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Abstract. This paper presents a proof of bounds on the renormalized perturba-
tion expansion of the euclidean λφ% theory. Its aim is partly pedagogical: by
combining the insights and techniques of numerous authors it is now possible to
define the perturbation expansion and bound it in a very few pages. The present
version is based on the renormalized tree expansion adapted to the continuous
renormalization group: all detailed results are proved by induction on the size of
the tree. The continuous RG version presented here has one big advantage over
the discrete RG version discussed elsewhere. In the continuous version, a tree
has a more restrictive structure: there is a one-to-one correspondence between
forks of the tree and lines of Feynman graphs. This extra structure eliminates the
need to introduce Feynman graphs in the first place. It also reduces the number
of cases to be analyzed at a given inductive step and simplifies the combinatori-
cal estimates.

1. Introduction

It is recognized by now that renormalization is best understood in the framework of
Wilson's renormalization group [12,13]. This is well exhibited in the setting of
constructive quantum field theory by the resent work Gawedzki and Kupiainen and
Feldman et al. on the Gross-Neveu2 and infra-red φX models [8,6]. Another
important and perhaps simpler realization of RG ideas has been in renormalized
perturbation theory.

The traditional approach to renormalization theory, highlighted in such
landmark papers as [3,1,11,9,14,2], has been based on Feynman graphs and the
idea that infinities can be cancelled by the introduction of infinite counterterms into
the lagrangian. The most refined formulation of the renormalized Feynman graph
expansion was the Zimmermann forest formula, which defines the renormalization
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prescription, and when combined with the notion of Hepp sector and the power
counting theorems, leads to an ultra-violet convergence proof.

The RG approach to perturbation theory arose in its discrete version
independently in [7,5] and in its continuous version in [10]. In the discrete version
developed by Gallavotti and Nicolό and refined in [4], the free field propagator is
decomposed as a sum over scales:

h = 0

where in an appropriate sense, each term C{h) has length scale M~h, M> 1 being a
fixed scale factor and A is an ultraviolet cutoff. Then, a family of effective potentials
{ Vr}r= -1,0,1, ...is a collection of functions of the field φ which satisfies the following
recurrence for each r ^ O :

[f dώ'e~{φ'ΛC(r))~iφ')/2eVAΦ'+φ)~]
μφ'e-iΦ'ΛCirwyieVAφ ) j (2)

This equation can be written as an infinite series in two ways:

n = 2

(n arguments) , Wick-ordered version (3)

(n arguments) , non-Wick-ordered version (4)

where Sτ, Sτ are called truncated expectations. The renormalized effective poten-
tials are a particular solution of this recurrence which depends uniformly on the
cutoff A as A-+ao. Each effective potential is defined by an expansion whose terms
are represented pictorially by trees. In the Wick-ordered form, trees have forks with
n ̂ 2 branches emanating upwards (called «-forks), while in the non-Wick ordered
form, forks have n^ 1 upward branches. The value of each tree τ is calculated as a
sum of Feynman graphs each labelled with a nested family of subgraphs compatibly
with the tree. At each subgraph is applied either a renormalization operation or a
counterterm operation. Λ-uniform bounds on each tree of the expansion are proved
by induction of the number of forks of the tree.

The method described in this paper is a simplification of the above procedure.
The original observation which motivated the work was that the tree expansion
simplifies as the scale factor M-» 1. Suppose, for example, that τ is a tree which has a
3-fork /, and that τ' is the related tree obtained by splitting / into two 2-forks. For
M= 1 -f ε with ε<ζ 1, and any graph G compatible with τ, we expect that

Similarly, as M-» 1, the contribution from trees with ft-forks, n > 2, ought to become
negligible compared to that from trees with only 1,2-forks. This intuition is shown
concretely by the fact that (13), the differential analogue of (4), contains only n = 1,2
terms. Thus the continuous RG tree expansion is over trees with only 1 and 2 forks.
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The simplification is quite dramatic: in the non-Wick-ordered version we adopt
here, for any Feynman graph G contributing to a given tree τ, each line G is in one-
to-one correspondence with a fork of τ. It turns out that Feynman graphs are
superfluous in this framework, and the analysis we present makes no use of them.

The method combines aspects of the GN approach with the approach of
Polchinski. It retains the conceptual elegance of the tree expansion, while realizing
the goal of freeing the analysis from Feynman graphs, as in Polchinski.

The paper is organized as follows. In Sect. 2, the unrenormalized effective
potentials are introduced, and the continuous-scale tree expansion is defined. The
natural bound on the value of a completely convergent tree (Theorem 2) is proved in
Sect. 3. Renormalization operations are introduced in Sect. 4, and the renormalized
effective potentials defined in terms of them. The renormalized tree expansion
(Theorem 3) is proved. Finally, in Sect. 5, the inductive bound on the value of a
renormalized tree is proved (Theorem 6). This is the main result of the paper.

2. The Unrenormalized Tree Expansion

Consider Euclidean free field theory in four dimensions with scalar field φ(x),
gaussian measure dP(φ), and covariance

y) (6)

This function is singular at \x— y\ = 0. If m2 = 0, it also exhibits slow decay at large
separations. We decompose the covariance as an "integral over scales". Several
schemes are possible: I choose the following formula:

C(x9y) = ] dζc(x,y,ζ) (7)
o

with

(8)

Here we consider only the massive theory: for convenience I take m2 = 4. For any
fixed pair of numbers Orgr <s< oo, the cutoff covariance

is C°° and has exponential large distance decay. Let dPs

r(φ) be the corresponding
gaussian measure.

An interacting theory can be defined in the presence of a UV cutoff A by a bare
potential V(φ), a local functional of φ. The generating functional for connected
Green's functions (with external lines amputated by CQ'1) is given by

-^dP£{φ')ev^+^] , (10)

where Z£ = \dP£{φ')eV{φ'\ The functional V0

Λ is called the (unrenormalized)
effective potentialTor the model (n.b. the label "effective potential" is often applied
to the generating functional for one-particle irreducible amputated Green's
functions).
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The R G approach introduces a one-parameter family of effective potentials Vr

Λ

which interpolates between V and V£:

Vr

Λ(φ) = \og[{Z?YHdP?{φ')evw+<»] . (11)

The normalization factor Zf is infinite in infinite volume: however, the normalized
quantities (11) are easily interpreted by imposing and then removing a volume
cutoff. We note V£= F a n d the "semi-group" property:

Vr

Λ(φ) = log[{Z^1 ldP'r{φ')er^*'+*h (12)

which holds for any s,r^s^Λ.
The dependence of Vr

A on the lower cutoff r is characterized by the following
differential equation:

Lemma 1. For any O^r^Λ:

where l?r

(1) is the linear operator

=-[B?>(Vr

Λ)+B?>(Vr

Λ, F/)] , (13)

, (14)
Φ=o)

and B,2) is the symmetric bilinear operator

λW Γ λV FiW Ί Ί
, (15)

I Φ=o)

acting on functionals of φ.

Proof We approximate i^Ξexp Vr by finite dimensional integrals of the form

and calculate

After twice integrating by parts, we find

dF ,
— = —1/2 dxdycix, v, r
or J

Now, use the chain rule on F=ev, and find

Bev

 v dV
= ev—=-ev[B(1)(V) + B{2)(V, V)] . QED (19)

or or
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By the fundamental theorem of calculus,

Vr

Λ(φ)=V(φ) + ] dζ[B£\Vζ

Λ) + B*\Vζ\ Vζ

Λ)] . (20)
r

The unrenormalized tree expansion is the formal power series solution of this
integral equation obtained by iteration. We represent each term of the expansion

Vr

Λ(φ)=V(φ)+j

+ 2?f>(F+ ,F+ )Ί (21)

by a tree:

V V V+ F+ F+ F+ F+

(22)

v r-\~" v -f- v -h' M ^

•M-Y +Y
Each term is a planted planar tree which has (i) a number v(τ) of upper endpoints,
which represent the bare potential V; (ii) a number N(τ) = Nί(τ) + N2(τ) of nodes
("forks") with either one or two "branches" emanating upwards, and one branch
emanating downwards and (iii) the label r at the "root". Each fork represents either
the operator j dζBj>1](') or J dζBj-2)(-, •). All such trees occur in the sum (22) exactly
once. The unrenormalized tree expansion can be written:

Vr

Λ(φ) = Σ»?(?>Φ) = Σ ί Γ Π dζf]v(τ,ζ,φ) .
r τ &r

Λ(τ) \_fe3?{τ) J

(23)

Here $F(τ) denotes the set of forks of the tree τ, and 3ίr

Λ(τ) denotes the domain:

and
( 2 4 )

where Fis the bottom fork of τ and π(f) denotes the fork immediately beneath the
fork /. We will also write f <f if / ' lies above /, τ^f for the tree with forks
^Wn{/ ' :/ '^/} ,e tc .

The value ^ ( τ , φ) of a given tree is defined by induction down the forks of the
tree. Thus, vf(τ,φ)=V(φ) if τ is trivial,

vr

Λ(τ, φ) = J dζ.B^dv^τ,, φ), υ£(τ2, φ)) , (25)
r

if F is a 2-fork with trees τι and τ 2 emanating upwards, and

^(τ,φ) = ] dζFB^(p^(τlfφ)) , (26)
r

if F is a 1-fork with tree τγ emanating upwards.
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It is useful to work with kernels. Let v(φ) be a monomial of degree d. It can be
written

v(Φ) = ί Γ π dx{φ{xύ\ v ( x l 9 . . . 9 x d ) , (27)

where

4 [ή b ] H • <28)

We introduce a compact notation x = (x1?...,xd), dx = dx1 -dxd, φ(x)
= φ(x1)'"φ(xd)9 δ/δφ(x) = δ/δφ(x1) — δ/δφ(xd), etc. The operations B^ can be
expressed in terms of kernels. Suppose vi,v2 have degrees dί and d2. Then
t; = J5Jί

2)(t;1,^2) has degree d=d1+d2-2 and kernel

l δd [δυt(φ) δv2(φ)-]\

z [α! oφ(x) \_oφ\y) oφ{z) JJ ^ = 0

where 77 is a partition of {l,...,rf} into subsets of size d1 — l and d2 — \. The
monomial f/ = ̂ r

(1)(t;1) has degree d=dί—2 and kernel

dΛ 1
t / ( x ) = — - j ί/yJzc^z,^^^^^^) . (30)

3. Bounds on the Unrenormalized λφ4 Expansion

We now consider the value of a typical tree τ when the bare potential is the local
monomial

V(φ)=-λldx(φ(x)γ . (31)

We are in particular interested in the dependence of v?(τ, φ) as the cutoff A goes to
infinity.

The quantity v?(τ, φ) is easily seen to be a monomial of degree

τ)) . (32)

A suitable measure of the size of v*(τ, φ) is the following norm on the kernel:

I I ^ W H ί ί <*M(*i)i»;V,χ)i (33)
i = l

(The kernel fr
Λ in general involves undifferentiated delta functions, for which we

define |<5| = <5.) If | |^(τ) | | is bounded uniformly in A we say that the tree is
convergent, otherwise it is called divergent. If vf(τ) is convergent, then
lim v?(τ, x) exists and is a locally integrable distribution which is bounded

Λ—*• oo

at oo.
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We consider the tree τ in the two cases Fe ^{2\ Fe^{1). ifFe #" ( 2 ) , then from
(25) and (29) we obtain the natural bound on | | ^ ( τ ) | | :

Ik/ WI Φ^ J dζ\\c(ζ)\\ \\v?(τi)\\ \\v?(r2)\\ . (34)
Δ r

The norm ||c(C)|| c a n be evaluated explicitly:

= ̂ e-^ζ-2 , (35)

and so

I I ^ W l l ^ φ 5 - ί ^ - 1 / ζ ζ - 2 | | ^ ( τ 1 ) | | | |^(τ2)|| . (36)

If F G J Γ ( 1 ) , then from (26) and (30) we obtain the bound on

J dζϊsup Ic^z.
r L y ' z

( 3 7 )

We introduce the superficial degree of divergence at the fork / :

(38)

where Ni(f) = Ni(τ^f), and, when <5/<0 at each fork /, a combinatoric factor
defined inductively:

1 τ trivial

(39)
C (τ)=

Theorem 2. Suppose τ w .ywcA //zαί δf<0 for all forks fe^. Then v^(τ,φ) is
convergent. It satisfies the A-uniform bounds:

| | | | - ^ 2 , (40)

where E(r) = (l-e-ίlr).

Remarks, (i) When δf ^ 0 at any fork, it can be shown in this model that υf diverges
as Λ-*co.
(ii) The proof and the renormalized generalization which follows make use of a
certain elegant property of the integrals arising here: to evaluate:

I(r) = ] dζe-Wζ-tEiζ)*-1 , (α>0) , (41)
r

we make the change of variables (good for all ζe(0, co))ζ\-+x(ζ) = \og(E(ζ)~1).
Then dx = dζe-1/ζζ-2E(ζ)~1 and so

00 J

I(r)= f dxe~ax= — e — ocx

x(r)

= -E(rY . (42)
x(r)



160 T.R.Hurd

(iii) We do not discuss here the behaviour of the combinatoric factor c(τ) nor the
behaviour of the sum over trees: this is the subject for further investigation. Let it
suffice to give here the following worst-case bound for a tree τ with Nt /-forks,
ι = l ,2 :

. (43)

Proof. We prove (40) for the tree τ by the inductive use of (36) and (37). Clearly (40)
holds for the trivial tree. Suppose Fe J^ ( 2 ). Assuming (40) for the trees τί,τ2, then
(36) implies

( 4 4 )

Note that δί+δ2 = δF + 2: Provided δF<0, we can do the ζ-mtegral using (42) and
obtain the desired bound. Suppose F e J Γ ( 1 ) . Then

hΛ(τ)| / Γ ' ( < 1 1 ) C ( τ i ) ί dζe-WEiζ)-*"2*1 . (45)

Since ζE(ζ)^ί for all 0^C<oo, we can write J ^ O " ^ 2 * 1 ^ " 2 ^ ) " ^ 2 " 1 and
then (42) gives the desired bound, again provided δF < 0. QED

4. The Renormalized Tree Expansion

We introduce a localization operator L acting on the vector space of effective
potentials, which projects onto the subspace of relevant monomials. Heuristically
(the exact definition will be given shortly), the relevant monomials are those
monomials for which the convergence condition fails (so δ ^ 0), while irrelevant
monomials are those with δ < 0. We use L and its orthogonal projection R = l—Lto
formally define the following solution of the ode (13):

j ζ ζ>
rQn, Vζ

Λ>ren)] . (46)
0

We check that

(LV— = LV=V

since V—— / I j φ 4 is itself "relevant". We call (46) the renormalized effective
potential at scale r: it is the solution of (13) which satisfies a mixed boundary
condition: the relevant part of Vr is fixed at scale 0, while the irrelevant part of Vr is
set equal to zero at scale A.

The renormalized tree expansion for Vr

A'ΐen is the formal power series solution
obtained from (46) by iteration. It is an expansion like (23), with two changes:
(i) each fork is assigned a label ρf which is either R or C, signifying the insertion of an
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R or C= —L operator there, and (ii) the domain of the ζ-integrals is the space

&r

Λ(τ,Q) defined by

μSζύΛ ifρ/ = Λ;
ifρ/ = C ;

with Cπ(F) = r for the bottom fork F. The value v(τ, ρ, ζ, φ) is defined inductively as in
(25) and (26), but with the operation ρf (either R or C) applied at each fork /. The
expansion is then

Theorem 3. (Renormalized tree expansion).

Σ Σ Σ Σ ί dζv(τ,ρ,ζ,φ) . (49)
τ Q τ Q &r

Λ(τ,ρ)

The value v(φ) of a tree which has renormalization at every fork except
the bottom fork will turn out to depend explicitly not only on the field φ, but
also on the first, second, and third derivatives which we write φμ = dμφ,
Φμv = Sμdvφ, Φμvρ = 8μdvdρφ. The total degree of v in φ is d=4-2(N1-N2)) as
before, but now v has many terms:

»(Φ)= Σ ϊtel'''fadΦnΛXl)'''Φnd(Xd)Vnί...nAXl>Xd) > ( 5 0 )

where each nt is a 4-dimensional multiindex of degree 0 ̂  \nt\ ^ 3 (i. e. nt = 0, μ, μv, or
where μ, v, ρ = 1,2, 3 or 4). We write

We introduce a compactified index notation: Xi = (xί,nί), φ(Xi)^φn.(xi),

Then

and

p W 4[wlo (53)

The operators B(1), B(2) work as before. Suppose vί(φ) and v2(φ) have degrees
d1,d2. Then v = BJ.2)(vί,v2) has degree d=d1+d2 — 2 and kernels

» ( X ) = ^ ^ Σ ^ί^^Zc(7,Z,r)?;1(Xπi,7)z;2(Xπ2,Z) . (54)
«! i7 = {πi,π2}

 Z

Here 7=(>y,jp) and Z=(z,g), so c(Y,Z9r) = dξd*c(y,z,r). The monomial
u; = j^jί1^^) has degree d=d1—2 and kernels

v'^)=~- \ \ dYdZc(Y,Z,r)Vl(X, Y9Z) . (55)

The degree of divergence of z;n now depends on n rather than just d:

<5n = 4 - Σ k W (56)
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A monomial vn is said to be relevant if <5n^0 and irrelevant otherwise. The list of all
relevant values of n is: (0,0), (0, μ) (μ, v), (0, μv\ (0,0,0,0).

The localization operator L acting on vn(φ) with δ = δn^.O is a sum of terms of
degree m with O^rn^δ:

(Lvn)(φ)=

with
m = 0

(δ-m)\
4 ί dxvn(x)φn(x(t))

(57)

(58)

where xi(t) = x1+t(xi — x1) for / = 2,...,rf. Lm^n vanishes if <5n<0. There is some
ambiguity in this definition of Lmvn which is completely removed if we select a
localization vertex xx such that IwJrglwJ for all /.

The renormalization operator R acting on vn can be expressed using the Taylor
remainder formula:

i d
= — J dt(\ -tf - ^ J dxvn(x)φn(x(t)) .

(59)

Of course, R = 1 if δ < 0. We note that JRι;n is always irrelevant: it is a polynomial
(Rv)n> whose degree of divergence is <5n r e n = ̂ n, = min((5n, —1)<0.

5. Bounds on the Renormalized Expansion

We define the norm of vn as before:

\ l Λ \vm(x)\ . (60)
More generally, for any γ^.0, we define

= ^ sup I dxδ(Xί)\2y\ |υ,(x)| . (61)

where 2ίv(x) = Π (χir ~
 xjr) ^s a nY difference of degree γ ̂  0, and the sup in (61) takes

r = l

place over all choices of indices ir9jr. The following lemma gives what we need to
know about the size of renormalized kernels.

Lemma 4. If vn is any monomial with δn ̂  0, then

\\Rvn\\y^3\\va\\y+in+ί , for any y^O;

(62)

\\Lmvn\\y = foranyγ^ί .

Proof. Consider the R case. Note that the ί-derivatives generate a maximum of three
terms of the form

1 J dt{\-tγ
01 0

(63)
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To calculate a bound on \\Rvn\\y we note that 2y(x(t)) = tγΔγ(x)9 set each field
φnl(x(t)) = ί, and find

\\BvΛ\\y& sup Γ-^TfΛ^l-O'ljΛli ^ l ^ ^ ί x ) ! . (64)

1

But [y !^ !]" 1 j dtty(l-t)δ=[(γ + δ + l)\]~ί and the result follows. The bounds on
o

Lmvn are trivial. QED

Now we consider how to bound the value υ(r9 φ) of a tree τ with root scale r, in
the cases Fe^i2) or ^{1\ ρF = Roτ Cw, m = 0,2. If Fe^(ί\ i=l,2,

v(r,φ) = (65)

where the quantities BV) are expressed in terms of the values vt, v2 of the trees
leading into Fby Eqs. (54) and (55). If we write Y=(y,p), Z={z,q) and note that
#{Π} = C(d,dr -1), we find

d,d2 sup Σ\dxdydz
Π,Δy p,q

|2"|5'+«c0',r,θI»i.(pni,p,(ί,x, ι,J')||θ2.(^.*(C,x, ϊ^)l (66)

A difference |x;—Xj | with ieπ^ and yeπ 2 can be bounded by

\χi-y\ + \y-A + \z-Xj\ • (67)

Expanding Δy in this way, we have a bound

μ η ^ Σ |2fβI||2ίβi12Ί , (68)
partitions

V = {αi,α2,iS}

where 2ίαi contains differences in the variables {xπι,y}9 A*2 contains differences in
the variables {xπ2,z}, and Aβ = \y — z\β. From (66) and the multinomial theorem we
have

Σ '
p,q β = 0

Σ
β = 0 α = 0

\\Sp+qc(ζ)\\β \\vUM(ζ)l \\v2Λn^q)(ζ)\\y^β . (69)

Somewhat more directly, we can calculate from (55) that

IK^Ol^rfiίrfi-i) Σ ΓSUP l̂ +βccv,z,oι I k ^ J ϋ ϋ (70)
j»,β L y J

Our bound on the value of a renormalized tree, as in the unrenormalized case, is
proved by induction down the forks of the tree. The difficulty, of course, is in
framing the induction with the right inductive form for the bound. From past
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experience, we know that the right inductive bound must extend the unrenormalized
version (40) to include the y-dependence of ||t?n|| y, and include "renormalon" factors
which will arise from the presence of C-forks. This renormalon behaviour will be
captured by the following family of functions :

V* J dζe-^ζ-'Eiζy^^ilogEiζy'γ (71)
r

for n = 0,1,2,... (which are essentially the same functions is those introduced in
[5]). These satisfy the following properties which are useful for the induction:

Lemma 5.

(i) λn is monotonically increasing (72)

(ϋ) λni(r)λn2(r)ίλni+n2(r) (73)

00 E(ήβ

(iii) \dζe-χH-2E{ζYί+nn{ζ)<2λn(r)^- for all βZi/2 (74)
r P

(iv) ί^- 1 «ζ- 2 £(O- 1 A B (ζ )<(« + l)-1AΛ+1(r); (75)
0

(v) λn(0) = 4»n\ . (76)

Proof. We work in the variables x(r) = log(E(r)~1) in terms of which:

ϊ >-*>'V = 4"*! £ O'O'1 (*/4)> . (77)

(i) Obvious.
(ii) This follows by induction on nlyn2 when we note that λ'n = nλn_ί and

^ ( 0 ) . For then

(iii) J dζe-^ζ-'Eiζy^n^ζ)^ ϊ dyte-»» ]

(iv) ί dζe-^ζ-2E{ζYιλn{ζ)4 dyln{y)
0 0

(v) Obvious. QED

Theorem 6. Consider a tree τ with labelling ρ contributing to the renormalized
effective potential Vr

A(φ). The value v(r,φ) = Σnvn(r,φ) is bounded term by term,
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uniformly in A:

'λvKNiτ)c(τ)2y(y + iy2λκ(r)r~y/2

165

\\vΛ(r)\\7£
ifρF =

0 , ifQF = C, y>0,

(5n!g — 1 if ρF = R and δn^0 if ρF = C. Here c(τ) w ίte combinatoric factor
defined by (39) w/ί A |δ F | ~1 replaced by [max {1, - ^ J J ' ^ ^ w f l constant, and K is the
number of C°-forks in τ.

Remarks, (i) It follows that
(79)

exists as a formal power series in the coupling constant λ.
(ii) Putting r = 0 and γ — 0 into these bounds, and noting that λκ(0) = 4κκ\ we find

\vn(0)\\o^λ*KNiτ)φ)4κκ\ , if (5n^0

k(θ)||o=o, if^n>o .
(80)

(iii) The ansatz 2γ(γ + l)~2r~y/2 for the y-dependence of (78) is a technical
refinement not found in [7] and [4]. The somewhat simpler argument found there
leads to bounds which are not uniform as M-»l, and so fails to extend to the
continuous RG approach.

Proof First, we note the following bounds which hold for all 0 ^ ( < oo, β^O and
multiindices p, q with |/?|, \q\ ^ 3 :

(81)

H-2-"12 , (82)

(83)
p,q y

for some constant q .
Suppose Fe^U with m = 0 or 2. If *;n, = Cmt;n, with δn^m, then

J CmB (84)
0 0

From (70) and the formula δ{nyPiq) = δn-\p\-\q\-2, we calculate

(85)

If m>0 use of Cm / 2AK 1(C)^^w / 24W leads to the desired bound:

(86)



166 T.R.Hurd

with κ = κx. If m = 0 (73) gives

with K = κx + 1 .

(87)

Suppose Fe^2J. Then the identity:

LB^iv,, υ2) = LB{2\Lυx, Lv2) (88)

(easy to show) implies that υ{τ) vanishes unless v(τx) and v(τ2) are both either trivial
( = V(φ)) or C-trees. This fact eliminates the α, β-sum in (69). When we note that

^q) = δn— p — q-\-2 and use (82) to do the/?,g-sum, we find:

sup

ij (89)

Use of Lemma 5, and the bound ζ~1^ζ~2E~1 leads to the required bound

(90)

with κ = κι + κ2 if m > 0 and K: = ̂  + κ2 +1 if m = 0.
Now suppose F e ^ υ and 5 n ^0. From (70) and (83) we find

1

l I dζe
' l l ζ

When we note that ζ-ίK + wE(ζ){2-δ«)l2^ζ~2E(ζY112 and
that the C-integral can be done using (74), leading to

||ίv||v^r [3 λκ(r)r-vl2E(ryδ*'!2 .

2? w e f m d

(92)

The desired bound is proved easily if <5n < 0.
If Fe ^£\ then R = 1 unless both τγ and τ2 are C-trees or are trivial [otherwise,

by (88), the counterterm part would vanish]. Thus, in almost all cases no
renormalization is needed. If <5n<0, then vn> = Rvn = vn and

ί I'

where we have used δ
One can show t h a t {Un , ^ a n d the b o u n d (82) as before.

y

V
%

(94)
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Putting these results together, we find the desired bound

^ . ( 9 5 )

Renormalization is needed at Fe J^ 2 ) only if τ1 and τ2 are C-trees. Similarly to the
case Fe^2) we have for <Sn̂ 0

^ ] ^ ( + i+2V2 j (96)

Now Γ 3 / 2 ^ Γ 2 £ ~ 1 / 2 , and so we find

I I I ^ ^ 1 / 2 , (97)

which is appropriate for δn> = — 1.
This completes the proof provided we take

K=Sπ2cJ3 . QED (98)
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