charges

¢, i=1,...,k, and the central charge, c, of {L,}, is given by

k
c= i; c;. (3.25)

We may limit our study to irreducible theories. Then T(z) is the only current of
spin 2. B
Our first candidate for U is &/ ® «/,. However, it may happen that
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o o® A, is too small a symmetry algebra for our purposes. It can be further
enlarged by a construction that we briefly sketch here; (details will appear
elsewhere): In radial quantization, the algebra ./, carries a representation, {a,},.z,
of rotations which, for |z| = 1, reduce to light-cone-translations. They are defined
on the generators of &/, by

A o3J (2)—> o (J(2)) = et (e 2), (3.26)

where h = h(J'(2)). It is easily seen that {a. } is an abelian group of *-automorphisms.
A representation of ./, on a Hilbert space # is called a positive-energy
representation [19] if o, is unitarily implemented on 3 by operators e'L°, i.e.

o (A)=eLode "o forall Aest,, (3.27)

where L, is a positive operator on H.
We then study the representation of &/, on the total Hilbert space

H=P A, (3.28)
jeFo

where ¢ is the set of all inequivalent irreducible positive-energy representations
of o/ ,. It is assumed that there is exactly one representation, 5, which contains
the vacuum £2 Clearly, #, has a natural embedding in the physical Hilbert space,
A, of the conformal field theory. According to the analysis in [5], one attempts
to construct intertwiner fields, y/(z), mapping a dense domain in #, to a dense
domain in # ;. These fields are, in general, non-local, i.e. the conformal weight h;
(=spin s;) of y’ need neither be an integer nor a half-integer, [5]. We define a
chiral algebra o/ to be a maximal extension of the algebra &/, by intertwiner fields
$(2), je Fo(H) S #o, such that the vacuum Q is a separating vector for o, i.e. if
A is an arbitrary polynomial in the fields Ji(z)e.s/, and y/(z), je £ (), then

AQ=0 implies A=0 on #,. (3.29)

This turns out to be a very powerful constraint that permits one to essentially
classify all possible chiral algebras .«/. They turn out to be slight generalizations
of algebras consisting of fields of integer spin [17, 18], half-integer spin [20] and
parafermions [21]. This will be discussed in more detail elsewhere.

We denote the generating fields of & by {y,,(z)|mel}; they may be taken to
be T(z), J'(2), ¥(2), je £ o(</). Implicitly it is assumed that they are quasi-primary,
which in turn guarantees that the algebraic structure which is developed is
Mobius-covariant. Instead of working with the fields y,,(z), we may consider their
Fourier-Laurent coefficients, ¥, ,,aeR. In radial quantization, y,, , is given by

Uma= § 2°"P "N, (2)dz, (3.30)

lz]=1
where h,, equals the spin of ¥,,(z), and the real number a in general depends both
on VY, (z) and on v, where v is some vector in the domain of definition of y,,(z),
|z] = 1. We assume that there is an involution * on the index set I such that, in

radial quantization,
1 \2hm 1
(Wm(z))* = <Z_*> l//m"<z—*>
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Consequently one deduces from (3.30) that
(wm,a)* = wm‘, —-a* (33 1)

Concerning the algebraic relations obeyed by ./, we assume that the set of
generators of &/, {,, .}, can be written as the disjoint union of sets g.,go,9<:g>
is the set of those generators which strictly raise the spectral value, h, of L,, the
generators in g . strictly lower h, and g, does not alter the conformal dimension.

With regard to the representation theory, it is supposed that a non-empty set,
F, is the index set for all inequivalent, irreducible positive-energy representations
of &/ on spaces #,,Je #. In addition, if Je ¢, then 5#; should contain at most
a countably infinite number of «/-invariant vectors w; ;, i.e. of vectors which obey
g<wy;=0. N _

The same analysis can be repeated for o/, and &/. The symmetry algebra
A is defined by

W= [ @ ., (3.32)

ie. A is generated by monomials A® A, Aed, Aes/, which must have the
following commutation relations with Ly, — Ly:

[Lo—Lo, A® A]=n-AQ A4, nel. (3.33)

Therefore, A is a subalgebra of .o/ ® o/ containing Vir® Vir. We should
emphasize that the generators of 2, or those of .o, do, in general, not form a Lie
algebra. The examples discussed in [18,21] are not Lie algebras.

The Hilbert space, #, of the conformal field theory is supposed to split into
a finite direct sum

H = @z #, (3.34)

of subspaces, #,, each carrying an irreducible positive-energy representation of
A. The conditions imposed on #, are:

1. There exists a pair of indices (J,J)e ¢ x ¢ such that o = Hsc H,Q H 5.

2. In the finite-dimensional linear space of U-invariant vectors in #9; we
can choose as a basis a set of factorized vectors (vj;®07;) =007 ,e% 7

77€HX 5. Furthermore, v7 ;(0F ;) 1s an eigenvector of Lo(L,) such that v’ has
1nteger spin; AJ; is the correspondlng index set {(j, J)}-

The above hypotheses on the structure of the Hilbert space are supplemented
by the completeness assumption concerning the field algebra &. We require that
for each vj;e#’, there exists an U-invariant (scaling) field $7;(z,Z) defined on
some domam dense in # obeying ¢7(0,002=107. It follows that ¢7; is a
primary field having conformal dimensions hj and h" And finally, {¢"|ae£
(j»7)€A%;}, and their A-descendants should form a set of mutually local ﬁelds

Next, we must specify what we mean by saying that U is a symmetry algebra
of the theory. This is conveniently expressed in terms of Ward identities. Let A
and B be polynomials in the generators {¥,,,} of &/ and A and B be polynomials
in the generators {{,,} of &/ such that 4@ AeW, B® BeU. Consider the
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amplitude

N

<A®Av“, H z;i(z,,f,)B®§v,f,%'>. (3.35)

We say that U is a symmetry algebra for the field algebra & if (3.35) satisfies the
Ward indentity

_ N _ o \lmn
<A®Av§, 11 ¢Z}(z,,2,)B®Bv;‘_;> Y PAB<O",Q',O'",Z,£>
r=1 " I_nn

=/ ijk
— _0\" N .
'P,ZE<UIa ag, O—H’Z, az—> __< a’_ 1__—_1 Zys 2y U:n>. (336)

Here P ,5(d',g,0", 2, (6/02))% isa polynomial inzy,...,zy, (6/621) .,(0/0zy) with
coefficients dependmg on the choices of ¢',g =(0y,...,08), 0", 1, m-(m,, -5 My),
ni,j=(ji,---»jn) ks A, B, but independent ofl m,n, l,],k A, B, and similarly for )
We also assume that

P 5 and Py are symmetric under } (3.37)

arbitrary permutations of {1,...,N},

for arbitrary choices of 4, B, 4, B, g and for all ¢,i,i and ¢”, k, k. Using representa-
tion (3.30), it is straightforward to verify (3.36) and (3.37) for theories where ./ is
the Virasoro or a spin-1 current algebra. [For higher spin currents and para-
fermions, the proofs of (3.36) and (3.37) are slightly more involved.]

The Ward identity (3.36), (3.37) has important consequences. By the conformal
algebra (3.21)

¢z, 2) = zhoztog(1, 1)z~ to iz Lo, (3.38)

and since v% and vf; are eigenvectors of L, and L, (3.38) yle]ds

(o, ¢z, 20> = Dk (o', 0, 0")2H 1A SRR (3.39)

for some structure constants Diﬁ‘, (d',0,0"). We assume that these structure constants
have the factorized form

D:j:(a 0,6")=D(¢',0,0") Ci3(0',0,0") C,Jk(a,a, a"), (3.40)

where C and C are generalizations of Clebsch—-Gordan coefficients. [Equation
(3.40) is easily established for the examples of the Virasoro- and current algebras,
and, in the latter case, C and C are Clebsch-Gordan coefficients.] A general analysis
of symmetry algebras and Egs. (3.36), (3.37) and (3.40) must be deferred to another
publication.

Let P, denote the orthogonal projection onto ,, ceX. The main result of
Sect. 3 is the following lemma.

Lemma 3.2. Under the hypotheses on W and # specified above, the operators
P, ¢3(z,2)P,. factorize as follows:

P, ¢z, 2P, = Ci0,(2) ® 9,(2), (3.41)
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where a =(d',j,0,0"),a=(d,j,0,0"), C,, = C,(0) is some complex number, and ¢ (z),
©,(Z) are operators on the enlarged space H .

Proof. For purposes of an unambiguous interpretation of (3.41), it is convenient
to assume that the operators

=\ 1Lo+L,
Z‘(Z’ Z)’1 0T
are bounded operators, for A < min (|z|,|Z|) £ max(|z|,|Z|) < 1.2 Since P, commutes
with Vir @ Vir, the operator

P, 7z, 2)P, . Aot o (3.42)

is bounded, too, under the same assumptions on 4,z and z. Hence it is uniquely
determined by its matrix elements in some bases of #, and # .. It is there-
fore enough to calculate the matrix elements of (3.42) between states of the form
A® AvZ and B® Bv?, with A® A and B® B in U. By (3.36), (3.39) and (3.40),
these matrix elements are given by

a tmn o' a o
D(d', 0, a")|: Y P, 3,1(0', g,0”, z,——) 2T CL (0, o, a")] (3.43)

I,m,n 0z ijk

s O\ e e s
> Pis, 0,0,0" 2= | 2"  Cimlo’,0,0") |,

T ijk

where B, = A'°B, B, = 4*°B. Hence these matrix elements factorize into a function
only depending on z and a function only depending on zZ.

For aeZ, let #, ; be the Hilbert space which is obtained by taking the closure
of span {Av? ;|V Ae o/ such that 34(A)e o/ obeying A® AeW; Vj such that 3] with
(j,j)€A%;}, the closure being taken in the norm of /. The Hilbert space #, g is
defined similarly. We get the inclusions #5;c #,, ® #, p < #,;® H ;. Define
now

‘}?z(@”a,L>®<@%u,R)' (344)

The two factors in parentheses in (3.43) can now consistently be interpreted as the
matrix elements,

<Avtli,li’ (pa(Z)B).vtlr(’,’k >> (345)
(AvE, 0 2)B5%> (3.46)

of densely defined operators @,(z): 5, = # o and @ (2):H o g = H 5 g We
finally set C,,(¢6) = D(¢',0,0"), and the proof of Lemma 3.2 is complete. W

We conclude this section by excm)lifying (3.36), (3.39) and Lemma 3.2 for
A-minimal theories, with A = Vir@ Vir. Let ¢;(z,Z) be a primary field (as usual

2 Alternatively, one could use the assumption proposed in the proof of Proposition 2.1
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in the sense of Egs. (3.21)) with conformal weights h; and h;. Let

H=PDH; (3.47)

jjeZ
be the direct sum decomposition of # into irreducible sub-spaces for 2. In our
example # ;= #;® H#;, where #; is the completion of an irreducible highest

weight module for Vir, and s1m11arly for # Let I ={j:jjeX} and I'= {j:jjeX}.
We define

H=PH,Q®Hx (3.48)
Jel
/el

Let v -be the highest-weight vector in # . A general matrix element of P ;¢ -(z, 2)P,;
is of the form

<H L., H L ,v: 05 20[[L_, 1] I:‘,ﬁsvk;>. (3.49)

s

The generators L*, =L, can be commuted through ¢;; using Eq. (3.21), and
through [_[L_m , usmg the Virasoro algebra (3.9). We then use that L,v,; =0, for

n> 0. The surviving L_,’s acting on v, ; are then commuted back through ¢ usmg
(3.21), and the ones left over kill v~ The same procedure is applied to the L,

with the result that
0\ _20 _
3.49)=P Z5 P Zas v @(z, 2 05>

: 2 O\
R G G AR

for some polynomials P, depending on i,j, k,n and m, and P, depending on i,j, k, 7i
and m. Hence (3.49) factorizes, and this provides an abinitio proof of Lemma 3.2,

for A = Vir @ Vir. Very similar arguments can be used for current algebra. In more
general cases, it is advantageous to use the contour integral techniques of [1], see
(3.30), to prove (3.36)—(3.40).

Remark. Since A contains Vir® Vir, the L,’s commute with the projections
P,. Hence if ¢ is a primary field, the chiral fields ¢, and ¢, are primary, too:

(L, @u(2)]=2""" ggfpa(Z) + 2%(n + Dha@,(2), (3.50)

where h, = hS.

4. Existence and Monodromy of Conformal Blocks

In Sect. 3, we have discussed the Virasoro algebra Vir@® Vir and then enlarged
it to a symmetry algebra, A = [« ® o/ ],,., characterized by properties (3.29) [£2
is separating for 7, (3.33) [locality], (3.36), (3.37) and (3.40) [Ward identities].
The chiral algebras .« and .7 act on an enlarged Hilbert space, A, containing the
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physical Hilbert space, #, as a subspace; see (3.44). The fields §; in &/ need not
be local fields, in general. & is the operator algebra generated by the local fields
{¢7(z,2)} and their A-descendants. For the purposes which we have in mind it is
convenient to change some notation at this point. Therefore, we summarize those
properties of (#, U, #, #) which are used in this section:
(R1) o splits into a finite direct sum,
H=PA,, 4.1)

geX

of subspaces, 5, which carry irreducible representations of 2.

(R2) The algebra U is a symmetry algebra for the conformal field theory, i.e.
the Ward identities (3.36), (3.37), (3.39) and (3.40) hold for the invariant fields
@5 (2,2) =:1¢,5(z,2), aeZ. (Here we have introduced the notation J=(j,a),
J=0,x)) W

(R3) Given oeZ, let #,, and #, x be defined as in the paragraph preceding
(3.44). We abbreviate (0,L) by i and (o, R) by i, where i ranges over a finite set A
and i over a finite set A. We define now

K=K, (4.2)
with iie X < A x A. By construction
H i H QK (4.3)
Let P;denote the orthogonal projection onto ;. Then
Pi$,1(2,2)P;= C.3j0is;(2) ® 0175(2). (44)

where C;}/ are complex numbers. We also abbreviate (i, J,j) by a, (i,J,j) by a and
C;ﬁ by C,;, as in Lemma 3.2. The field ¢,;;(z) is a densely defined operator from
H;to H;, i,jeA; ¢;77(2) is a densely defined operator from #7; to #. By
construction,

{0, @iz =0, (4.5)
unless ve#';, v'e A}, and similarly for ¢;7;(z). W

(R3) forms the contents of Lemma 3.2.
Vacuum expectation values of chiral fields, ¢,(z), are called conformal blocks:
For zeM, , where

M; ={z=(zy,...,z,):Rez,>--->Rez,}, (4.6)
we tentatively define
Fa|~-a,,(zl’ cee 3Zn) = <Q9 (pal(zl)'“ (pa,,(zn)g>’ (47)

where a; = (j;~{,J;,j;), wWith j, =1, j, =1, as follows from (4.5); [, is the vacuum
sector containing the vacuum €2.]

In (4.6), (47) we suppose that we are working in Osterwalder—Schrader
quantization, (y =y, = {z:Rez > 0}). It is not entirely a trivial matter to show that
the definition of conformal blocks, Eq. (4.7), makes sense, since the operators ¢, (z;)
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are unbounded. A similar problem was encountered already in the proofs of
Proposition 2.1 and Lemma 3.2. It was pointed out there that difficulties with
domains of unbounded operators can be avoided if one assumes e.g. that

¢,5(e,e)e H (4.8)
is a bounded operator, for arbitrary ¢>0, ¢ > 0. Clearly, the Hamiltonian H

belongs to Vir@® Vir and hence to L. It therefore commutes with the projections
P and hence

P, 5(e,e)P e " (4.9)

is a bounded operator, as well. Standard arguments sketched in the proof of
Proposition 2.1 then show that the Green functions

Haldl..la"a’"(zlyz-_l’ e ,Zns Zn) = <Q, (}511]1(21, Z—I)lej_]d)‘]zl_z(ZZ’ Z_Z)szj_z
“'P}",l):l_l(i)J"j"(Z",Z_n)Q> (410)

are holomorphic in (z,Z) on M, x M, . Since P ;commutes with arbitrary Mobius
transformations, U(w), and £ is invariant under U, one can, as in the proof of
Proposition 2.1, continue the functions H,,(z,Z) to the domain [ .4, (w),

w

where
Myt (w) =M, (W) x M, (w*), (4.11)

and M, (w) is the image of M, under a Mdbius transformation w. From Lemma
3.2 it now follows that, for (z,z)eM, x M, ,

Hy i Z15205 520 2) = i1=_ll CoiFaya 215 s2)F, s 1y n 2, (412)
with F (z) as in (4.8), and
F(2)=<Q,9, (2,) - ¢, (2)2). (4.13)
By (4.11), F (2) extends to a holomorphic function on (UM, (w),and F o(2) extends
to the domain { )M, (w). Note, however, that F (z) need not be single-valued on
(UM, (w), since | )M, (w) is not simply connected.
Thus, we have proven the following result.
Proposition 4.1. The conformal blocks F ,(z) and F (z) are holomorphic functions in
zel UM, (w), g‘eU M, (w), respectively, provided (4.8) is assumed.
Remark. In radial quantization, it would be more convenient to use assumption
(3.42) and work with the domains K, , K, (w), where
K, ={z:|z,|> - >]z,|, —n<argz;<mi=1,...,n}. (4.14)

Which quantization one uses is a matter of convenience. Assumptions (3.42) and
(4.8) have equivalent consequences.
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Next, we recall that the Green functions

H,(z.2)= H’J"}IJ"J}"‘ W21y ZyseensZnyZp)s 4.15)
are given in terms of the conformal blocks F% and F’;-, with
F;‘Jll‘:{,}"_x(zl,...,z,,) =F, ..(215.,2) (4.16)
ai’:(ji-l"li’ji)’ i= 1,...,”, j0=jn= 1 by
Lz2) =g FLQ), (4.17)
where
H_ T ch-1in
g9;;= i1=_[1 Cjc-:hi-‘ (4.18)
Here cf;_*’;’; =C,.. @=Cji—1,J: J;); see (4.4) and (4.12).
Using that
Y, Pq=1, 4.19)
1,)eX

on &, we see that the full Green functions, studied in Proposition 2.1 of Sect. 2,
are given by

H.llfl“.l,,f"(zliz_l""’zn’Z-n)= _ Z B H{JLJ-(Z,,Z)
Jidtedn=1n=1 _
=7 -
= Y dFeRo. (4.20)

J1I1redn=1In—1
The functions {Fi(g)} form a vector space, 4,, which, by assumption (R1), is
finite-dimensional; see Eq. (4.1). Similarly, the functions
FL(2) Zg“F (2)
form a finite-dimensional vector space QZ-
We introduce a basis, {F A(DYM.,, in By; 7> (each F4(2) is a linear combination
of {F% } ) and a basis, {F ,(z }A 1» in 4, such that
N1

H,z2) = Z FL(2)F ,(2) 4.21)

for some N; <min (K, M). It is a simple exercise in tensor algebra to convince
oneself that representation (4.21) can always be achieved, the point being
that F,(z),..., Fy,(z) are linearly independent functions, and F,(2),...,Fy,(Z) are
linearly independent functions. By construction of the functions {F ,(z)}, they are
holomorphicin z on (] M, (w), as follows from Proposition 4.1. A similar statement

holds for {FA(,z:)}.
We define
HQ‘Z(,Z,, z)= HJH_“,-"_,I...,"_,njﬁ_m(zl,z’l, ooy Zny Zy), (4.22)

where 7 is an arbitrary permutation of {1,...,n}.
By Proposition 2.1, H7;(z,2) is defined and holomorphic on U U M. ™ (w) x
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M ™ (w*), where

M () = {Z:Rew(zg-1,) > - > Rew(z,- 1)}, (4.23)
see also (2.31), (2.34). For (z,2)e| J M, (w) x M, (w*), we find, by repeating the
arguments leading to (4.21), "

N,
H75(2,2) Z Fo(z)Fx( (4.24)

for some linearly independent functions Fi(z),...,F} (z) holomorphic on
(UM, (w) and linearly independent functions F}(2),...,Fy (Z) holomorphic on

UM, (w). Here N, is some finite integer.
) Representations (4.21) and (4.24), together with locality
H3j(nz, n) = H3j(n'z, '9) (4.25)
for arbitrary permutations m and 7', with
T(Zyye s Zg) = (Zg-115-nn9Zng-14)s (4.26)

are the key ingredients to extend the conformal blocks {F 4(z)} to multi-valued
functions on the space

M,={z,,...,2,:z; # z;, for i # j}

corresponding to single-valued holomorphic functions on the covering space, 1\71,,,
of M,. In the process of analytic continuation of the conformal blocks, F,, we
need some simple facts on braid groups. The group, S,,, of permutations of n elements
acts on M, as described in (4.26). The braid group B, can be defined as the
fundamental group, n,(M,/S,), of M,/S,. For alternative definitions see [4, 5].

Proposition 4.2. The braid group B, acts freely on M,. A fundamental domain for
this action is A, = M,; .> Let A, be the image of A, under beB,. Then Ayn A, = &
ifb#b.

Proof. Fix a point PeM,. The covering space M, can be described as the set of
pairs (z,[y]) where zeM,, and [y] is a homotopy class of paths from P to z.

Similarly, B, can be described as the set of pairs (r, [7]), where neS, and [y] is a
homotopy class of paths, y, from P to n(P). The multiplication law in B, is given by

(. YD, [v']) = (o', [yon(y) ]).

One verifies that

(m, [y Dz, [v']) = (r(2), [y°n(y")])

(n(
defines a free action of B, on M,. Let (z, [y]) be some point in M,, and let 7S,

3 More precisely, A, is the lift of M in M,
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be such that Rez,,;, < --- <Rez,,. Choose P to be (1,2,...,n—1,n). Then
(53 ['))]) = b(ﬂ— I(Z,)’ [?0]),

where beB, is given by

b=(m[yom(yo)™"),

and [7,] is the unique homotopy class of paths, joining P to n~!(z) without leaving
M, . Thus the set of pairs (z,[y,]), where Rez; < --- < Re z, and y, does not leave
M, ,is a fundamental domain, denoted by 4, for the action of B, on M,.To prove
the second part of the proposition, it is enough to consider the case where b’ = 1.
Then if b(z, [yo]) = (', [v0]), with (z,[y,]) and (z/,[y5]) in 4,, it follows that z =7
and [yo]=1[7o], by the uniqueness of [y,]. Thusb=1. W

From now on we denote a point, (z,[y]), in M, by Z, and identify a
function f(z) defined on M, with the function f(Z) defined on A, by setting
f(2)=f(z,[y0])=f(z). We also note that Mdbius transformations, w, (in particular
rotations), act on M, in the obvious way w:(z, [y])—(w(z), [w(y)]). The image of
A, under w is denoted by A4,(w).

We now return to representations (4.21), (4.24) of the Green functions
HH"(Z»E_):

Ny

H,(z,2)= Z F (Z)F 4(2), (4.27)

for ZeA,(w), Ze A, (w*). The right-hand side of (4.27) can be viewed as a parametric
representation of an n-dimensional surface, S, with surface parameters Z, in the
N ;-dimensional vector space, &, spanned by {F ,(Z)}"j+ . The linear independence
of {F (Z)}5, implies that this surface is not contained in any hyperplane of #
of positive co-dimension. To prove this chllaim, represent a function F(Z)eZ as a

vector (A4, ..., Ay, )EEY, given by F(Z)= Y. A,F 4(Z).If our claim were false, there
A=1

would exist a vector (49,...,4%,) # 0 orthogonal to (F((Z),..., Fy,(2)), for all Z.
Hence

Z ASF,(Z)=0, forall Z.

This contradicts the linear independence of {F ((Z)}%L ,. By analyticity, our claim
is true whenever Z ranges over an arbitrarily small, non-empty open subset, K, of

U A (w).

We conclude that, given any such K, we can find points Z,,...,Zy, in K and
complex numbers p,...,ud" such that
Ny

Fe(2)= Z f: FA2)F 4(Zp) = Z ueH,{(Z, Zs), (4.28)

for every Ce{l,...,N,}. [Here H;(Z, Z)= H,;(z,2), for ZeA (w), ZeA,(w*).]
Similarly, given some non-empty, open subset, K*, of { ] 4, (w), one can find points

w
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Zi,...,Zy,_in K™ and complex numbers ¢, ...,x¢" such that

-5 WY @R Y L) 629

for every Ce{l,...,N_}.

Suppose that, for some b=(n,[y])eB, and a Mobius transformation w,
Ay-inAy(w) # F, and Ap -1 N A (W*) # &, where b* = (r, [y*]), and y* is the
path complex conjugate toy Choosmg suitable points Z ..., Zy, in Agey-1 N Ay (W)
and complex numbers ul,...,uY, we have from (4.28), locality (see (4.25)) and
(4.24) that

N, N,

FolZ)= Y weH, (2. Z0)= ¥ ieH}, (2. b*Z ) = z RAB)FL(bZ)  (4.30)

<

for ZeA,-1nA;(w), where
b= WF6Zy) (@31)
Similarly, using (4.29) and locality we find
Fe(2) = Z REBMF,0b7'2), (4.32)

for b™'ZeA,-1n A;(w), and asuitable choice of Z,,..., Zy_in Ay -1 0 A; (W), with
Nﬂ

RE(b™")= Y, KEF (Zs). (4.33)
B=1
Comparison of (4.30) and (4.32) shows that
N,=N,, and R(b~')=R(b)" . (4.34)
Next, observe that the right-hand side of (4.30) is holomorphic in Z eU Ay
ie. bZeU A (w). Hence F(Z) extends to a function holomorphic on U A (w)u

U A,- l(w ), provided A, - n A, (w) # &, for some w. This procedure can be repeated

and will yield an extension of F ,(Z) to a holomorphic function on M,, thanks to
the following fact.

Proposition 4.3. For each beB,, there exists a finite sequence 1 =by,b,,...,b,=b
of elements of B, and angles ¢,...,¢y_, —~n<@;<m, j=1,...,k— 1, such that

Ay, (r, )N A

bi+

contains a hon-empty open set. [ Here r,, denotes arotation through an angle ¢ around
z=0.]

Proof. We introduce the standard generators t,,...,7,_; of the braid group
B,:t;=(t;,[y:1), where t; denotes the transposition of i with i + 1 and y; is the path
leaving 1,...,i—1,i+2,...,n constant and exchanging i with i+ 1 along a
positively oriented path; see Fig. 1; (we have set P=(1,...,n)eM,).
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> o—b
o | > Re z
1 2 i iv1 n
Fig. 1
Every beB, can be written as a word in the generators 7,,...,7,_,:
b=t

lk’
withe;j=+1,j=1,...,k, k=1,2,.... We define
bj=1ii-1.
To complete the proof of the proposition, it is enough to show that, for all i and
&= =1 there exists an angle ¢, with — n < ¢ < =, such that Ay (r,)n A contains
a non-empty open subset. This is obvious geometrically. B

Equations (4.30), (4.32), (4.34) and Propositi0r~1 4.3 show that the conformal blocks
F ,(Z) extend to holomorphic functions on M,, with

Z RE(b)FE(Z (4.35)
for some representation R of B,; (N=N,=N,, for all neS,,b=(n[7])eB,). A
similar_analysis can be performed for the functions F ((Z), with the result that
every F ,(Z) extends to a function holomorphic on M,, with

N

Fub7'2)= Y. REBIF5(Z). (4.36)
B=1
From locality (4.25) it then follows that
ZF A((b%)7! Z FR(Z)RE(B)REB*)FE(Z) = %FB(Z)F};(Z),
(4.37)

for arbitrary Z,Z and all beB,. Using the linear independence of the functions
{F,} and {F .}, we conclude that

RMB)RT(b*) =1, ie.
R(b)=RT(b*)" ', for all beB,. (4.38)

We summarize our findings in the following theorem.

Theorem 4.4. Let {G, ; , ;(z;,2%,...,2,,2%)},% be the Euclidean Green functions
of a two-dimensional conformal field theory satisfying properties (R1), (R2), (R3) and
assumption (4.8). Then these Green functions are the restrictions of functions H 41 (Z,.2)
holomorphic in Z =(zy,...,z,,[7]) and Z—(zl, <+sZy, [7]) on the space M X M

to the Euclidean domain {Z Z =(z%,...,z%,[y*])}. Moreover, H,(Z, Z) is a sum of
products of conformal blocks only dependmg on Z,Z, respectively, which transfol*m
according to matrix representations of the braid group B, under the action of B,on M ,.
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The next problem we propose to tackle is to describe the representations R
and R of the braid groups B, appearing in (4.35) and (4.36) more explicitly. Progress
in this direction can be made under an additional assumption that we shall
formulate, now. The key idea is to study the monodromy of four-point conformal
blocks. More precisely, we consider the following expectation values:

K‘;E,J‘,szz(zl J21,22,2;) = CA® A, ¢,,7,(21,2)Pig9,,5,(22,2,)B® Evff% (4.39)

where v and v/ are invariant states for U = [/ ® A Jioc>

A = ‘//jlval “.!pjr»areﬂ

A=y; , -V, ed, (4.40)
where _ B _
[Lo—Ly,AQ A]=nA® A, neZ, (4.41)
and
§ 2Ty (2)de. (4.42)
lz|=1

The generators y;, are defined similarly, and Be </, Ao/ have the same properties,
(4.40), (4.41), as 4 and A, respectively. See also (3.30)(3.33). We recall that v*
is an eigenvector of (L, L,) with eigenvalues (h;,h;), where h, = h%, hy=hS, for
I=(i,a), I = (i,a). Next, we recall that

¢,7(z.5) = 2070 (1, 1)z Lo~ hz Lo~ hs, (4.43)

see (3.38). For 4,4 as in (4.40), (4. 41), A®Av is an entire vector for L, and
for [_,0 The same is true for B® Bv’ v U(ta)A®Av”, U(ta)B®B s where
t, is translation by acE?. Since P,; commutes with z0z%0 we now conclude, using
(3.42), that the function K, 7,057,215 21,22, Z,) extends to a holomorphic function
on | JK3 (a) x K3 (a*), where

K3 ={zy,z5t|z,| >|z,|, —n<argz,<m, i= 1,2},
and K (a) is the image of K5 under ¢,.
Next, we note that, by locality of the fields ¢,;€.%, the function

— -\ kk _ _
K} 5,0,5,(21:21,25,25) = Z K. 7,0,7,(21521,22,2)) (4.44)
hkeX
is symmetric under interchanging 1 and 2. Hence K, ; ; 7,(21,21,2,,2,) extends
to a holomorphic function on

[UKi(a) X K;(a*)]U[UKf(Q) X K;(a*)], (4.45)
where
K3 ={z,,z,t|z,| <|z,], —m<argz;<m,i=1,2}.

By (4.4), (see also Lemma 3.2, (3.41)),

K{‘I"J szz(zxaznzz’zz):QAEF§112(21’22)F§ 7, (Z1,2,) (4.46)
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where (= H oy, H s = H p),

9= Crsti it (4.47)

FI};J;(Zl ,Z5) = AV}, (Pmek(zl)(ijzn(ZZ)Bv§>, (4.48)

and F '; 7, is defined similarly.

From (4.43)-(4.46) we conclude that Theorem 4.4 applies to the functions
K, ; ,zjz(zl,zl,zz,zz) Our purpose is then to analyze the properties of the
representatlons R and R, of B, determined by the conformal blocks {F% ;,,
F'} ;.:kkeX}. In order to avoid too much empty generality, we require some
additional assumptions typical of what might be called “rational” conformal field
theories, [22].

Definition 4.5. A conformal field theory on # is called of order (p, p), if there exist
positive integers p = 1, p = 1 such that

spec(LoP;) < {H;+ p~'Z]N (0, o),

spec (ZOP”-) < {H;+p~Z} n(0, o). (4.49)

[The fact that spec(LoP;) < (0, c0) follows from the positivity of L,; see Proposition
2.2]

Given mmeX, nicX and J,J,, J,J,, with ¢, ; #0, ¢, ; #0, we define an
index set

I(maJlaJZs n) = {k:(pml\k(zl)q)k.lzn(zz) 7:é O}
and a complex vector space
W(m,J,,J,,n) = {(4eC):kel(m,J,,J,,n)};

I(m,J,,J,,7) and W(m,J,,J,,n) are defined similarly. Then the numbers g,;,
defined in (4.47), can be interpreted as the matrix elements of a linear map

g:Wm,J ,Jy, i) > Wm,J,J,, )} (4.50)

(Ag— z gt

kel(m,J,J,,0)
We are now prepared to state a key assumption.

(R4) Non-Degeneracy Condition: We assume that the conformal field theory on the
Hilbert space 5# is of order (p, p). If the distance dist (spec (LoP,z), spec(LoP,p)) =
d(kk,k'k'), for kke X and k'k' X, kk # k'k', obeys

d(kk, k'k') = 0, 4.51)
and if ¢,;,(z) £0, for some n and J, then
Prn(2)=0. (4.52)
An analogous assumption is made for the fields ¢;;,(2), @p;;(2) if d(kk, k'’k') =0
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Finally, we assume that the matrix g defined in (4.50) is a regular matrix, for
arbitrary mm and nn in X and arbitrary J,J,, J,J,. B

Definition 4.6 A conformal field theory, consisting of (%,, #, ), is called
rational if it has properties (R1)—(R4).

The simplest rational theories are the minimal models; see (3.23), [1]. Other
examples are provided by theories for which U = .« ® </, with &/ and ./ some
spin-1 current algebras, such as the Wess—Zumino—Witten models [17]. These
models are examples of theories of order (1, 1). However, theories with parafermions
[21] are of order (p = 1, p = 1), with (p,p) # (1, 1).

Our non-degeneracy condition has the following important consequence.

Lemma 4.7. We assume that (¥, U, #,#) has properties (R1)~(R4). Then, for
fixed J {,...,J ,, the conformal blocks,

Fiizy,z)=Fa 02y, 2,), (4.53)
defined in (4.7), (4.16), are linearly independent functions. Furthermore, for fixed

m,J,J, and n, the functions FI.;;JZ(ZDZZ)’ kel(m,J,,J,,n), defined in (4.48), are
linearly independent.

Proof. We claim that, for all k=1,...,n—1,

K
exp(rz h,. >F" T €2y € 2y Ty 15 Zp)
r=1

= exp(—tH(k))[const. + O(e~“/P)], (4.54)

where h; is the conformal weight of ¢ J ii(2), see (3.50), for some H(k)espec(LoP ;).
Equation (4.54) follows from (4.49), since intermediate states contributing to k5 L
between the k™ and the k + 1** argument of F, are in the range of the p[‘O]CCt]OIl
P . (see (4.10), (4.12)). By (4.54), a conformal block, F—J can be a linear
combination of non-zero conformal blocks, F’ I=1,...,N, with non-zero
coefficients 4,,..., Ay, for some N = 1, only lfd(jk_]k,]kj V=0forallk=1,...,n—1,
for some . Clearly j.=jt =1, hence, by the non-degeneracy assumption (4 51),
(4.52),j,-,=j"_,. Usmg (4. 51)and (4.52) agam we then conclude that j, _, =j'_,,
and so on. Thus j= ] and hence F~ F’ for some I This proves the first

part of Lemma 4.7. To prove the linear mdependence of the functions F% ;. (z,,z,),
we note that by (4.48), (4.43) and (4.40), (4.42),

exp [t(h;, — H ((m))]F% ; (€°z,,2,) = exp (—tH(k))[const. + O(e~ )],  (4.55)

for some H 4(m) (independent of k), and some H(k). The remaining part of the proof
is similar to the one before. W

Equations (4.35), (4.36), Lemma 3.7 and the regularity of the matrix g = (g,7),
see (R4), have an important consequence: For b= (t,[y])eB,,

Fj,(b" 2y, 25)) ZRk VFi5(Z 1522, (4.56)

where R(b)=R(A,m,J,,J,,B,n;b) is a regular matrix on the vector space
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W(m,J,,J,,n). Similarly,
Fy 5,072, Z,)) = YRS, 5 (21, Z)). (4.57)
K

[Taking into account Lemma 3.7 and the regularity of g, one sees that the details
of the proofs of (4.56) and (4.57) are very similar to the arguments (4.27)—(4.34)
used to prove (4.35) and (4.36).] Equations (4.56), (4.57) together with locality imply
that

R(b)"gR(b*) =g. (4.58)

The proof of (4.58) is analogous to the one of (4.38).
Next, we note that B, is generated by a single element 7, = 1; see Fig. 1. We
define a matrix R by setting

R =R(1). 4.59)
Then, for b =1"eB,, meZ,
R(b) = R™. (4.60)

Hence, the representations of B, determined by the conformal blocks
{Fb s ketomds damys A5 7,7,} are completely described by two matrices, R and R.
Since t* =171, (4.58) is equwalent to

RTgR ' =g. (4.61)

We now claim that, under reasonable assumptions on the chiral algebras .o/
and ./ discussed below,

R=R(A,m,J,J,,B,n)=R(m,J,J,,n) 4.62)
is independent of A and B, and

R=R(A,m,J,,J,,B,A)y=R(m,J,,J,,
is independent of A and B.

This has remarkable consequences: It says that the representation of B,
determined by

S
=

(4.63)

(A, <PmJ1k(Z1)<Pszn(Zz)BUf>
(see (4.48)) under interchanging 1 and 2 and exchanging z, and z, along the path
7 shown in Fig. 2 is independent of admissible operators 4, Be.</.

Hence (4.62) says that
Oy k(21) Pryon(z2) = ; R(m,J,J,, n)’;i' Py (22)Pig,n(21)s (4.64)

for |z,| > |z,|, where the left-hand side of (4.64) is interpreted as the analytic
continuation of @,,; .(2)Qus,a(z) fromz=1z2,,z' =z, toz=1z2,, 2’ =z, along a path
7 as in Fig. 2 not enclosing any other operators. Equation (4.64) permits us to
describe the monodromy of an arbitrary conformal block, Fj."/z-1(Z), (see (4.16)
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ﬂl

——

22.

Fig. 2

and (4.7)) in terms of the matrix R introduced in (4.59), (4.62). Let

I'= {(i-]j)5€0i1j(z) #0}.
Let V be the complex vector space given by

{(A,€C):a=(iJj)el}. (4.65)
We define an endomorphism, R = (R), from V® V to V® V by setting

d __ kYK Tj) — : Sk’
szb = R::'Jk)(}((.l'j)]) = R(I’J’J”J)k 5 }

and (4.66)

R4 =0, otherwise.
Let V,,..., V, be isomorphic copies of V and define
Ri=10,,® - ®1y,_ ,®Rlyer,., O, 0 @1, (4.67)

The associativity of the algebra generated by the chiral fields ¢,;,(z) and Egs. (4.64),
(4.65) imply [S] that

RiRi+1Ri=Ri+1RiRi+l (4‘68)
and, by definition (4.67),
R;R;=R;R;, for |j—il=2. (4.69)

JtNis

Equation (4.68) is a special case of the Yang—Baxter equation [23]. We claim that
the matrices R; define a representation

R™:B +End (V®"). (4.70)

To see this, write an element beB, as a word in the geunerators 7, i=1,...,n—1,
as in the proof of Proposition 4.3:

b=1f-13, ¢=2%1

(178
One then defines

k

R™(b) = H Ry, (4.71)

ji=1
Equations (4.68) and (4.69) ensure that (4.71) defines a representation of the braid

group, B,, on the plane. Because of (4.64), this representation describes the
transformation properties of the conformal blocks, F, ..., (£), under the action of
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Fal"'a,aiu-'-an(‘[i—lZ)= Z Ra:a:HF

'y
Ajdi+1" G148, 4 1 7a,

(2). (4.72)

This follows from (4.64) by rewriting this equation as

©0a(z1)0n(z2) = ;R% 0dz2)04z1), (4.73)

with a = (iJj),... . More generally,
F(b™'2)= ZRﬁib)Fg'(Z), (4.74)

where R(b) is given by (4.71). Analogous results hold for the conformal blocks
F,(Z) and the matrix R.

It remains to discuss the basic properties (4.62) and (4.63) from which the results
derived above follow. In order to “derive” (4.62) and (4.63), we return to definitions
(4.39) and (4.48) of the functions K'}':J—ljz,—z(zl,fl,zz,z'z), F% ;.(zy,2,). We introduce
so-called A-descendant fields ¢'%¥ (z, 2):

PB(z,2) = ] §dzi(z, — 2%y, (20)

[1 §dz/z — 2" " 'Y (2) 52, 2), (4.75)

a=(a;,...,ay), aeR, b=(b,,...,by), beR,

N,M =0,1,2,... . Here C, is a circle of radius ¢/k, centered at z, C, is a circle of
radius &/k, centered at z, and (4.75) holds if both sides are inserted into a Green
function, and & >0, £ > 0 are chosen to be so small that the contours C, and C,
do not enclose any fields not appearing on the right-hand side of (4.75). Using
(4.40)—(4.42) and the fact that v*, v,’} are invariant states, one now shows that

<A®A_vlal_’ (151,],(21,2-1)Pk1?¢12f2(22,Z_z)B®§v]€—>
= Y Mai@:)Hby,bo) (4.76)

a1.b1.92.02
(v 4552‘}’112’](21 L2 )Pl 08,

for some complex coefficients A(a,,a,) and A(b,,b,) completely determined by the
algebraic relations in <7, &7 respectively. In (4.76) we have used that A® A and
B® B commute with P,.

From (4.76) and (4.46)—(4.48) we conclude that

kk = =
K117112I2(21 121,22,2,)

FI;‘Jz(Zl’ZZ) = (A}, ¢m1,k(21)‘9k12n(zz)BUf>
= Z 1(217@2)(”?,<P£f}3k(21)<ﬂl[cefz]n(zz)vf>, (4.77)
d1.42
where ¢4, is defined as in (4.75) but with M =0. An equation similar to (4.77)
holds for the functions Fj ; (Z;,Z,).
The point is now that using Ward identities, (see (3.36), (3.37), (3.40)) one can
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usually prove that the representation of B, determined by

o8, ol (z1) 02 ()08 (4.78)

is independent of [a,], [a,], [i.e. Eq. (4.56) also holds for the function (4.78), with
the same matrix R%.(b)].

In the arguments outlined above, Eq. (4.76) and (4.78) have not been derived
from our basic assumptions. It will be studied elsewhere how to derive these
statements from a general definition of chiral algebras. The reader familiar with
refs. [1,17,18,20 and 21] may, however, verify without too much trouble the
following result.

Theorem 4.8. If o/, o/ are Virasoro-, or current algebras then (4.76)—(4.78) and hence
(4.62)—(4.64) hold. For Neveu—Schwarz [20] and parafermion [21] algebras (4.62)—
(4.64) hold.

Remark. Theorem 4.8 and the analysis preceding it show that, for rational
conformal field theories based on chiral algebras ./, .o/ which are algebras of
currents and parafermions, the monodromy of the “four-point functions”

<U(iz’ (pm.lyk(zl)(»Dszn(ZZ)Uf‘i >

is completely described by a Yang-—Baxter matrix, R, and determines the
monodromy of arbitrary conformal blocks, F}." "% -'(zy,...,z,). These results can
be coded into the commutation relations (4.64) for the chiral fields ¢,;,(2).

5. Conformal Field Theory as Representation Theory of Chiral Algebras

The purpose of this last section is to describe the general mathematical structure
of two-dimensional conformal field theory that has emerged from our analysis in
Sects. 2—4. It will be the subject of our next paper to initiate a systematic analysis
of that structure. The upshot of our analysis is that two-dimensional conformal
field theory is, in essence, a chapter in the representation theory of an infinite
dimensional “symmetry algebra” U = [/ ® o ],..., Wwhere .« and .o/ are chiral
algebras. Here we shall attempt to make this statement more precise. For the sake
of simplicity we shall limit our analysis to the case where the algebras .« and .o/
are generated by local currents, so that U = ./ ® .«/. But the general case is not
substantially more complicated.

Let us first clarify what is meant by the notion of a (local) chiral algebra. An
abstract chiral algebra, ./, is an algebra generated by (unbounded) operator-
valued distributions ¥;(x), xeR, and i ranges over a finite or countably infinite
index set I. There is an involution *, iel — i*el, on I such that, for all iel,

Yi(x)* =y.(x) is a generator of <. (5.1)

General elements of ./ are polynomials in the generators y,(x), iel, smeared out
with arbitrary test functions of compact support.
The generators ¥;(x), iel, satisfy quadratic relations of the form

WG () = LRI o (), (5.2)
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where R = (R)) is a matrix on C"'@®C!"! which is a solution of the Yang-Baxter
equation (with spectral parameter —ico). Furthermore,

e=sig(x—x)=+1. (5.3)

One assumes that there are no further quadratic relations between the generators
of o, for x #x'.

It is assumed, furthermore, that .o/ carries a representation of the subgroup,
=~ PSL(2, R), of the Mdbius group, = PSL(2, C), which leaves the real axis invariant
as a group of *automorphisms of /. For wePSL(2,R), there exists a linear
operator, 1,,, on ./ such that t,°t, =1,,,, and

T(A B) =1,(A) 1,(B), T,(4%)=1,(A)*

for all A4, B in .</; moreover

(i) = <‘(—i§) (), (5.4

for some h,eR, called conformal weight of ;. We assume that the generators y;(x)
are “analytic vectors” for 1, in the sense that (5.4) has an analytic continuation
in w to a complex neighborhood of SL(2, R) in SL(2, C). Clearly, it must be assumed
that (5.2) and (5.4) are compatible which puts restrictions on the possible
Yang—Baxter matrices, R, appearing in (5.2): E.g.

R =0, unless hy=h, and h;=h,. (5.5)

See [5] for more details.

We shall assume that, among the generators y;(x), iel, there is an identity
operator, o (x) = 1 = 1*, independent of x, (i.e. hy = 0). We do not exclude further
polynomial relations between the generators i;(x) of ./ —in addition to (5.2)—of
degree higher than two.

A state, w, on & is a linear functional on & with the property that

w(A*4)=0, forall Aesdf. (5.6)

Every state, w, on o/ determines a representation, 7, of </ on some Hilbert
space. This is the contents of the so-called Gel'fand—Naimark—-Segal construction.
We assume that (o/,1,) is such that there is precisely one state w, on R4
such that

1. o (1,,(4)) = wy(A), (5.7)
for all Ae./ and all wePSL(2, R), i.e. w, is PSL(2, R)-invariant; and

2. wo(A*A)=0 implies A =0, (5.8)
for all Ae.of.

Remark. One might envisage requiring that there be a representation, 7, of a central
extension of Diff(S') as a *automorphism group of ./, where Diff(S') is the
group of difffomorphisms of the real line conjugated to diffeomorphisms of the
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circle which is the image of R under the Mobius transformation

X—1
x+i

X— —

(5.9)

In that case one might require that (5.4) holds for all diffecomorphisms, w, of the kind
just introduced, i.e. that the generators y;(x), i€l, are primary fields. However, it
is inconsistent to assume that (5.7) hold for all weDiff(S*). In this paper, we do
not pursue this line of thought.

It will be discussed in a separate publication how to classify general chiral
algebras (<7, t,,) characterized by properties (5.1), (5.2), (5.4), (5.7) and (5.8). It turns
out that such algebras are algebras of currents of arbitrary spin s=1,2,3,...
and of fields representing a slight generalization of parafermions. One simple
consequence of a general classification is that if

RY = olot (5.10)

ivjs

for all i, j,k and [/ in I, then
hezZ,, forall iel, (5.11)

ie. o is an algebra of local currents of spin s;,=h;=1,2,3,...,iel.

Henceforth we shall focus our attention on chiral algebras (<7, t,,) satisfying
(5.10). More general algebras will be studied elsewhere. Most of the concepts
discussed below can be introduced in the general case, but the analysis and notations
would become more cumbersome.

If < is an algebra of local currents we can, alternatively, work with generators,
Yi(e), —m <o <, iel, defined on the unit circle in C. This follows from (5.4),
using the Mobius transformation (5.9). In that case we can trade the generators
y;(e'"), jel, for their Fourier-Laurent coefficients,

Yin= [ U;()e"7do. (5.12)

By (5.4), (5.9), (5.1) we have that

}jn=¢j‘,—n; (513)

see also (3.30), (3.31). The algebra generated by {y; ,: jel,neZ} is denoted by .
Let w, be a rotation of the unit circle through an angle ¢. Then it follows from
(5.4) and (5.12) that

Twa(%,n) =e "
We define o/, to be the linear subspace of o7 of all elements A€o/ for which
T, (A)=e " A
Then o is Z-graded, with
oA=PA,. (5.14)

neZ

We also define « . = P «,, &> = P ,.

n>0 n<o
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If |I| =card I < o, then &, is often a finite-dimensional algebra. We shall
assume this henceforth.

For the purpose of constructing two-dimensional conformal field theories, one
must study the representation theory of («/,1,,). Since we are interested in unitary
theories, we are only interested in representations, «, of (=, t,,) with the following
properties:

(a) = is a representation of («/,7,) on a separable Hilbert space, 5#,, which is
unitary, i.e.

n(A¥)=n(A)*, forall Aed, (5.15)
where A* is defined through (5.1); and = is covariant, i.e. there exists a unitary
representation, U, of SL(2, R) (now defined as those M6bius transformations which
map the unit circle onto itself) on 5, such that, for all Aeo/ and weSL(2,R),

(1, (A4)) = U (Wn(A)U,(w) ", (5.16)
as an operator equation on a dense domain, &,, in #, which is invariant under
n().

(b) We assume that 2, can be chosen such that it consists of analytic vectors for
U.(w), ie., for @€2,, U (w)® has an analytic continuation in w to some complex
neighborhood of SL(2,R) in SL(2,C).

(c) Let w, denote the rotation of the unit circle through an angle o. Then

U, (w,) =€, (5.17)
for some selfadjoint operator Ly on #,. We require that
L:>0, (5.18)

and that h, = infspec(L{) is an eigenvalue of L of finite multiplicity.

Note that by (5.15), n(</,) commutes with L. For the last part of assumption
(c) to hold it is therefore commonly necessary that </, be finite-dimensional.

Representations, =, of (<7, t,,) satisfying properties (a)—(c) are called “positive-
energy representations,” [19]. Let L be a list of all positive-energy representations
of («,1,). By assumption (5.7), L contains precisely one representation, n, = 7,,,,
(1eL), on a Hilbert space s, = &, containing a vector 2e9,, that is invariant
under U, = U,,, with L2 =0. By (5.8), 2 is separating for </, i.e.

if 1,(4)2=0 then A=0, (5.19)

for all Aes/. [Note that this does not imply that £ is separating for .2/.]
By assumption (b), every positive-energy representation, 7, of («, 7,,) determines
operators L., such that

(L*y*=L",, and [L%L",]=2LE. (5.20)

Moreover, LT generates MObius transformations of the form z—z/1+ 1z, LT,
generates translations z — z + 7.Vectors in &, are analytic vectors for Lj, L% ;.

Remarks. (1) Note that the fact that L Q= 0 follows from the invariance of 22,
under U, and from (5.20).
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(2) If of were a C* algebra then (5.18) would imply that the spectral projections
of L, are contained in n(</)”, the weak closure of n(2/). When working with
unbounded operators—as we do—one might assume that there is a generator
T(¢'")e o/, with conformal weight h, = 2, such that, for n= — 1,0, 1,

Lr= _j doe'"* D7 n(T (7)), (5.21)

in every positive-energy representation 7 of («/,7). Then a variant of the
Liischer—Mack theorem would imply that (5.21) defines Virasoro generators, for
neZ, so that o/ contains Vir.

We define a linear deformation map, J,, depending on a complex number
z, with 0<|z| < o0, on the linear space, G(&/), spanned by the generators
{ll’j,n }je.S!’,neZ’ Of 'd’

@ h,—1
6.(Wim)= Y (Z i o 1)2""‘\//,~,k, (5.22)

k=—h,+1
ny. . . . . .
where < > is the usual binomial coefficient defined to vanish, for m > n = 0, with
m

<g> = 1. (Our definition of d, is motivated by the contour integral formalism of

[1]). Note that 4, is not a * endomorphism of ./, and that
4,(1)=0, (5.23)

(so that 9, ‘kills” the central charge).

Next, we introduce an analogue of the notion of tensor operators in group
theory: Let iy,...,i,, j and k be positive-energy representations of (<7, z,,). Let v,
be a vector in ;. A generalized vertex Vi (v,...,0,5Zy,...,Z,) is an operatot-
valued function of (Z,,...,Z,)eM,, (with |z;| <1, for i=1,...,n) mapping a dense
domain in ), to a dense domain in #;, with the following properties:

@) Viyvy,...,0,52Z4,...,Z,) is multi-linear in the arguments vy,...,v,;
n

O AV s, 052y, Z)= Y, Vilvy, ..., 1y (8,(A))0r, ... 0,5 24, ., Z,)

1=1

+ ij(vlvwavn;zl"H,Zk)nk(A)’ (524)

for every generator A= [ €"*"7 (g)do of o/; and
(c) If v, is a highest-weight vector for Vir then, for all meZ,

m+1 & m .

b4 ~az~+z, (m+Dhy [Vars.. 0000524, .0, 2y, 0, Zy,)
4

= ij(vl""’L:rll(zl)vl""avn;zla”-lew“,Zn)a (525)

where
Ly(2) = m(8.(Ly)).
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A special case of (5.25) is
0
0Z,

=Vploy,....,LY o, 0,524, 2y, Z,). (5.26)

This defines a flat connection on the space of generalized vertices. The holonomy
matrices of this connection associated with paths corresponding to elements of the
braid group B, determine a representation, R™, of B,.

A special example of a generalized vertex is

(pjvk(z) = ij(v’ Z)’ (527)

for ves#;, |z| < 1. The operators ¢, (z) correspond to the ones constructed in
Lemma 3.2 from a sequence of Green functions of a two-dimensional conformal
field theory.

In principle, the notion of generalized vertices is purely representation theoretic.
One might hope that, given some (<7, 7,,) for which all positive-energy represent-
ations are known, one could construct all generalized vertices satisfying (a)—(c),
above, in particular, one could construct the operators ¢;,(z), on the basis of
purely representation theoretic arguments. This hope has materialized for the case
where o/ is the Virasoro algebra with central charge c=1—6/p(p + 1),p = 3; see
[24]. In this case, a basis of generalized vertices is obtained from the operators

Vai,.. 0000524, 2y,..., Z,)

VIt vy, . 0321, 2,) = IHI T (-} (5.28)

with j, = j, j,=k, and (z,...,z,)eK,, where
Ky ={z:lz,| > >|z,|,—n<argz;<mi=1,...,n},

by analytic continuation in (z,,...,z,) to M,. We now assume that this property
holds for all chiral algebras considered henceforth. In this case, the representation
R™ of B, can be determined from the representation R of B, obtained from the
generalized vertices Vi (vy,v,;Z,,Z,) which are analytic continuations of the
product @;,,(z,) @iy, (z2)-

We assume that the representation of B, determined by the operators
{Vi(vy,025Z,,Z,)}ic, only depends on j,i;,i, and k, but not on the choice of
v, €X', v,€5;,, and has the form

iz
Vj'k(vh UZ; ZI:ZZ) = ZR(J’ il’ iz’k)fn V;"Ilc(vz’ UI;T(Zl,ZZ)), (529)
where the matrix R(j,i,,i,, k) is a solution of the Yang-Baxter equation; see (4.62),

(4.64); T is the generator of B,. [Part of this assumption follows from (5.25)—(5.26).]
In more informal notation, (5.29) says that

(Pjvli(zl)(pivzk(ZZ) = Z R(], il ) i2’ k)in(pjvzm(ZZ)(pmvlk(zl)9 (530)

if z, and z, are exchanged along a positively oriented path. If the vertices introduced
in (5.28) form a basis of generalized vertices then (5.29) determines the representations
R™ of B,, for all n.
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How much of the structure described here can be derived from the representation
theory of (&, 1,,) remains to be investigated. The only example that is essentially
completely understood is the example of the Virasoro algebra with central charge

=1—-6/p(p+ 1), p=3; see [24]. In more general cases, we have succeeded in
deriving a list of constraints on the matrices R(j,i,,i,,k) that follow from the
structure described above and to derive the chiral fusion rules [25]. The fusion
rules permit us, in principle, to calculate matrices R(j,i,,i,,k) from a few basic
R-matrices. These results will be presented in paper II [26] of this series. Assuming
that the matrices R(j,i,,i,,k) are all given, the construction of generalized
vertices V(vy,...,v,,Zy,...,Z,) satisfying properties (a)-(c) can be viewed as a
generalization of the Riemann-Hilbert problem. We have essentially no results to
report on its solution, but the subject is under investigation.

Let us now suppose that we are given a pair of chiral algebras (</,1,),
(«,7,) with all the properties described above. We propose to sketch how one
may reconstruct a local, unitary conformal field theory from these data. More
details will appear in papers II and III of this series.

With («/,1,) we associate chiral operators ¢;,(z) having all the properties
described above. Similarly, the operators ¢;;(2) correspond to (<7, 7,,). We define
an index set

A= {jik:gj,(2z) #0, for some ve#,;}
and a complex vector space
V = {(4;u€C): jikeA}. (5.31)

The objects A, V are defined similarly. Let R: V@V - V@V and R: V@ V-V V
be the Yang—Baxter matrices generating the representations R™ of B, on the space
of generalized vertices Vj, the representations R™ on V] ©, respectively; see
(4.66)-(4.71).

We now look for coefficients, C’/, ﬂ,,, ¥ such that the fields

buos(zD) = Y. Chik0u(2)® 05(2) (5.32)

1k, k
with ve#;, se # -, are local fields, (in particular, their vacuum expectation values

are all symmetric). We may mterpret the coefficients C —lk as the matrix elements
of a linear map C from V to V. It is easy to show that the fields ¢, ,(z, Z) defined
in (5.32) are local iff

R@)T[CRCIR(r H)=CQ®C. (5.33)
This is an overdetermined system of equations for the matrix elements C’};,f;
see [27] and papers II and III. These equations have solutions, provided the
matrices R and R satisfy certain polynomial constraints derived and analyzed
in Papers IT and III. These constraints have been vertified for the example
where o/ and &/ are isomorphic to the Virasoro algebra with central charge
¢=¢c=1—6/p(p+1),p=3. This leads to the minimal models.
For more general classes of models, the basic problem is to construct the chiral
fields @;,(2), @7z(2) and to calculate their vacuum expectation values. The problem
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of solving (5.33) is then comparatively easy. Paper II is intended to represent a first
step towards a general theory of chiral fields ¢;,(z). We analyze the properties of
the set of matrices {4}, Where (4,); is the number of chiral fields ¢;,.(z) # 0,
where v is an invariant vector in ;. We also analyze chiral fusion, i.e. we derive
equations for the coefficients in the operator product expansions of products of
chiral fields. These results are similar to some recent results of Moore and
Seiberg [25].

Our results, in particular the notion of generalized vertices and their properties,
chiral fusion, etc., provide a convenient starting point for constructing local,
conformal field theories on Riemann surfaces of arbitrary genus. We hope to present
results on this problem in a future publication.

Ideas somewhat related to the ones developed in this paper have recently
appeared in [28] and in [25]. We thank the authors of these papers for sending
us their preprints prior to publication.
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