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Abstract. A criterion of non-holonomicity of the S matrix and Green functions
in some basic simple situations of relativistic quantum field theory, previously
established in an indirect way or with supplementary assumptions, is reobtained
from unitarity equations by a direct and general algebraic argument.

1. Introduction

Holonomicity in the sense of M. Sato [SKK, KK] is an important notion in the
analysis of singularities of distributions (or hyperfunctions). Its meaning in
situations of interest in this note is recalled below. It was conjectured in [S] that
the momentum-space S matrix and Green functions of relativistic quantum field
theory should satisfy holonomicity properties at their Landau singularities. As a
matter of fact, holonomicity is satisfied in some simple well-known situations,
where singularities are poles, logarithms or, at 2-particle thresholds, square-roots,
and also [KS1] for a particular class of singularities which includes previous ones.
On the other hand, Feynman integrals are always holonomic (see [KK] and
references therein). However, the further analysis from various viewpoints [BI1,2,
BP, KS2] (perturbative or non-perturbative field theory, S-matrix theory) indicates
that the S matrix and Green functions are probably non-holonomic in general and
leads one to consider formulations of the idea of [S] involving infinite convergent
expansions in terms of holonomic contributions. For related investigations and
results in particular in constructive field theory, see [II, IM, 12].

Actual proofs of non-holonomicity have been given in [BI1,BP] in some basic
simple situations. The purpose of this note is to present a new more direct proof,
providing a better understanding of mechanisms that generate non-holonomicity
in these situations: at the 2-particle threshold s = 4μ2 itself if the dimension
d of space-time is odd and, more generally, in a simplified theory with no
subchannel interaction, at the m-particle threshold s = (mμ)2 inam->m process if
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β = [(m - \)d — m — l]/2 is integer, e.g. m = 3,d arbitrary; μ > 0 is the mass and s
is the squared center-of-mass energy of the channel. We denote below by F the
(momentum-space) connected, amputated Green function and by T its on-mass-
shell restriction (corresponding to the S matrix). Either in approaches based on
the Bethe-Salpeter (BS) or a BS-type equation, as in constructive field theory, or
in axiomatic approaches, F and T are shown to be analytic or meromorphic, in
the complex variable σ = s — (mμ)2, in a multisheeted domain around σ = 0 and
to satisfy, at β integer, the unitarity-type equations

F 0 - F r = r F 0 * F r , Vr, (1)

T0-Tr = rT0*Tr, Vr, (2)

where F r , or T r, is the determination obtained at σ > 0 after r turns (in the
anticlockwise sense) around σ = 0, and * denotes on-mass-shell convolution. A
new simpler algebraic derivation of Eqs. (1),(2) as also of related results, will be
given in Appendix 1.

Holonomicity, if it holds, means (essentially) either that the number of sheets
is finite with Fr = F o (or Tr = To) for some r, or more generally that it is infinite
but that the vector space generated by successive determinations is finite dimen-
sional: "finite-determination property"; equivalently Fr (or Tr) is, for some r, a
linear combination of F 0 , . . . , Fr_ 1 (or T o , . . . , Tr_ x). The non-holonomicity of T,
which implies that of F, is derived in [BI1, Sect. 5] from the further condition,
usual at m = 2, of hermitian analyticity. However, the latter appears to be
unessential and the following more general criterion has been established in [BP].
(A weaker result is first derived there from the BS equation).

Criterion. T satisfies the finite-determination property if and only if T%{p) = 0 for
some positive integer p (Tg(p) = To *... * To, p factors).

The case T$iP) = 0 is "pathological" and is excluded physically (e.g. from
hermitian analyticity: TJ$(P) = 0 then implies To = 0). The proof of this criterion in
[BP] makes recourse to the kernel U defined from T in [BI1, Sect. 6] (up to
modifications in some cases) via the equation

(3)

and shown from Eq. (2) at r = 1 to be locally analytic at σ = 0 or uniform around
it. However, this proof is indirect and requires various technicalities, and the
question arises whether a simpler proof, directly from Eqs. (2) is possible. Such a
proof is given in [BI1, Sect. 3], but under conditions on β, To that play there an
important role, so that the feasibility of a general proof remains at that stage unclear.

This note presents a simple purely algebraic result which shows (Sect. 3) that
the above criterion does follow directly from Eqs. (2) without conditions. This
result is stated and proved in Sect. 2 in a way directly suited for the application.
A more refined analysis, including further results, is given in Appendix 2 and in a
more general mathematical framework in [L].

Appendix 3 presents for completion a simple alternative proof of non-
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holonomicity using the kernel [/, when U is analytic at σ = 0. This proof
relies more on analyticity and less on algebraic properties than that of Sect. 2.

2. Algebraic Result

We consider algebras si generated by the elements of a family {Tr}, reN, and their
products, and satisfying the following properties:

(PI) Tr=T0 + rT0Tr, VreN. (4)

(P2) Translation invariance of linear relations: if there exists a linear relation
Y^arTr = 0 (involving a finite number of terms with non-zero coefficients ar\ then
all translated relations £ α r T r + y = 0, where γ is a positive or negative integer
(such that r + γ ^ 0 if ar Φ 0), also hold.

The existence of linear relations is (as in the physical context) equivalent, in
view of (P2), to the fact that the vector space generated by the family {Tr} is
finite-dimensional. Algebras $/ under consideration include those for which (P2)
is empty: no linear relation. The question we wish to investigate is whether the
existence of linear relations is compatible with (PI) (P2). The theorem below shows
that the answer is positive but only for a particular class of algebras: linear relations
are then well determined and these algebras are characterized in terms of To by
the condition Tg = 0 for some peN.

Theorem. Let stf be an algebra satisfying (PI) (P2). The following properties, if they
hold, are equivalent:

(i) The vector space generated by the family {Tr} is finite-dimensional with
dimension R.

(ϋ) Σ(-iγ(R)τr = 0, (5)

R'

and there is no linear relation £ arTr = 0 for Rf < R.
r = 0

(iϋ) T * + 1 = 0 , (6)

and Tg' + 1 non-zero for R' < R.
Algebras satisfying (PI) (P2) and (i)-(iϋ) exist for each R, are commutative and

all their elements are well determined linear combinations of Tθ9Tί9...,TR-l9 or
T0,Tl,...9Tξ.In particular:

Tr=Σ rn~xTn

0, Vr, (7)

T " 0 = i " i " X Vn, (8)

where the coefficients α{.w) are the {unique) solutions of the equations

ΣrΆ^) = Kn-u α = 0 , l , . . . , Λ - l . (9)
r = l
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Equation (8) reduces at n = 1 to Eq. (5). At n > R, δ^n^1 = 0, Vα = 0,1, . . . ,R - 1
so that α<M) = 0, Vr = 1,..., R. Hence Tn

0 = 0.

Proof.

a) (i)<->(ii)

We show below that (i)->(ϋ) (The converse is trivial). Property (i) yields the
existence of a linear relation

Σ"rTr = 0 (10)
r = 0

between the R + l vectors T o , . . . , TR9 and the absence of linear relations between
T0,...,TR-1 (which would entail, in view of (P2), applied with y = l , 2 , . . . ,
dimension <JR). Hence, aRφ0 in Eq. (10), as also aoφ0 (otherwise, (P2), with
γ = — 1, would yield a relation between T o , . . . , TR_ J , and Eq. (10) is unique up
to multiplication of all coefficients ar by a common scalar. Putting a0 = — 1, we
show below that these coefficients are necessarily those of Eq. (5).

Equation (10) yields, in view of (P2):

ΣarTr+ί=0. (11)
r = 0

After multiplication, on the left, of Eq. (11) by To and use of Eq. (4) (To 7} = (7}- T0)/j),
one also obtains:

£«r-^--ToC = 0; C=i^- (12)

Elimination of TR + ι between Eqs. (11) and (12) yields:

The unicity of Eq. (10) then shows that

and therefore C Φ 0 and:

Finally, Eqs. (15) and the definition of C (see Eq. (12)) then give (with rf = r+ 1):

The left-hand side of Eq. (16) is identical to C[1+(1/C(K + 1))]* + 1 , so that
C(,R + 1) = - 1. Equation (5) thus follows from Eq. (15). Q.E.D.

b) Equation (5)-+Eqs. (6) and (8)
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Equation (8) reduces at n = 1 to Eq. (5). Assuming it holds for some n, one obtains
by multiplication on the left of all terms by Tθ9 use of Eq. (4) (T0Tr = (Tr - T0)/r)
and replacement of To by its expression provided by Eq. (8) at n = 1:

where

R

Since Σ (

r = l

), α ^ l

, one

, one

Tn+ί _
J o —

α ( w )

(n+ 1) u r
r r

checks that

has:

Σ r*a{;+1) =
r = l J

Σ ar

R

r = l

R

υ = 0. On the other hand,

α<« . α ^ l .

(17)

(18)

since

(19)

Equations (9) follow by induction on n. As already remarked, Eq. (6) is a particular
case of Eq. (8) (n = R + 1). Q.E.D.

c) Equation (6) -• £gs. (5) and (7)

Equation (4), when applied successively N times, always yields:

Tr= Σrn~lτo + rNT»Tr, Vr, V i V = l , 2 , . . . . (20)

If Tξ +1 = 0, Eqs. (7) follow (with e.g. iV = R + 1). Hence

(21)

Coefficients of all factors Tι

0 in the right-hand side of Eq. (21) vanish when the
coefficients ar are the solutions of Eqs. (9) at n = 1. Equation (5) follows.

d) Any relation T$' + 1 = 0, Rf < R, would yield by the same method as above the
R' /R>\

relation £ ( - I n \Tr = 0. This completes the proof that (ii)-^(iii). The proof
r=i \r J

that (iii) -> (ii) is completed similarly.
Remaining points of the theorem are easily established. One checks that all

relations obtained for each given R are consistent. (E.g. Eqs. (7) and (6) yield
Property (PI)).

3. Application to Non-Holonomicity

The product TtTj in the application is the convolution T^Tj. Property (PI) is
satisfied in the case β integer (Eq. (2)). Property (P2) holds by analytic continuation
around σ = 0 (action of the monodromy group). The criterion of non-holonomicity
presented in Sect. 1 thus follows from the theorem of Sect. 2.
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Remark. Let T be expressed in terms of σ and of incoming and outgoing angular
variables Ω\ Ω". The absence of p such that Tg(p) = 0 (as σ varies) entails not only
the absence of the linear relation YdaiT£σ,Ω'9Ω") = 09 but also the absence of
relations of the form Yjai{σ)Ti{σ9Ω' 9Ω") = Q where the sum is finite and with
functions at locally analytic or uniform in the neighborhood of σ = 0. (Property
(P2) applies equally, by analytic condition, to such relations. The analysis of Sect. 2
can then be applied for each given σ, apart possibly from zeroes of some of the
functions involved. Arguments of analyticity allow one to conclude.)

Appendices

Details and proofs of various results, in particular in Appendices 2 and 3, have
been omitted for conciseness. They will be found in [IL].

1. Bethe-Salpeter and Unitarity Equations: New Algebraic Derivation. The follow-
ing lemma will provide a new, simplified and unified algebraic derivation of (i) the
algebraic equivalence (due originally to J. Bros) of the analyticity or uniformity of
the Bethe-Salpeter kernel G (Go = Gx) and of the 2-ρarticle asymptotic complete-
ness relation Fo — F1 = F0*Fl9 (ii) Eqs. (1), hence Eqs. (2) by restriction to the
mass-shell, at β integer (or F2 = Foatβ half-integer), and (iii) results on the kernel U.

Lemma 1. The relations Ak = Ak+1 + Ako
ik)Ak+ί, k = 1,2,...,n where o ( 1 ),o ( 2 ),...

are linear operations with associativity properties, yield Ax = An + x + A1(o ( 1 ) + o ( 2 ) +
- + oW)An + 1.

Proof. At n = 2, write e.g. A1=A2 + A1o
(1)(A3 + A2o

(2)A3) and use A1o
il\A2o

{2)A3) =
{A1o

(1)A2)o(2)A3 = A1o
(2)A3 - A2o

(2)A3. The induction on n is trivial.

Applications

(i) The BS equation reads F = G + FoG = G -f GoF, where the Feynman-type
convolution o satisfies the relation o0 — oί = *. Starting from G0 = Gί9 write
e.g. Fo = Go + F0o0G0, G0 = G1,G1 = F1- G1o1F1. Conversely, write G0 = F0-
G0o0F0, Fo = Fx + F0*Fl9 F1 = G1 + F^G^
(ii) From the BS equation, with G0 = Gί9 the same derivation as above for r ^ 1,
with the index 1 replaced by r, noting that at β integer * 0

 = *i s o that o0 — or = r*
(* is analytic continuation of *, * 0 = *). In the axiomatic framework that starts
from the relation F0 — Fί=F0*Fl9 direct derivation from the successive relations
F1 — F2 = F1*F2,... obtained by analytic continuation. (For β half-integer,
* 1 = - * 0 ? so that Fί-F2= -Fί*F2 and F2 = F0.)
(iii) See [IL].

2. Mathematical Complement to Sect. 2. The following results hold [IL] if property
(P.2) is not assumed:

(i) The existence of linear relations entails the existence of R and of cί,..., cR such
that Tθ9 ΓQ, ..., Tζ are independent and

tειTΌ (22)
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(ii) Conversely, Eq. (22) (with T o , . . . , T$ independent) characterizes a well defined
algebra all elements of which are well defined linear combinations of T o , . . . , Γj,
or T0,Tί,...9TR-ί, with "distorted" coefficients depending on c l 5 . . . , c Λ . The
existence of two "translated" linear relations implies cx = c 2 = ~-cR = 0 and results
of Sect. 2 are reobtained.

3. Proof of Non-Holonomicity Using the Kernel U. The kernel U defined either
[BI1] in terms of T via Eq. (3) or [13] in terms of the BS kernel G is shown in
either case to be uniform around σ = 0. We assume below it is analytic at σ = 0,
as shown in [BI3] in weakly coupled models of constructive theory at m = 2, d = 3.

For β > 0, T is then locally equal [KS2, BI1] to the sum of the convergent
series £ (7*(M + 1)[(l/2iπ)σ^lnσ]n, where * = σn and where coefficients U*(n+1) are

n

locally analytic (and bounded in modulus by cstw). Each term in (In σf satisfies a
finite-determination property of the form (5) with R^n+1. Since its minimal
degree (n + 1) increases with n, holonomicity is not expected for the sum unless
U*(p) = o for some > 0 integer p (or equivalently [BP] Tg(ί>) = 0) in which case the
sum stops at n = p — 1, or unless rearrangements of terms occur in the infinite sum
as in the case of the series £(l/n!) (lnσ)", equal to σ. Such rearrangements can be
excluded in the present situation and non-holonomicity is established: see [IL].

At β = 0, as in models at m = 2, d = 3, the series above is divergent, but the
argument can be adapted by using a decomposition of U.
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