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Abstract. We consider singular Verma modules over Aγ\ i.e., Verma modules
for which the central charge is equal to minus the dual Coxeter number. We
calculate the characters of certain factor modules of these Verma modules. In
one class of cases we are able to prove that these factor modules are actually the
irreducible highest modules for those highest weights. We introduce new Weyl
groups which are infinitely generated abelian groups and are proper subgroups
or isomorphic between themselves. Using these Weyl groups we can rewrite the
character formulae obtained in the paper in the form of the classical Weyl
character formula for the finite-dimensional irreducible representations of
semisimple Lie algebras (respectively Weyl-Kac character formula for the
integrable highest weight modules over affine Kac-Moody algebras) so that the
new Weyl groups play the role of the usual Weyl group (respectively affine
Weyl group).

0. Introduction

The notion of a Weyl group is very essential for the representation theory of semi-
simple Lie algebras and groups. It allows the nice classical formula of Weyl for the
characters of the finite-dimensional irreducible representations L of the semi-
simple Lie algebras. Connectedly it permutes the weights of the finite-dimensional
irreducible representations L of the semisimple Lie algebras and determines the
embedding pattern of reducible Verma modules over such algebras. Later the
notion of a Weyl group was generalized for affine Kac-Moody algebras [1] and for
finite-dimensional Lie superalgebras [2]. For affine Kac-Moody algebras the Weyl
character formula holds for the integrable highest weight modules L by replacing
the Weyl group with the affine Weyl group [3]. The affine Weyl group or Weyl-
Kac group determines the embedding patter of Verma modules [4,5] except for
the so-called singular Verma modules. The latter were introduced in [6] by the
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property that the central charge is equal to the minus dual Coxeter number or
equivalently that they are reducible with respect to every imaginary root (see
below for definitions).

In [6-8] in order to describe embeddings between singular Verma modules we
introduced reflections (or translations) corresponding to imaginary roots with
nontrivial action on the highest weights of the singular Verma modules. In the
present paper we make the next step, i.e., we introduce a new Weyl group, denoted
by Wa9 and several of its extensions.

Our criterion is the following. The new Weyl group should be such so that the
formula for the characters of the analogues of L should look the same as for L by
replacing the Weyl or Weyl-Kac group by Wa. Thus we have first to calculate the
appropriate characters.

We use results of Malikov, Feigin, and Fuchs [9] for the singular vectors of
singular Verma modules to calculate the characters of the highest weight modules
FΛ = Jί(Λ)ll(Λ\ where Jί(Λ) is a singular Verma module and I(A) is the
submodule of Jί(Λ) generated by these singular vectors. First we consider singular
Verma modules JK{A0) which are irreducible with respect to real roots. In this case
our result for the character of FΛo, chFΛo coincides with ch V(Λ0), where V(Λ0) is a
highest weight module (HWM) constructed by Wakimoto [10] thus FΛo ^ V(A0).
Then we use a result by Rao [11] that V{A0)^L(A0), the irreducible HWM with
weight Λθ9 thus FΛo = L(Ao). We further calculate chFΛ± when Ji(A§) are
reducible also with respect to some real roots. These calculations are done in
Sect. 2.

We use our calculations for chL(Λ0), chFΛ ± and we introduce new Weyl groups
Wa9 W^ D Wa, (Wa

+ ̂  W~) which are infinitely generated abelian groups so that
chL(A0), chFΛ± look as the classical Weyl character formula with W replaced by
W W±

Finally we look for the connection of Wa, W^ with the Weyl-Kac group W. If
we require only coincidence with the action of the groups in the highest weights we
can embed W in other infinite abelian groups W* (We

+ ̂ W~\ so that
W^ D Wj1 D Wa. These notions and results are contained in Sect. 3.

In Sect. 4 we give some discussion on the application of the character
calculation to modular invariance and on the generalization of these ideas for
other affine Kac-Moody algebras, for the (super) Virasoro algebras and for other
superalgebras.

1. Reducibility of Verma Modules

Let © be the affine Lie algebra A^\ Let jr> be the Cartan subalgebra of © and
© = © + © 9) © © _ be the standard decomposition of © with © ± diagonalized by §.
Let ^ 1 ? ^ 2 e © + , / l 9 / 2 e © _ , h^h2eξ) be the canonical generators so that [ebfj]

( 2 - 2 \
= ^ijK lhi9ej] = <*ijep lhfj] = -<*ijfp W l t h (aij)= Ί Ί the Cartan matrix

of ©. V

Let Δ=Λ + KJΔ~ be the root system of ©,Δ+(Δ~) be the set of positive
(negative) roots. (For unexplained notation see [12].)
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Let A e $* and let M(A) be the Verma module with highest weight A. We recall
the Kac-Kazhdan criterion [4] according to which Jt(A) is reducible iff the
following condition is fulfilled

2(Λ + Q,β) = m(β,β) (1.1)

for some m e N , β e A +, in (1.1); ( , •) is the standard scalar product on § * ; ρ e § * is
defined by (ρ, oc?) = 1, oc? =2αi/(αί, α, ) for every simple root at. We recall that any
βeA + can be writtenn as

β = pa1+{p + δ)a2 peZ+, δe{0, ±1}, 2p + <3>0, (1.2)

where α 1 ? α 2 are the simple roots so that (α1,α1) = (α 2 ?α 2) = 2 = — (α l 5 α 2 ).
The roots with δ = 0, β = nd, d = oci+oc2 are called imaginary roots and those

with (5φO-real roots. We have A=ARKJAJ, where AR(Aj) is the set of real
(imaginary) roots: AR=A±DAR, Af = A±nAI. Clearly we have

(1.3)
Thus the product (β, •) of an imaginary root β with any other root is zero.
Setting mi^iΛ + ρ^Ui), i=ί,2 we rewrite (1.1) as

(m1 + m2)p 4- δm2 = δ2m (1 .Γ)

with jS as in (1.2). Then for imaginary roots we obtain

(1.4a)

where we have also introduced the central charge c = (Λ,<x1 + cc2), [note
= (ρ, α 2 ) = l ] ; while for real roots (1.1) goes to

(1.4b)

We shall mostly discuss reducibility of Verma modules with respect to (w.r.t.)
the imaginary roots. From (1.1) it is clear that Jί(A) is reducible or irreducible
simultaneously for all imaginary roots. As in [6,8] we shall call such modules
singular Verma modules. Furthermore from (1.4) it is clear that a singular Verma
module is either irreducible w.r.t. the real roots, m fe ± N ; or is reducible w.r.t. to
all real roots with (5 = 1, m2 = m e N , so that (1.1) holds with the same m for all
these roots; or is reducible w.r.t. to all real roots with δ = — 1, m2 = — m, with one
and the same m e N.

LetAί9A2eξ}* be such that (Ai,oίJ) = δip thus (ρ = Aί+A2). Then any weight
A eh* can be written as

A=(mi-l)Aί+(m2-l)A2. (1.5a)

Thus for a singular Verma module we have

A = (m0 — l)Aι— (mo + l)A2, mo = m1 = — m 2 . (1.5b)

We find it useful to make the following statements for an arbitrary affine Lie
algebra (5. The Kac-Kazhdan [4] condition (1.1) looks exactly the same. It is
known [4] that if (1.1) holds then Jί(A — mβ) is isomorphic to one (or more)
submodules of Jί(A). Such an embedding is realized as follows.
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Let v0 be the highest weight vector of Ji(Λ\ i.e. Xv0 = 0 , I G ( 5 + , HV0 = A(H)v0,
He9), Jί(Λ)^^(dδJ)®ΌQ, with ^f(©_) the universal enveloping algebra of ©_. The
embedding of M(Λ — mβ) in Jί(A) is equivalent to the existence in Jί{Λ) of at least
one vector vs φ v0 having the properties of the highest weight vector of Ji{A — mβ)
[4]. Each vector vs, called singular vector may be expressed as follows [6]:

υs = 0>{fu...Jn)®vQ, n = rank®, (1.6)

where & is a homogeneous polynomial of degrees mfc1? ...,mkn, and kt come from
the simple root decomposition of

Thus if β is a simple root we have (further we omit the symbol (x))

vs = const f™v0, for β = α f. (1.6')

Malikov, Feigin, and Fuchs [9] have found a formulae for the singular vectors for
nonsingular Verma modules. (In this situation vs is unique for a fixed m and β.)

For the case of a singular Verma module M{Λ) it is clear that Jί(A — nd\ Vw e N
is isomorphic to a submodule of Jt{Λ). More than this Jί(A + n'd\ rϊeΊL is
isomorphic to a submodule of Jί{A + nd\ neZ, iff n' < n. (Here, d = α 0 + . . . + (xt for
A\1]\ for the general case see [12].)

We return to the case of © = ̂ 4(

1

1). For that in [9] there are exhaustive results
also for the singular vectors of singular Verma modules. It is shown that the
number of singular vectors for fixed β = md is equal to the number of partitions of m
and all singular vectors are given explicitly. To formulate these results of [9] one
needs some notation.

Let

/3 = [/l,/2L /4=-[/l,/3L /5 = [/2,/3]?-,/3fc=[/l?/3fe-l],

J3k + 1 = ~~ L/l5 J3k] J J3k + 2 = [A> Afcl

fi form a basis of © _, [/f, / J = αl7</j+, , where αι7 = — 1,0,1, α, y = (/ — i) mod3. One
also has

IK fj] = ~ 2 α o / j , lh2, fj] = 2<xojfj,

The singular vectors are given by the following:

Theorem 1 [9]. Let Jί{Λ) be reducible w.r.t. the imaginary roots, i.e., A = (m0 — 1)A1

- ( m o + l)Λ2, (cf. (1.5b)). Let

Fk=flf3k-l+f2f3k-2+~'+f3k-lfl-mof3k, ^ N . (1.7)

For all kl9 . . . , k r e N the vector Fkι...Fkrv0 is a singular vector of degree
k = kί + ...-\-kr of Ji(A). This vector does not depend on the permutation of the
numbers k1, ...,kr. The vectors Fkι... Fkrv0 are linearly independent.

Corollary. FkFn = FnFk,Vn,k.

Remark. The simplest singular vector

was given in [6], formula (37).
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Let us denote by IΛ the submodule of Jί(Λ) generated by the singular vectors of
Theorem 1, and by FΛ the factor module of Jί(Λ) by IΛ

FΛ = Jί(Λ)/IA. (1.8)

Malikov, Feigin, and Fuchs [9] made the hypothesis that FΛ is irreducible \iJί{Λ)
is not reducible w.r.t. the real roots. We shall prove this fact in the next section by
calculating first the character of FΛ9 then using a construction of Wakimoto and a
result of Rao.

2. Calculation of Characters

Our results will rely on some calculations of characters so we recall the basic facts
[12].

Let Γ, (respectively Γ+) be the set of all integer (respectively integer dominant)
elements of §*, i.e. Λ,e§* such that (^αJeZ, (respectively Έ+\ ί=l,2.

We recall that for each invariant subspace Fc^(© J)vQ = Ji(A) we have the
following decomposition:

V= 0 V\ (2.1)
μeΓ +

Vμ = {ueV\hk-u = (Λ-μ)(hk)u,k = U2}. (2.2)

(Note that V° = (Ev0.) Following [12] let £(§*) be the associative abelian algebra
consisting of the series Σ cμe(fί% where cμ e <C, cμ = 0 for μ outside the union of a

μeξ>*

finite number of sets of the form D(λ) = {μ e §*|μ ^ A}, using any ordering of § * the
formal exponents e(μ) have the properties e(0) = l, β(μ)e(v) = e(μ + v). Then we
define

chV= Σ (dimVμ)e(A-μ) = e(A) Σ (dimVμ)e(-μ). (2.3)
μeΓ+ μeΓ+

For the Verma module Jί(A\ dim Vμ = P(μ\ [3,12] where P(μ) is defined as the
number of partitions of μ e Γ+ into a sum of positive roots, where each root is
counted with its multiplicity; P(0) = l. We recall several ways to write chJί(A)
[3,12]:

chJi{Λ) = e{Λ) Σ P(μ)e(-μ) = e(Λ) fl (1-e(-α))~m u l t α, (2.4)
μeΓ+ oceA +

or more concretely, for the Aψ case setting e( — d) = q, e{ — 0Lγ) = z, [then e( — α2)
^gz" 1 ] , and noting that multα=l, Vαezl + :

00

Let us set

where F. . . .F . t;0 is a singular vector from Theorem 1. Clearly Vu . is
symmetric in its indices and Vjl^jmCVkl^kn if

{fei,...Λ}c{/Ί. Jm}» (2-7)
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the inclusion being proper unless m = n. Further we have
j j , Λ0 = (m0-l)Λί-(rn0 + ί)Λί. (2.8)

Following [12] we introduce in the ring C[(g,z)] of formal power series in q,z a
partial ordering by putting f=Σfλe(λ)Sg = Σgλe(λ) iff fλ^gλ for every λ. Then
because of (2.7,8) we have

chvh u<chv*i .*n> i f {*i> A}cθΊ»../m} and n<m. (2.9)

The first crucial fact is that we can compute the character of IΛo in terms of the
characters of Vh_jn.

Proposition 1. The following formula holds:

chiΛ = y (-if+1 y
h<h<n*<jn ' (2.10)

Proof. We shall obtain the formula by an induction procedure.

First we note that the first term (n = 1) in (2.10), i.e. Σ c^ ^h should be present

in order to account for every possible element of IΛo. However, it is clear that
chIΛo<Σ^hVh (2.11)

because of the overlaps between the Vh. In particular, each Vh h (Ji <j2) is
contained in both Vh and VJ2. This means that the sum Σ c^hh *s

contained twice in the right-hand side of (2.11). Thus, it should be subtracted in
order to avoid this overcounting; this is the term with n = 2in (2.10). [Analogously,
vhhhis contained in Vh, Vh, Vjs, Vhh, Vhh, Vhh, thus chVhhh is not contained in
the two terms n = 1,2 of (2.10). That is why it should be added which gives the third
term in (2.10)]. Further, we proceed by induction. Suppose the right-hand side of
(2.10) describes correctly the contribution of all Vh jn for n ̂ p — 1, p > 2. Consider

now a term Vjx jp. It is contained in Vjl9..., Vjp9 i.e., in p= ί J terms; in VjlJ2,

vhh ••• Vjp-uP>
 L e ' \ζ) t e r m s ' a n d m o r e generally in ίPj terms VUι ...jik, k<p,

p~ιfp\
{jil5 •••JiJc{Λ, •••Jp} Thus it is contained in 2P — 2= Σ I ) terms. Next note

k=ι \kj
that the terms with k odd are with sign plus, in (2.10), while those with k even are
with sign minus. To calculate how many there are from each sign we note that in
-(a-bγ= Σ r ( - I f + V ' k b k , where a,b>0, the terms with plus and minus

/c = o \kj

s i g n a r e e q u a l i n n u m b e r , ί I n d e e d , — (1 — l ) p = Σ ( 7 ) ( — l ) k + 1 = 0 .

p - l

The subsum Σ i n (2.10) corresponds to — (a - b)p without the two terms k = 0,

\ \
1=1}. Thus if p is odd the two missing terms are with opposite signs,

PJ J
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and if p is even the two missing terms are with minus sign. Thus if p is odd Vjί j is
contained in 2P~1 — 1 terms for which the character enters (2.10) with plus sign and
2P~ι — 1 term for which the character enters (2.10) with minus sign. Thus Vh } is
not taken into account in the first p— 1 terms of (2.10); thus chVjι^Jp should be
added with sign plus. Consider now p even, then Vh mmtjp is contained in 2P~* terms
for which the character enters (2.10) with sign plus, and 2P~* terms for which the
character enters (2.10) with sign minus. Thus the net result is that Vjί jp is
accounted for twice and chVhtj should be subtracted. So the right-hand side of
(2.14) describes correctly all terms with n = p\ί the terms of with n < p are described
correctly. •

Proposition 2. The characters of the submodule IΛo,

Λo = (m0 — 1)Λ 1 — (ra0 + 1)Λ2

and of the factor module FΛo = Jί(A0)/IΛo are given by

(2.12)
n= 1

ΰ = chJί{Λ0) Π (l-q") = e(Λ Π

= e(Λ0)l Π ( l - e ( - α ) ) , (2-13)

/
where A£ is the set of positive real roots.

Proof We have

chFΛo = chJl(Λ0)-chIAo9 (2.14)

thus (2.13) follows from (2.12), (2.4), and (2.5). For chIΛo we have substituting (2.8)
in (2.10)

chIΛo = chJί{Λo) Σ (-1) M + 1 Σ qh + -+j« (2.15)
n=ί

lo) Γl - Σ ( - 1 ) " Σ qJί + '"+3n~]
L jl< ..<jn J

= chJi(Λ0)\\- Σ (~l) n Σ qh + '~+j« I, (2.16)

which is equal to (2.12). •

In [10] Wakimoto constructed a family of highest weight modules πμv over
parametrized by (μ,v)e(C2. We shall not repeat the construction of the πμv

representation spaces F(μ, v) from [10]. We need only two facts. The highest
weight module V(μ,0) has weight Λβi0= — (1 +μ)Λι+(μ — 1)ΛU i.e. the highest
weight Λo of a singular Verma module [cf. (1,56) with μ = — m 0]. Furthermore it is
shown that [10]

Π ( 1 - 4 - α ) ) , (2.17)

which coincides with (2.13). Consequently

FAo*V(μ,0)9 Λo = Λμ,o. (2.18)
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Next we use an observation due to Rao [11]:

Theorem 2 [11]. The modules F(μ,0) constructed by Wakimoto are irreducible if
μφZ\{0}.

A necessary condition for the irreducibility of F(μ,0) was obtained in [13]
(Theorem B). Combining Proposition 2, (2.18) and Theorem 2 we have proved:

Theorem 3. Let L(A0) be the irreducible highest weight module with highest weight

such that the Verma module Ji{A0) is reducible with respect to the imaginary roots
and irreducible with respect to the real roots. Then

HΛ0) s FΛo s Ji{Λ0)IIΛΰ S F ( - m0,0), (2.19)

where IΛo is the submodule of Ji{Λ0) generated by the singular vectors of Malίkov,
Feigin, Fuchs from Theorem ί, and F( —mo,0) is the highest weight module with
highest weight Λo, constructed by Wakimoto. In particular,

chL(Λ0) = e(Λ0)l Π (l-e(-(x)) = e(Λ0)l YKl-q'z-'Hl-q'-'z). (2.20)

For Ao = — ρ = — A1—A2, i.e., mo = 0, formula (2.20) was conjectured in [4].
Next we consider the case when Jί(Λ0) is reducible w.r.t. to the imaginary roots

and to some real roots. Consider first the case when Jί(A0) is singular and
reducible also w.r.t. the real roots with δ = — 1 [cf. (1.2)], i.e. (1.1) holds for a fixed
m e N , and β = kd + a1, /c = 0 ,1 , . . . . Then according to (1.4b), (1.5b) we have
m 2 = —m, Λ0-*ΛQ =(m— \)Λι— (m+l)A2, m e N . Thus all Verma modules

$ -mβ) = Jt{Λ+ - m { p - 1 ) d - m α j , p^ 1,

are isomorphic to submodules of Jt{A§). More than this all these are singular
Verma modules and for p> 1 all are isomorphic to submodules of Ji(A$ — max).
Jin = Jί{A^ —nd — oίγ) are isomorphic to submodules of Jί(A$ — maγ) and thus to
submodules of Jt{A%). The most general statement is the following:

Proposition 3. Let Ji{A^) be a singular Verma module reducible with respect to the
positive roots

β

A2, m e N .

Then there are the following invariant embeddings of Verma modules:

Q -nd-εmotjDJίiAQ -n'd-ε'moί^), (2.21)

= n' =>ε = 0, ε' = l; ε = l , ε' = 0=>n'

Proof. First we note that Jt(A§ — nd — εmαx) is reducible w.r.t. the imaginary roots
for VweZ, ε = 0,1; J?(AQ — nd) is reducible w.r.t. all positive roots β = p<xι

4- (p — l)α2, p ^ 1, so that (1.1) holds with the same m from AQ Jί{A§ — nd — mαj is
reducible w.r.t. all positive roots β = (p— \)ax +pα 2 , p^ 1, so that (1.1) holds with
the same m from AQ.
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For ε = ε' = 0,1 the embeddings in (2.21) are described by the singular vectors of
degree ri — n(>0) of Theorem 1. For ε = 0, ε' = l and n' — n = km, fc = 0,1,... the
embeddings in (2.21) are described by the singular vectors F(m,p9t)v0 of
Theorem 3.2 of [9], which are valid also for nonsingular Verma modules
(t = m1+ m2). In our case t = mγ + m2 = 0 and we have

* * ^ = 0 , 1 , . . . , (2.22a)

= F(m, fc +1,0) = (fifitfΐ

[Note that F 1(m,0)=/ 1

m as it should - cf. (1.6').] For e = 0, β' = l and n'-nφkm,
k = 0,1,... the embeddings in (2.21) are described by composition of embeddings of
the two types described so far. Let rϊ — n = km + l, fc = 0,1, /=1,2, . . . ,m—1; then
(2.21) is described, e.g., by

ϋs = Fh ... Fj/iίm, k)υ0, ix + . . . + ls = I, (2.23)

F I t are given by formula (1.7). For ε = l, ε' = 0, ή— n = km, fc=l,2,... the
embeddings are described again by the singular vectors of Theorem 3.2 of [9],
however, with fί9f2 interchanged, i.e.,

vs = F2(m, k)v0 = (f?f!ff? • (2.24)

F o r ε = l , ε' = 0, ri — n = km + l, fc=l,2, ...,/ = l ,2, . . . ,m— 1 the embeddings are

described, e.g., by

vs = Fh...FιF2{m,k)υ09 lx + ... + l8 = l. D (2.25)

Remark. The Verma modules M(A§ — nd — εmαt), vi^ =(m—1)^11—(wi + l)Λ2,
m G N, n G Z, ε = 0,1 were shown in [6] to form a multiplet, i.e. a set <yΓ of Verma
modules V' + V such that 1) if Ve Jf, then <yK" D J ^ , where >V is the set of all Verma
modules such that V's^Vvo V~2>V or V'cV; 2) Jί does not contain a proper
subset with property 1). These multiplets are parametrized by m e N (we disregard
an arbitrary complex parameter which is the eigenvalue of d). Thus all Verma
modules which are reducible w.r.t. the imaginary roots and w.r.t. the positive roots
with one and the same m in (1.1) are in one multiplet. (cf. [6], (35), (36)).

It is clear that the structure of J({ΛQ) is determined only by the non-
composition embeddings described in Proposition 3. Some further compositions
are obvious, i.e. from (2.21) we see

- y - m o ( 1 ) 3 . . . , (2.26a)

and moreover the singular vectors in (2.22a) have the property

vs = fί(m, k)υ0 = (/Γ/2

m)k fi(m, OK. (2.26b)

Thus we have proved:

Proposition4. Let Ji{Λ$) be a singular Verma module reducible w.r.t. the positive
roots β = pocι+(p — l)oc2, p ^ l , ΛQ =(m — l)Λί—{m+ί)A2, m e R Then the only
noncomposίtίon embeddings of Verma modules in M{AQ) are those generated by the
singular vectors corresponding to reducibίlity w.r.t. the imaginary roots and w.r.t. the
simple root j8 = α1, (p = l), i.e., vs=f?v0 (cf. (1.6')).
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Now we can prove the following:

Proposition 5. Let TΛ+ be the submodule of Ji{A$) generated by the singular vectors
of Theorem 1 and vs =f?v0.

Let
FA+o=Jt(A+)/TAi. (2.27)

Then

chFΛ+={l-zm)chFΛ +

W Π (i-<A~1)(i-<f M
/ n = l

/ l {\-qnz-')(\-qnz), (2.28)

where chFΛ+ is from (2.13).

Proof Let Vm = <%{($>^)f™v0JΛ+ = F m u / y l + ,where/yl+ is the submodule generated
by the singular vectors of Theorem 1. We can also write

TΛi = V"v{IΛS\in, (2.29)

then

chTΛt =chVm + ch(IΛ+o\Vm). (2.30)

We use f1*-*e( — oc1) = z and

chVm = zmchJi(Λ^), (2.31a)

ch(IΛ+o\Vm) = (ί -zm)chIΛ+Q, (2.31b)

to obtain taking into account (2.12), (2.13),

chFΛί=chJ((ΛS)-chTA+=(ί-zηchFΛi. D (2.32)

Analogously we can consider the singular Verma modules Ji{Λ$) reducible
w.r.t. the real roots β = (p — ί)(x1 +pa2 [ p ^ 1» 5 = 1 in (1.2)]. In this case [cf. (1.5b)]

y l - = - ( m + l ) ^ 1 + ( m - l ) y l 2 , m e N .

Proposition6. Let Jt{A§) be a singular Verma module, reducible w.r.t. the positive
roots β = (p — l)a1-\-poί2, ΛQ = —(m + l)Λί -f-(m—l)Λ2meN. Then the only non-
composition embeddings of Verma modules in Ji{A$) are those generated by the
singular vectors corresponding to reducibility w.r.t. the imaginary roots and w.r.t. the
simple root β = a2, (p=l) , i>e. vs=f2

mv0 (cf (1.6'),). Let TΛ- be the submodule of
generated by the above singular vectors. Let

ι β Λ - . (2.33)

Then

(2.34)
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Proof. The proof is analogous to the proof of Propositions 4,5. Note that
cί) = qz~1. •

Corollary. Let 7n

Λ + (ϊn

Λ6) be the submodule of JΪ(ΛQ —nd) (respectively Jί(A Q -nd))
generated by the singular vectors of Theorem i, and vs=f™v0, (respectively
vs=f2v0) and let

κ (2.35)

Then

ί z^z)(\ -qn~ιz), (2.36)

(2.37)

3. Weyl Groups for the Singular Highest Weight Modules

As we have noted earlier [6,7,8] the Weyl-Kac group W [1] which is generated by
the reflections sα., where αf (i = 0,..., /) are the simple roots for an affine Kac-Moody
algebra ©, is not adequate for the description of the singular highest weight
modules (HWM).

The problem is not only in the fact that the usual formula for the Weyl-Kac
reflections

Λ + Q-*ή±±*a (3.1a)

is not well defined for (α, α) = 0 since one may try to use the endomorphism ta of $*

forαe X Cαf (cf. [12]):

ta(λ) = λ + (λ\d)a-t(λ,a) + 2ia,a)(λj)-]d. (3.1b)

However if α = nd, ta(λ) = λ, i.e. the action is trivial.
In [6,7,8] we introduced the notion of imaginary "reflections" or "translations"

so that sβ, β imaginary, is defined and acts nontrivially on the highest weight A of a
singular HWM, by the formula

sβ.A = Λ-β, β = nd, (jS,jS) = O, {Λ + ρ9β) = 0. (3.2)

The idea of these translations was to obtain a description of the embedding
pattern of submodules of the singular Verma modules in the same way as the Weyl-
Kac group describes the embedding pattern of Verma modules with dominant
integral highest weight [4]. Equivalently, these translations describe the possible
multiplets of singular Verma modules [6,8].

Here we develop further these ideas to introduce a Weyl group suitable for the
character formula for L(A0), Ao singular highest weight.

Consider the infinite abelian multiplicative group Wa generated by the symbols
w(n), tteN, with the properties w(n)2 = l, w(n)w(n') = w(ri)w(n). Such a group is
called a torsion group or a p-group [14] (here p = 2). The group Wa may be
parametrized as follows:

... w(nk)\keΈ+; for k = 0 w = l ; for
(3.3)
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If w = 1, or w = wirii) ... w{nk\ nt e N, nf φ ft;, i φj , we shall say that w is given in a
reduced form. It is clear that every element of Wa has a reduced form.

We define the action of w e Wa on § * analogously to the action of SM3 in (2.2).
For λeh* and w in a reduced form we set

w-λ = w ^ ) . . . w(nk) λ = λ — (nί +...+ ftfc)d,

WiθN, n fΦn ;., l /l = /ί. (3.4)

This action is non-associative, i.e. it may happen that (wiw2) Aφ wx (w2 A), but
this is not essential for our purposes. (The action is associative if we consider Wa as
a semi-group [i.e. if we drop the relation w(ή)2 = \~\.)

Analogously to the Weyl(-Kac) group we introduce the length of we Wω

denoted /(w), for w given in a reduced form:

= 0.

The length of an arbitrary element Wa is defined to be equal to the length of its
reduced form. (Note that an element of length k has k! reduced forms.) Now we can
prove the following:

Proposition 7. Let J#(Λ0\ FΛo, and L(Λ0) be as in Proposition 2, Λ0 = (m — 1 ) ^
— (m+l)Λ2. Let Wa be the Weyl group in (3.2). Then we have

o Σ
weWa

(Λ0 + ρ,3) = 0, (3.6a)

chL(Λ0)= chFΛΰ, if mφZ\{0}. (3.6b)

Proof. Consider the sum in the right-hand side of (3.6a)

Σ (lfe(w(Λo + ρ)Λo-ρ) (3.7a)
weWa

k = 0 ni<...<nk

«i, ...,«ίceN

= Σ ( - l ) k Σ e(-n1d-n23...nkd) (3.7c)
fe = 0 ni,...,πjceN

« i < . . . < « k

= Σ (-!) fc Σ < f + - + 1 * = Π (!-«")• (3 7 d )
k 0 N l
Σ

k = 0

Comparing with (2.13) and (2.20) we see that the proof is finished. •

Consider now the subgroups S+,S~ of the Weyl-Kac group W so that
S'+ = {l,51},iS~ = {1,52}, and sa = saa is given in (3.1a). Note that each one of S+, S~
is isomorphic to the Weyl group Wo of the Aγ =s/(2,(C), the finite-dimensional
algebra underlying Aγ\ Consider further the infinite abelian groups W^ with
generators sx or s2 and the generators of Wa, i.e.

Wa

± = {w = w's = sw'\w'eWa,seS±}. (3.8a)
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This definition is meaningful since

sαw(n) Ά = sa (Λ — nd) = A — nd — 2 — - — ^ — α = A — - — ' — α — nd = w(w)sα Λί.

(α, α) (α, α)

Thus

Wf^WaXWo. (3.8b)

We set

l(w) = Jβ(w') + /0(s), w = w's, W e Wa,

s e S * , /0(sβ) = l , /0(1) = 0.

Next we prove the analogue of Proposition 7 for FΛ +:

Proposition 8. Let Jί{A^\ FAL be as in Propositions 3, 4, 5,

>4ί=(±m-l)^1-(±m + l)^ί2, meN.

Lef Fl̂ 111 be the Weyl groups in (3.8). Then we have

± Λ ξ - ρ ) . (3.10)

Proof. Consider the sum in the right-hand side of (3.10) for sign " + ":

Σ
weWa

- Σ (-l)'(w)e(w (Sl (Λ0

++ρ)--Λ0

+-ρ)). (3.11a)

By the definition of ΛQ, S1 -(ΛQ +Q) = AQ +ρ — mocl9 i.e., then we have

W'{ΛZ +ρ-rnot1) = W'{A£ +ρ)-rna1,

so the right-hand side of (3.11a) becomes [using also (3.6a)]

Σ

weWa

= (\-zm)chFΛ+/chJΐ(A+), (3.11c)

which proves (3.10) for sign " + ". For sign " - ", we use that by definition S2(AQ + ρ)

= AQ +ρ — mcc2- D

We note that (3.6), (3.10) have exactly the form of the Weyl (respectively Weyl-
Kac) character formula for the irreducible finite-dimensional representations of
semi-simple Lie algebras (respectively for the integrable representations of affine
Kac-Moody algebras); one should replace Wa or W^ with the Weyl group Wo

(respectively Weyl-Kac group W). One interesting question is what is the relation
between the Weyl-Kac group W to the new Weyl groups Wa, W^. We need to recall
some properties of W.
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The Weyl group Wis generated by the two simple reflections sί9 s2 [cf. (3.1a)]. It
is known that [15]

W={(Sls2)\ (s2Sl)\ {Sls2rsl9 (s2s1γs2\k9l9m9neZ+}. (3.12)

We note that (cf. [6], formula (28)):

f (3.13)

(3.14)

We recall the action of W on the weights ΛeSfr. For A = dd + λί(x.ί + cc9d9λl9ce<E9

let us denote

χ{Λ) = [d9m1,m2~], mx = (Λ + ρ, (xt), i = l , 2 ,
(2.15)

ro1=2λ1 + l , m2 = c-2λ 1 + l .

We also introduce as in [6], formula (27)):

, (3.16)

Q. (3.17)

Then in terms of (3.16) we have (cf. [6], formulae (26) with all subscripts 0 replaced
by 2):

lk) = [ r f - % 1 + k(m1 + m2)), m1 + 2fe(m1 +m2),

m2-2fc(m1 + m2)], (3.18a)

[^-fc(-^i+fc(^i+^2))5 m1-2fc(m1+m2),

m2 + 2fe(m1+m2)]? (3.18b)

+ m2)), m2 - (2k +1) (m1 + m2),

(3.18c)

, (3.18d)

Formulae (3.18) describe embeddings of Verma modules in the following cases: 1)
m 1,m 2eN; in this case the irreducible factor modules Jί(Λ)jl(A) describe the
integrable highest weight modules LΛ of A^ [4,12,15,6]; 2) ml9 m2 e — N; in this
case *#(Λ) is embedded in all J((A*) given in (3.16,3.17) and is irreducible [4,6] 3)
m 1 eN, m2 = 0 (or equivalently m 2 eN, m^O); in this case A2tk+ί=A'lk and
A'2k = Alk, then we have the embeddings

[6]; 4) mίe— N, m2 = 0 (or m2e— N, m^O); we use the coincidence between
Verma modules as in 3) but the embeddings in the chain are in the opposite
direction; 5) mίe±¥l, m2φΈ (or m 2 e ± N , m1φZ)m

9 in this case we have Jί(A)
— miai) if m^eN and Ji(A) c Jί(A — mμ^ if m^e— N; 6) m 1 +m 2 = 0,
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mί φZ\{0}; 7) m1 +m2 = 0, mι eZ\{0}. The last two cases are actually the cases we
consider. Thus we can see the following correspondences. Let A = AQ =(m — l)Aί

ί)A2, m e N ,

f + Q = A+-kmS9 (3.19a)

)-ρ = AX +kmZ9 (3.19b)

)-Q = AQ -kmd-maγ, (3.19c)

)-Q = AQ + kmd + ma2. (3.19d)

Thus every element of the Weyl-Kac group has a counterpart in a subset of the
multiplet which we consider in the cases A = AQ, i.e., when we start with a singular
Verma module reducible also w.r.t. positive roots. The correspondence

WasW(mk) \-+ {s^rf, keZ+, (3.20)

although with coinciding action on AQ is not isomorphism even between
semigroups because, e.g., w(m(kί+k2)) and w(mkί)w(mk2) are mapped to
(s2s1)

f e l + f c 2. The same applies for the correspondence

Wa

+ 3sw(mk) ^ sfastfeW, keZ+, (3.21)

with coinciding action on AQ , because Si(s2>
5i)fe do not form a subgroup of W.

The case A = AQ is analogous; in (3.19) the quantities added to AQ will change
signs [e.g., AQ —kmά^A^ +kmclin (3.19a)]; further 51<-^52, Wa

+ -+W~.
Everything above can be summarized by the following diagram which

appeared in [6] [cf. (35)]

-> A+rnd -*...-• A + d -+ A -> A — d -»...-> A — md

w w w w w w

A d A A d
w w w w w w w

—• A + md — ma ί-^...-^A + d — ma 1^A — ma γ-^A — d — ma 1-^...-^A — md — ma ί

(3.22)
where A = AQ,W = W(1). In [6,7] we considered an extended Weyl group We which
in the language of this paper should be described as an infinite abelian group with
generators w(ri)s = sw(ri), neZ, seS+ (or S~)9 i.e.

W^ = {wr = ws\w = w ^ ) . . . w(nk), k e Έ+,

w = l if k = 0, n feZ\{0}, w(n)2 = l ,

w(φ(π') = w ( φ ( 4 SES±, SW = WS}. (3.23)

Thus we have the following inclusions of groups

WaCWfcW*. (3.24)

If we consider the action of the Weyl-Kac group W on AQ, besides (3.20) and (3.21)
we have the following correspondences:

> w{-mk)e We

+ , fc = 0,1,. . . , (3.25)

w{-m{k + l))eWe

+, fc = 0 , l , . . . , (3.26)

however, again these maps give rise to no isomorphism.
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Finally we introduce a notion which will uniformize all formulas for the
characters. Let W* be any of the Weyl groups we considered, let A e § * and V be a
HWM with highest weight A. Then we shall say that we W* is V-active if there
exists a HWM V with highest weight w(A + ρ) — ρ which is isomorphic to a
submodule of V. Further we shall restrict this definition to the category of Verma
modules, i.e., V and V above should be Verma modules. Thus we have:

Proposition 9. Let Ao be as in Proposition 7, mφΈ\{0}, AQ as in Proposition 8.
Then we have

chL(A0) = chJί(A0) Σ ( - VmΦ -(Λ0 + ρ)-A0-ρ) (3.27a)
weWa*

w — <M(Λo)~active

= chJί(Λ0) X (_i)«w>φ;(Λ0 + ρ ) - Λ 0 _ ρ ) , (3.27b)

chFΛ± =chJt(A±) Σ (-l)l{w)e(w(ΛΪ+ρ)-AΪ-ρ). (3.28)
0 we W^

w — ^ ( Λ ^ )-active

4. Discussion

Several paths of applications and generalizations are available. First one should
look for new modular invariants connected with the characters calculated in this
paper. For this we note that all characters [cf. e.g. (2.13), (2.20)] contain the factor

° a1/12z~1/2n(τ)

WW-rt-i^JL. (4.1)
where q = e2πί\ z = e2πiζ, η{τ) is the Dedekind function, and θπ,m(C,τ) = θM,w(C,τ,O)
where the latter is the classical theta function associated with A[1} so that [12]

θnfm(ζ,τ,u) = e-2πίmu Σ e

2πik(k2τ-kζ\ m e N , n e Z m o d 2 m Z .
keZ + n/2m

(4.2)

Taking into account the transformations of η and θ under the generators S and T of
the modular group (cf. [12] (13.6.8))

S(ζ, τ) = (C/τ, - 1/τ), T(ζ, τ) = (ζ, τ + 1 ) , (4.3)

η(τ) = eπh'12 Π ( l - « " ) , ff(-l/τ)
W6N

(4.4)

(4.5)
(0ι.2-V-ι.2Ht,τ + l) = e"l-ψi.2-V-i.2Hί,τ),

we can easily see that

η{τ) (4.6)
' " θU2(ζ,τ)-θ.U2(ζ,τ)

is a modular invariant for the case m o = 0 , Λ o = — ρ [cf. (2.20), (3.15)].
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Next one should try to generalize the Weyl group Wa (and then W^, W^) for an
arbitrary affϊne Kac-Moody algebra ©. From the paper of Malikov, Feigin, Fuchs
[9] we know that the singular vectors of Theorem 1 are related to the second order
Casimir operator Ω of 5/(2, (C) by renormalizing the Virasoro algebra Sugawara-
type construction of [5,12]. The operator Ω for the finite-dimensional algebra ©0

underlying (5 will give rise to similar singular vectors and we should be able to
define the group Wa in an analogous way. However there should be similar singular
vectors [9] related to the higher order Casimir operator Ωι (whose number
together with Ω is equal to / = rank(50). Thus we should end up with Weyl groups
WJ, ί = l,...,/, each of which is isomorphic to Wa. Moreover they should be
mutually commuting since the Casimir operators commute. Work in this direction
is in progress.

Another path is pursued in [16]. There we show that the group Wa is also a
Weyl group for the Virasoro and N = 1 super-Virasoro algebras. This is not trivial
since these algebras do not possess a (generalized) Cartan matrix. The notion of
F-active elements of Wa plays a crucial role in [16].

Finally one should try to apply these ideas to superalgebras with associated
(generalized) Cartan matrices. We have already noted [17,8] that if a Verma
module over such a superalgebra is reducible w.r.t. some odd root α [such that
(α,α) = 0] then the corresponding homomorphisms between Verma modules
cannot be described by the Weyl-Kac group for the same reasons as in the case of
singular Verma modules over affine Lie algebras. In [17,8] we have introduced the
so-called odd reflections (or translations) by a formula looking exactly as (3.2). It is
natural to try to continue this development by combining it with the ideas of the
present paper. Work along these lines is in progress.
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