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Abstract. Bilinear residue formulas are established for the super-KP hierarchy
and the ortho-symplectic super-KP hierarchy. Furthermore, superframes
corresponding to the ortho-symplectic super-KP hierarchy are completely
characterized. Soliton solutions to the super-KP hierarchy are given.

1. Introduction

This paper is devoted to algebraic study of super-wave functions and soliton
solutions of the super Kadomtsev—Petviashvili (SKP) hierarchy and the ortho-
symplectic (OSp) SKP hierarchy.

The SKP hierarchy was first introduced by Manin—Rudal [12] and was
extensively studied by Ueno—Yamada [17-20], Yamada [21], Mulase [13], Ikeda
[9] and Radul [14]. Especially, in [19] we proved that the SKP hierarchy
equivalently leads to the super-Grassmann equation that connects a point in the
universal super-Grassmann manifold USGM with an initial data of a solution. In
that argument, the Birkhoff (Riemann—Hilbert) decomposition in the group of
super-microdifferential operators plays a key role. However this operator formalism
is rather inconvenient for treating geometrical solutions such as soliton solutions
and super-quasi-periodic solutions. We therefore require a super-wave function,
as in the case of the ordinary soliton theory.

The theory of the KP hierarchy itself is explained as follows [2, 6, 15,16]: Let
2 be the ring of formal power series over C, # = C[[x,t]] (x is a space variable
and t=(t,,t,,t5,...) an infinite number of time variables.). The algebra Z is a
differential algebra with a derivation d, =J/0x. By &, we denote the ring of
microdifferential operators over %,

Ea=R(0:" 1)) = { Y pe Dl px, t)egf}-

— 00 <VK + 00
A wave operator

W=Wt3)= Y wix00, (wo=1) (L.1)

j=0
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is a monic element in &, of 0-th order satisfying the Sato equations

ow
ot

n

where B,=(Wd,"W 1), (=the differential operator part of Wa,"W~!). The
compatibility conditions for (1.2) give rise to the Lax or the Zakharov-Shabat
representations of the KP hierarchy. A wave function and its dual version are
introduced by

=B,W — Wo." 1.2)

wix, t, A) = W(x,t, 6x)<cxp <xl + i t,,).")), (1.3)
w¥(x, t,4) = (W*(x,t,0,)) " * (exp( —xA— i t,,/l")), (1.4)

where W* = 3 (—4,) "#w;(x,t) is the formal adjoint operator of W. (In general,
ji=0

for Peé,, P* stands for the formal adjoint operator of P.) A wave function for
the KP hierarchy and its dual are completely characterized by the following bilinear
residue formula (BRF):

Res; - o (dAw(x, t, Jw*(x',t', 4)) = 0. (1.5)

This BRF is obtained through consideration on the duality of the Laplace transform
[a primitive communication with M. Noumi]. In the definition of the BKP
and CKP hierarchies [3-5], the even time evolutions are suppressed. Hence
t=(ty,ts,...). We further impose some additional conditions on a wave operator:

(BKP) W™ l=0,~'W*o,, (1.6)
(CKP) W™ l=w* 1.7
The BRF for these hierarchies are as follows:
(BKP) Res; ., (dA/Aw(x,t, Yw(x',t', — 1)) =1, (1.8)
(CKP) Res; -, (diw(x,t, Yw(x',t', —A)) =0. (1.9

A supersymmetric extension of differential calculus on # are accomplished by
replacing 0, by D = 0 + 00,, where 0 is an abstract Grassmann variable; 6% = 0.
The operator D is a square root of 0,.

The SKP hierarchy is described by the Sato equations:

D(W)=¢,B,W —WD", B,=(WD'W™Y),, n=123,.., (L10)

a0
where W = ) w;(x,0,t)D "~/ is a monic super-microdifferential operator (a super-
j=0

wave operator), D, are super-vector fields with the parity n and ¢, = (—)""*V/2,
(For the precise definition, see Sect. 2.) The main results in [19] are that the SKP
hierarchy can be interpreted as a dynamical system on USGM, the Lie superalgebra
gl(co|o0) appears as the infinitesimal transformation group on the solution space
of the SKP hierarchy. As for the super-Fock representation of gl (co0|o0), see [1.10].
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Using the so-called “2-spinor representation” of super-microdifferential operators,
we furthermore show that there is a natural projection map from the solution
space of the SKP hierarchy to the direct product of two copies of the solution
space of the KP hierarchy.

We define a super-wave function associated with a super-wave operator W by

w(x, 0,t, A, &) = W(x,0,t, D)(exp H(x, 0,t, 4, £))

with an appropriate phase factor H(x,6,t, 4, ). where (4, &) are (1|1)-dimensional
spectral parameters (4 is even, £ is odd). One of the main results in this paper
is the characterization of a super-wave function and its dual of the SKP hierarchy
by the following BRF:

Res; (4 (dA/dE)w(x, 0,1, 4, E)w*(x', 0, ¢', 4,8)) = O, (1.11)

where A(dA/d&) is the super-volume form on the (4, &)-space (odd quantity). To
show this BRF, we establish the theory of the super-Laplace transform and its
duality.

By adding a symmetry condition for a super-wave operator of the SKP
hierarchy, one obtains the OSp-SKP hierarchy which is related with the infinite
dimensional Lie superalgebra osp (oo|oo). As in the case of the SKP hierarchy,
there is a projection map from the OSp-SKP hierarchy to the direct product of
the BKP and the CKP hierarchies. The BRF for the OSp-SKP hierarchy is also
obtained.

This paper is organized as follows. Section 2 outlines the theory of the SKP
hierarchy [19], including some new results: We establish the one-to-one cor-
respondence between formally regular solutions to the hierarchy and points in the
biggest cell of USGM. Furthermore, we describe the hierarchy in the 2-spinor
picture. In Sect. 3, we will introduce a super-wave function and its dual for the
SKP hierarchy. Through analysis of the super-Laplace transform, we prove the
BRF for super-microdifferential operators (Theorem 3.6), and for a super-wave
function and its dual (Theorem 3.7). Section 4 is devoted to a study of the OSp-SKP
hierarchy, especially the BRF (Theorem 4.1). We also give a characterization of
the OSp-SKP hierarchy by superframes in the biggest cell of USGM (Theorem 4.6).
In Sect. 5, we construct soliton solutions to the SKP hierarchy by means of
the so-called direct method.

2. The SKP Hierarchy and the Universal Super-Grassmann Manifold

In this section we review the theory of the super-K P hierarchy developed in [17-19].
We will omit proofs of the propositions except for Proposition 2.3 and Proposition
2.5. For the details, see [19].

Let &/ be a Grassmann algebra of finite or infinite dimensions over C, and
t=(t;,t,,...) super-time variables (t,, are even, t,,_, are odd). The supercom-
mutative algebra & of superfields is, by definition

& =C[[x,0,]]® .
We introduce naturally the Z,-gradation of &, & = &, ® &, and define the body
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map ¢ by the canonical projection
e > R=FNS)=CLIxt5t4,...1],

where () is the ideal generated by the subspace ;. A super-differential operator
D =(0/3d6) + 6(0/0x) and super-vector fields

0 0 ® 0
Dy=5— Dy-1= + 2 ba—15—
Oty Oty 4 kzl Oty 2k-2

act on . They satisfy the following commutation and anti-commutation relations
[12]:
(D, Dl](—)"l =0, [D3,Dpl=[Dy,Dz-1]1=0,
[D21—1,D2k—1]+ =2D3;1 2~ 2-

We define the algebra 2 of super-differential operators by 2 = #[D]. Adding the
formal inverse element D™ ! = 0 + (0/00)(0/0x)™* to &, we obtain the algebra of
super-microdifferential operators. Precisely,

¢=C[[x,0,]1(D™ ) ® .

The algebra structure of & is prescribed by the generalized super-Leibniz rule [12]:
oty = § (oo,
j=o\J

D2k+ l,f — i (If>D2j+ l(f)DZk—Zj + (__)a i <If>22j(f)D2k—2j+ 1’
i=o\J i=o\J
for any integer k and f €& ,. The algebra & is endowed with a natural Z,-gradation,
&=6,®&,. Namely an operator P= ) p;(x,0,)D/eé, (a=0,1) if and

only if p;(x,0,t)e &, ; for any j. Moreover we define the body part &(P) (we use
the same notation as the body map on %) by
e(P)= ), &p;(x,0,1)0,2
Jj:even
which is a microdifferential operator with coefficients in £.

Now we introduce the SKP hierarchy [12,17-19]. Let L be a super-micro-
differential operator

L=

i

u;D' ‘e,

e

with u, = 1, D(u,) + 2u, = 0. The SKP hierarchy is a system of the Lax equations:
D,(L)= (—)I[Bzz, L],
Dy, (L)= (“)l{[th—1,L]+ - 2L21}, I=1,2,..., (2.1)

where B,=(L)), (=the super-differential operator part of L!), and D(L)=
X Dy(u;)D* . The system (2.1) is equivalent to a system of the Zakharov—Shabat
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equations:
(=)Dau(B2) — (=)'D2fByi) + [Bays By 1 =0,
(=)*D2i(Bai-1) = (=)' D31-1(Bz) + [Bai- 1, By =0,
(=)Day—1(Bar—1) + (=)D 1By~ 1) = [Bar—1, Bat~ 114 + 2By14 24—, =0,
ki=12,.... (22

The first equation in (2.2) with k=2, [ =3 gives rise to the SKP equation, which
is regarded as a supersymmetric extension of the single KP equation: Set

B, = D*+ 203D + 2v,,
Bs=D®+3v;D° + 3v,D* + vsD + v5  (v;€F).
Then the SKP equation reads _
3Dy(v3) = =303 o + 205 5,
3D4(v4) = =304 xx + 6V303 x — 40305 + 206 s
Dy(vs) + D(v3) = 05 xx — 203 xx — 603 D(03 ) — 6(0304) — 2D(305),
D 4(ve) + De(v4) = Vg xx + 203D(V6) — 204 xxx — 602 D(v4,5) — 60404  + 2D(v4)05.

Before describing the procedure of integrating the SKP hierarchy, we consider
a matrix representation of the algebra &. Let

V:6->Mat(Z;9)
be an algebra homomorphism defined by Y(P) = (Y/(P),,),,cz(P€8&, Y (P),,€&) with
the matrix entries prescribed by
D*P=Y y(P),D" (2.3)

JeZ

More precisely, letting P =)’ p;(x,6,t)D’,

JjeZ

W= 5 (& )D”‘(pv-z,,+ )

W(P)zuﬂ,v = ki()(;:){DZkH(Pv—zunk) - (—)VDZk(Pv—zu—1 +2k)}'

From the definition (2.3) and the associativity of the multiplication in &, it is easy
to see that y is actually an injective algebra homomorphism. (Furthermore ¥
becomes a superalgebra homomorphism under an appropriate Z,-gradation of
Mat(Z; &).)

Now let us integrate the SKP hierarchy. One first finds a monic super-micro-
differential operator (a super-wave operator)

W= w;x,0,t)D /eé,
i=o N
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satisfying
L=WDW™!,
D (W)=¢,(B,W—-WD", n=12,..., (2.4

where ¢, = (—)"®* 12, Equations (2.4) are referred to as the Sato equations for the
SKP hierarchy. Introducing

Y= exp( Y e,,t,,D”),
n=1
one readily sees that the operator W = W- ¥ solves
D W)=¢B,W, n=12,....
Apart from this, consider the following equations:
Dn( Y)= &nB,Y,
where Y is a super-differential operator of the infinite order
0
Y= 'ZO yj(x, 6, l)DJ (yjeyl)ﬁ
i=
with an initial condition Y|,_, = 1. Putting U = W ~'Y, one sees that the coefficients
of U are independent of ¢, and that
Y=WZ. (2.5
Here the operator Z is defined by
Z=YU=Y) z;(x,0,1)D.

jeZ
Taking the (—) part of (2.5) (for Pe&, (P)J_ = P —(P).)yields the following equation:
(wz)_=0. (2.6
Introduce a Z x N° matrix Z by
Z = (W(Z)) uez.vene-
Then Eq. (2.6) reads
WZ =0, 2.7
where W = (W-);.z, w; = w;(x,0,1) for j =0, w; =0 for j <0. The matrix Z solves
D(¥)=TI"%, n=12,..., (2.8)
DZ)=AZ% —Z Ay, 2.9)

Where A = (6p+1,v)p,vel’ r = ((—)V5u+l,v)u,vsl7 ANC = (6u+1,v)u,veNc and gT = (!//(Z)Lv)
(for f=fo+f1€S =S DS, we set ft=fo—f1). From these equations, the
matrix & is represented as

Z =@-E-exp(—0Ay — x(Ax)?),
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where
(D:exp(@A +xA%+ ), t,,]“"), (2.10)
n=1

and Z is a constant Z x N° matrix
E=Cuezren€Mat(Z x NG ) with  {, €4,
One can see that £, = J,, for u <v. Therefore we have the following proposition.

Proposition 2.1. The coefficients w;(x,0,t)e&; (j= 1) of a super-wave operator
Weé"{,_’“’“ic solve a system of an infinite number of linear algebraic equations

WOE = 0. @2.11)

Equation (2.11) is referred to as the Grassmann equation for the SKP hierarchy.

—

The Grassmann equation has a unique solution for matrix = in the set of
superframes:

SFR(NG /) = {E= (£, )yezenEMat (Z x N )| £t 0
dmeN such that &,,=0,, for p< —m, u=<v,
£n=0for —m=v<0, u< —m, and &Z) is of maximal rank}.
The resulting solutions w; belong to the quotient algebra 2 of &. Let &, be the
superalgebra of super-microdifferential operators with coefficients in 2.
Proposition 2.2. For a solution 'w to the Grassmann equation with E eSFR(N¢; /),
set W= 3 w;D~Ie(£5°"),. Then the operator W solves the Sato equations (2.3) for
j=0 -
the SKP hierarchy with B, =(WD"W™1),.
We introduce the supergroup SGL (NF; .«7) by
SGL(N% ) = {g = (9,,),yen-€ Mat(N )| g, € 1+,
ImeN such that g,,=6,, for u<v, u< —m,
guw=0for —m=<v<0, u< —m, and (&(g,,)) - m<uv<o iS invertible}.

This supergroup acts on the space SFR(N'; /) from the right. The universal super-
Grassmann manifold USGM is by definition, the quotient space of SFR(N®; .«/):

USGM = SFR(NC; /)/SGL(NE; 57).

From the formula of solutions to the Grassmann equation (Theorem 2.4), we can
see that the biggest cell of USGM,

USGM® = {E=(£,)eSFR(N &)|&,, = b, for 4 < v}/SGLN®; <)

provides super-wave operators with coefficients in &. We denote by W(Z)eé , the

—

super-wave operator associated with a superframe = in Proposition 2.2. It is
obvious that, if two superframes =, Z’ determine the same point in USGM, the
associated super-wave operators W(Z) and W(E’) coincide. There arises a natural

question whether, if two super-wave operators W(Z), W(Z") coincide, the super-
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frames = and Z’ determine the same point, namely = = £’ mod SGL(N¢; .«¢). The
answer is “yes,” at least for superframes that belong to USGM®.
Proposition 2.3. Suppose =, E'€eUSGM?, and W(E)=W(Z'). Then E=5'
mod SGL(N¢; ).
Proof. We note that, for a superframe & in USGM ¢ there exists a matrix
geSGL(N% /) such that (Z-g),,=¢,,(ueZ,veN°) with ¢, =4,, if ueN°’. We
call such a superframe £ =(Eﬂv)”ez,veNc normalized. Set W(Z)= ) w;(x,6,)D~/
=0 _
(w;(x,0,t)e#,). What we have to show is that a normalized superframe Z'is uniquely
determined from the Grassmann equation
WOE =0 (2.12)

(W =(W_,)jez> W;=w;(x,0,t) for j=0, w;=0 for j<0). Applying D" to (2.12) and
setting x = 6 =t =0, we have the following equations:

WnE=0 (n=0,1,2,...), (2.13)
where ‘W[n] = D"(W®)|;—g=,—o = W[nl;),, with w[n];es;,,, wlnl,=1 and
w[n]; = 0for j > n. Equations (213) imply the orthogonality relations between the

vectors W[n] and the superframe Z. It is easy to see that each column vector of
E is uniquely determined from this orthogonality. W

Thus super-wave operators in & correspond one-to-one to points in USGM?.
To study the time evolution of solutions to the SKP hierarchy, introduce an
infinite number of supersymmetric derivations;

D-=66_06x (D_2= —ax)a

_ 0 _
Dy,

i ¢
==, Dy, - bak—-1
0ty Oty—y &= 0ty

k=1 +2k—2

Consider an even derivation
0 _®
X=a—+(D+ ) c,D,
ax n=1

where aest,(es/,,c,es/,. X commutes with the derivations D and D, so that
it acts infinitesimally on the solution space of the SKP hierarchy. For a superfield
fe, one has

€*f)x, 0,0 = f(x,0,¢),
where x'=x+a+0(, 0=0+( ty_ =ty 1+cy_; and ty=ty+cy+
i Lok—1Ca—26+1- Since the fundamental solution matrix @ (2.10) has the
:E&ltiplicative property with respect to the time evolution, i.e.,
(eX D)(x,0,1) = D(x,0,t)D(a,{,c),
the SKP hierarchy is translated to a dynamical system on USGM with the time
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evolution
Z mod SGL(N; ) — @(x, 0, 1)- Z mod SGL(N¢; 7).

In order to solve the Grassmann equation explicitly, we need some algebraic

concepts. With a matrix X = (x;;), jcz,

X = (Xuﬁ)az,ﬂ=0,1

is associated, where the blocks are put as X5 =(X;;)c071 4 e2z+ 5 APplying this
rearrangement to the Grassmann equation, it is rewritten into the form

(coesWao Wy, 1,0, .5, Wy, wy,0,... ) &5 =0, (2.14)

Let A =(Aup)sp-0,1 be an invertible matrix with A,ze Mat(m, x mg; o/, ). The
invertibility of such a matrix is equivalent to that of the matrices &(4o) and &(4,).
A superdeterminant (or the Berezinian) [11] of the matrix A4 is, by definition,

SdCtA = det (AOO - A01A11-1A10)/detA11.
The inverse of the superdeterminant is given by
s ldet A=det(A;; — A1gAge Aoy )/det Ay,.

We should remark that a superdeterminant is multiplicative with respect to the
product of matrices. By virture of Cramer’s formula in linear algebra, one sees that
the even unknowns w,; in (2.14) are expressed in the form of a quotient of
superdeterminants. To get the formulas representing the odd unknowns w,;., 4,
we first look for the formula for w,, and consider the first Sato equation
D, (W)= —(B; W— WD). Then we obtain the following theorem.

Theorem 2.4. The coefficients of a super-wave operator attached to a superframe
EeSFR(N¢; /) are given by

w, = D{log(sdet (‘Ey- @ £))} = D, {log (sdet (Z,- - £))},
and
wy; = (—Ysdet (£, @-Z)/sdet (Ey D 2),
Wyis1 =(—Y{(D+D,)(sdet(E,; @-E))}/2sdet (Ey D Z),
for j=0,1,2,... . Here the frame .ézj is defined by

= I~ &)
T\0 &,

where 5;=(0,,(WeZ; 1t < — J)[0,v+1(HEZ; — jSv <))

Finally we describe the 2-spinor picture of the SKP hierarchy. Let
P =C[[xt]]®« and & 5= Z((0,71)) be the algebra of microdifferential
operators with coefficients in Z. Put

Z=Mat(1|1;CO)® & 5,

whose Zz-gragation £ =2%,@%, is naturally introduced. We denote by & the
body map, §: % — £, which is defined in the same way as before. The same notation
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& expresses the body map &5—&,, which further extends to the body map
£, % > E45®E,. The 2-spinor representation is a superalgebra homomorphism

n:6 > % defined by
00 0 1
w0=(] o) ==(; o)

n(f)=diag(f,(=)*f) for feZ,

We consider the Sato equation (2.4) with n = 2/ in the 2-spinor representation. Let
W be a super-wave operator in & and m(W) = (W;;); j=o,1- Each entry W;; belongs
to (£7),, » and the body part of the diagonal entries satisfy
J . . . ~
ot E(W;) = (=) {&(Byu,)E(Wy;) — &W;)d.'},
21

where 7(By;) = (By;;); j=0,1- These are nothing but the Sato equations for the KP
hierarchy. Therefore we have the following proposition.

Proposition 2.5. Let W ¢, be the space of super-wave operators in & of the SKP
hierarchy, and W' ¢p be the space of wave operators in &, of the KP hierarchy. Then
we have the projection p =¢£,°m,

P3W§¢KP" Wﬁp X Wﬁ}h

3. Super-Laplace Transform and Bilinear Residue Formula

First we discuss the concept of the “formal adjoint” in &¢, g7e- 1he super-
integration of a superfield f(x, 8) = u(x) + 6v(x) is, by definition,

[A(dx/d0) f (x, 0) = [ dxv(x),

where A(dx/d6) is the (1|1)-dimensional volume form (an odd quantity). For a given
P = P(x,0,D)e& ¢(, 4110.4> the formal adjoint operator P* = P*(x, 0, D)e& cip 0.
is introduced through

[ A(dx/d6) P(x, 6, D)(f(x, 6))-g(x, 0)
= [ A(dx/d6) f(x, 0)- P*(x, 6, D)(g(x, 0)),

for f(x,0), g(x,0)e(C[[x,0]]1® «),. Then we have
(wD™")* =(—)"¢,D"w (we(C[[x,0]11® ),,neZ),

and, in general,
(PyPy)* =(—)""P,*P* (Pje(ga:[[x,ej]@d)ﬂ)'

We introduce a super-wave function and its dual version. Let
H(x,0,t,4,8)=xA+ ) (=)tud' +(E+h(t )0 + ™" h(t,2)),
1=1

where

h(t, ) = i (=)t A
=1
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Here (4, £) are regarded as (1|1)-dimensional spectral parameters. For a super-wave

operator W= W(x,0,t,D)= ¥ w;(x,0,)D ™/ (w, = 1), define a super-wave function
ji=0

ji=

and its dual by
w(x, 0,1, 4, &) = W(x,0,t, D)(exp (H(x, 6,t, 4, £))), (3.1)
w¥(x, 0,t, 4, &) = W*(x, 0,t,D) " *(exp(— H(x,0,1,4,%))). 3.2)
Note that
D?*(expH)= AexpH, D,(exp H)=¢,D"(exp H),
D~ (expH)=A""expH, D **(expH)=1"*(A0 —¢—h)expH.

By the Sato equations (2.4), a super-wave function and its dual satisfy the linear
equations

D,(w) = ¢&,B,(w), D,(w*)= —¢,B,*(w*). (33

We consider the duality of the super-Laplace transform. Let V=V .® </ be
an &/-module, where

Ve= { Y eﬂculcueC} =(Ve)o® (Vo)

— 0 KU<L 0

with basis elements e,&(V),. The «/-module V has a natural pairing {, >:VQV — o/
defined by i

{eye_y,_1)=0,, <uav)=<{u,avy and <{u,va)=<uv)a,
for u,veV,aes/. We identify an elementu= ) e,a, with a super-microfunction
ulx,0)= Y  6¥(x,0)a_,_,, where we have defined the super-delta function by
8(x, 0) = 05(x), and 6(x, 8) = D*(5(x, 0)) (ueN). More precisely, one has
0% (x,0) = 00,1(0(x)),  6@*FV(x, 6) = 0,4(3(x)),
02 D(x, 0) = Ox* Y(x)/u!, 02 D(x,0) = x* Y (x)/u!,
for ueN, where Y(x) is the Heaviside function. Set

v-{i= 3 eal

—ooxpu<0

= {u(x, )= 3 (x0a,-, }

0 px oo

Define the super-Laplace transform of §%)(x, 6) by
122
[ A(dx/d6) exp (— Ax — £0)5%)(x, 0) = (é + 1;%) 1) (neZ). (34)

Note that (¢ + A(0/0¢))? = A. Hence we can rewrite (3.4) as

EATM21 (u:even)

é”(/'L, dH= IA(dx/dG) exp(—Ax — f@)eu = {l—(‘” 1)/2 (u:0dd).
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For a general element u = Y e, a,, we set (4, &) = ¥ é,(4, )a,. By the super-Laplace
transform we get the identification
Vau(x, )= (4, £)eC((A~ 4, &) ® . (3.5)
For i(A, &)=Y M*a, + &Y A*b,eC((A71, )@ o, set
Res; -, (A(dA/dE)h(4, &) =b_,.

To show the bilinear residue formula, we have to present some lemmas on the
residue calculus, the super-Laplace inverse transform and the formal adjoint of
operators.

Lemma 3.1. For u,veV, we have
Cu,v) = Res, - o, (A(dA/dE)A(2, E)D(2, £))-
Proof. 1t is easy to see that
Res; - (A(dA/dd)é,(2,8)é_,-1(4, ) =0
if w—v is odd. If u —v is even, then
Res - o, (AdA/dE)e, (4, E)e_,_; (4,)) = Res;— o, (A(A/dEYEA™ T2 =5, W

For a super-microdifferential operator Pe&'cy, e, We define a super-
differential operator of infinite order Pe@c((, 1 yye through the super-Laplace
transform: P(u(l &)= (Pu) (A, &). For example, (D*) = (Dy* = (& + M0/0¢))* for
peZ, and (9/00) = &. And [ = f(—d/dA,(—)*"'d/d¢é) for a superfield [ = f(x, )
(CLLx. 011® ),

For a column vector (a,), 2 that corresponds to an element u=Y e,a, of V,
set (a,(x,0)),., =exp (04 + xA )(a,),cz- Then one sees that

a,(x,0) =Res; _ ,, (A(dA/d&) exp (Ax + £0)D*(1(4, 8))), (3.6)
D(a,(x,0)) =a,(x,0). 3.7
Lemma 3.2. An element ueV belongs to V* if and only if
Res; _, (A(dA/dE) exp (Ax + E0)i(A, &) = 0.
Proof. A direct consequence of (3.6) and (3.7). R
Lemma 3.3. Let p(x,0)e(C[[x,0]1® «),. If u—v is even, then
0 0
(pD*)* = (B*)*p ( =3 5)
Proof. Let both u and v be odd. For even superfields f(4, ) and g(4, §),

ueZ

[A@h/ae(@D*)(Na = A(di/dé)(ﬁ“(f>)p<§i’é%)(g)

)i\ g
= [ A(d4/d&) f(D*) <6/1 éé)(g)

The other case (i, v are even) is similarly checked. W
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Lemma 3.4.  (D*)*(exp (Ax + &6)) = (— D)*(exp (Ax + £0)),
(D*)(exp (— Ax — £6)) = (—)*(D*)* (exp (— Ax — £0)).
Proof is straightforward. H
Lemma 3.5. Let P&, s IS an even operator. Then
P(exp (Ax + £60)) = P*(exp (Ax + £6)),
P*(exp(— Ax — x0)) = P(exp(— Ax — £0)).

Proof. Without loss of generality, we can set P = p(x, 6) D*, where p(x,6) has the
parity u.
A ~ 0 0
(PD#Y*(exp(hx + £6)) = (0 57 75 ) exp (x + €6)

= (D")*(p(x, 0)(exp (A + ¢0)))
= p(x, 0)(—)*(D*)*(exp (Ax + £0))
= p(x, 0) D*(exp (Ax + £0)).
The other one is similarly checked. W
Now we can state the bilinear residue formula (BRF) in &¢, g0

Theorem 3.6. Let P,Q€& ¢y, 100 are even operators. Then PQeD . g if and
only if the BRF

Res; - , (A(dA/dE) P(exp (Ax + £0)) Q*(exp(— Ax' — £0')) =0
holds for any (x,0), (x',0').
Proof. The condition PQe2 is equivalent to PQ(e_,—,)eV? for all keN, and also to
Res; - o, (A(A/AE)(PQ) )*(exp (Ax + £0)é . 1(4,€)) =0 (3.8)

for all keN. Here we recall that é_,_,(4,&) = A¥? (k:even), = EA*~ V2 (k:0dd).
Multiplying (1/k!)(— x')¥/* (k:even), ((— 6')/(k — )N (— x')*~ V2 (k:0dd) from the
right of (3.8), and summing up over keN, we have a generating function expression

Res; - o, (A(dA/dE)((PQ) V* (exp (Ax + £0)) exp (— Ax’ — £6')) =0
This and Lemma 3.5 complete the proof. W
We are in the position to state one of our main results in this paper.

Theorem 3.7. Formal superfields w(x,0,t,4,&) and w*(x,0,t,4,¢) of the form (3.1)
and (3.2) are a super-wave function and its dual for the SKP hierarchy if and only
if they satisfy the BRF

Res; - o, (A(dA/dEYW(X, 6,1, 4, E)w*(x, 0,1, 4,£)) =0 (39
for any (x,0,t) and (x',0',t).
Proof. From Theorem 3.6 it follows that
Res; - o, (AdA/dEY (DM (w(X', 0,8, A, E))yw*(x, 6,t,4,&)) =0. (3.10)
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Equations (3.3) show that, for any multi-index o = (o, ®,,...),
Res; -, (A(dA/dE)(D,)*(w(x', 0',t, 4, E))w*(x,0,t,4, &) =0,

where we have put (D,)*=D,*D,,*---. The BRF (3.9) follows as a generating
function expression of (3.10). Conversely, if (3.9) is satisfied, we have

Res; - o, (A(dA/dE) (D, — &,B,)(w(x, 0,1, 4, O))w*(x', 0, £, 4,¢)) = 0.
Note that
(Dn - Ean)(W(X, 07 t) )'7 6)) = (Dn(W) w- - aanl) W(exp (H(x’ 9: [, )'7 é)))s

where B = — (WD"W ~!)_. Then Theorem 3.6 implies that D, (W)W ™! — ¢, B9,
however, which should be of negative order, by definition. Thus we get D,(W) =
¢, B, W, that are equivalent to the Sato equations. H

4. Ortho-Symplectic SKP Hierarchy

In this section we discuss the OSp-SKP hierarchy. Let W be a super-wave operator
in & for the SKP hierarchy. The OSp-SKP hierarchy is defined by the condition:

D 'W*D=w"! 4.1)

in the OSp-sector ¢4, =t4,+4=0for n=0,1,2,.... The Sato equations read
Dypi2(W)= —(Baps W — WD4"+2)> 4.2)
Dypi3s(W)= By, . s W—WD**3 n=0,1,2,... 4.3)

with the symmetries
D™ (Byp+2)*D = —Byys2, D '(Byni3)*D=Byuss,

in the OSp-sector. In this section the time variables ¢ are supposed to be restricted
in the OSp-sector.

0
We define a super-wave function for a solution W= Y w;(x,0,t)D~/ to the
j=0

OSp-SKP hierarchy by

w(x,0,t,, &) = W(exp H), (4.4)
where
H=H(X,0,t,l,£)=xl— Z t4n+2)‘2n+1
n=0
+<f+ Y t4n+312"+2)<0+ > t4n+3/12"+1)'
n=0 n=0
We also put

u(x,0,t,4,&) = WD~ '(exp (— H)). 4.5)
Theorem 4.1. The superfields of the form (4.4) and (4.5) are super-wave functions of
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the OSp-SKP hierarchy if and only if they enjoy
Res; -, (A(dA/dE)w(x,0,t, 4, E)o(x, 0, ¢, 4, &) =1 (4.6)
for any (x,0,t) and (x',0',t').

Proof. Suppose that W is a solution to the OSp-SKP hierarchy. From the BRF
for the SKP hierarchy, we get

0= Res; -, (A(@A/dO W(™049) (W)~ (10149
= Res; _ , (A(dA/dE) W (P=049) D' WD =1 (¢~ At a0y
= Res; -, (A(dA/dO) W (™ ") D' (u(x', 0,1, 1, &)). @.7)
The superfield v(x', &, ¢, 4, £) solves the linear differential equation D,’(v) = ¢,B,’(v)
so that one has
D,/(Res; - o, (A(dA/dE)w(x, 6,1, 4, Qv(x', 0,1, 4,£)) = 0.

Namely, the left-hand side of (4.6) is independent of . Putting x =x’, 8 =6 and
t =t' therein one gets the equality (4.6). Conversely suppose that (4.6) holds. Then
the second equation in (4.7), we get W-(DWD~1)* =1 by means of Theorem 3.6.
This completes the proof. W

Now we discuss the 2-spinor representation of the OSp-SKP hierarchy. We
introduce the super-adjoint in & by, for P =(P;;); i=0.1,

P#=< P ()Pl

Pe¥
Crn ) @

where P} is the formal adjoint operator of P;; in 5. We define Lie superalgebra
osp(€5) by

0sp(67) = 05p('3)y @ 05p(E');
0sp(€5), = {PeZ M~ P*M = (— )P},

where M = diag(d,, 1). The corresponding Lie supergroup OSp (& ) is introduced by
OSp(635)={Pe%,|P is invertible and M~ *P*M = P~1}.

Proposition 4.2. Let # 4, be the space of super-wave operators in & of the OSp-SKP
hierarchy, and W%, (respectively # &p) be the space of wave operators in &, of
the BKP (respectively CKP) hierarchy. Then we have the projection

pl"//fgsp: WgSp - W%KP X WgKPs
where the map p was introduced in Proposition 2.5.
Proof. First we note that

0 1 01 .
(1 0>7I(X)#(1 0>=(—)7I(X) (Xed,)

01
<1 0)7I(D)=M.

and
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Let We# §s,. Then the condition (4.1) reads in the 2-spinor representation
M~ n(W)*M = n(W)™ 4, (4.8)

namely, n(W)eO0Sp(£;). Let n(W)= (W), =0,1- Applying the body map &, to
the both sides of (4.8), we see that &(W,,) (respectively &W,,)) satisfies the BKP
(respectively CKP) condition. W

In the rest of this section we characterize solutions to the OSp-SKP hierarchy
in terms of superframes in USGM?.

Proposition 4.3. Let P be an operator in &,. Then it follows that
VY (P*)=(—) offdiag (K, 'K)*y" (P) offdiag (K, K),

A
where offdiag(A, B) stands for 0 with A,BeMat(Z x Z), and K = AJ,

J=((=)'0u,~v)urez- The symbol " (P) means the “check” of the matrix y(P)
(cf. Sect. 2), and “st” is the supertransposition of a matrix (cf. [7]).

Proof. We only have to show the claim in the case of P=uD’ ue&,. For
u= f(x,1) + 0g(x,1),

V= <Oa(fx) +0lg) (=)o) +00(g)

where o(f) = ((1 _l k)f‘i“"’(x, t)) ,<r::) =0 for n <0. By a simple calculation
ikeZ

we have -

o(f) + 0o(9) 0 )

offdiag ('K, *K)*y ¥ (u) offdiag (K, K) = (— )*¥ ¥ ().

0
A

¥ ((D)*) = (- Y offdiag ('K, 'K)*"ys ¥ (D’) offdiag (K, K).
Then we have
YV (uD))*)=(—)"*/ offdiag (K, 'K)"y " (uD’) offdiag (K, K). B
Now we introduce the Lie supergroup OSp(<¥) [9],

OSp(#) = {A = (Asp)up=0,11 g€ Mat(Z x L, 5) and &(A) is
invertible and diag(J, —'K)*A diag(J, — K)= A~ L.}.

Since ¥ (D) =( é), it follows that

Notice that for an operator U in &, the condition
D U*D=U"1, 4.9)

is equivalent to that ¥ (U)eOSp(¥). We introduce the following inner products
< ’ >B < s >C s

L ade=Y(=Vfig-j <Figdc=Y (=Y fi9-;-1,

JeZ jeZ
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for column vectors f = (fiezs 9 (g])JGZ Put ¥ (U)=((u?f )ijez)ap=0,1 and
U =), If ¥ (U)eOSp(¥), ie, D™'U*D=U"", we have the following
relatlon
<U(101,—1100> - <Ti1—0n—§10>c '_( ) 51]:
<ﬁ—1’701> - <1—'[1—0n-_’11>C_O
<—ﬁ’0—11 13_.?0>B+<1_i1—11 1s~¥0>C_05
<“—z 1, U 91>B+ <_’11~1: 1a_.u>c=(_)i5i,j, i, JeZ. (4.10)
Let W be a supper-wave operator in & of the OSp-SKP hlerarchy and E be the
superframe £ = Y(W)Eo|c=g=,=0- Put the “check” of &, = = =((¢¢ B )i<0)ap=0.1- We

note that the entries of &% belong to o5 From D~ YWD, cg=r=0 =
W1 2g=1=0, WE Obtain

(EPO, B0 — (ENO,EL0Y =0,
CEPO BN Yy — (&N, EM Y =0,
<E?1,~?O>B+<Z’i“5~.}o>c=0a
CENEM Yy (EMEM Y =0, i,j<O. (4.11)

Simple computations show that the above condition is invariant under the right
action of SGL(N*; &/) on the superframe 5. We refer to (4.11) as the orthogonality
condition. Conversely, let = be a superframe of USGM? satisfying the orthogonality
condition. Solve the following Grassmann equation

'Wexp<6A+xA2+ Y thf>E=0. 4.12)

Jj=2,3(mod4)

The solution to (4.12) ‘W=(...,w,,w;,1,0,...),w; ey determines a super-wave
operator W = Z w;D 77 of the SKP hierarchy. Put W, = W/|,_,.
Proposition 4.4. Let = be a superframe satisfying the orthogonality condition and

W be the super-wave operator determined by = via (4.12). Then the superframe
VY (Wi )&, also satisfies the orthogonality condition.

Proof. From " (W)Y ¥ (W4 1) =1, we obtain the linear equation
Wo(Wo ') E, =0, @.13)

where ‘W, is the O-th row vector of Y(W,). Due to the arguments in Sect. 2,
we see that Y(Wqy1)E, =exp(0A + xA?)E exp(— Ay — xAZ%), where Z is a
superframe of USGM®?. Then we have

“Woexp (0A + xA2)E =0. (4.14)

Since (4.12)|, -, and (4.14) yield the same solution, E = =g for some ge SGL(N¢; /)
(see Proposition 2.3.). Hence = satisfies the orthogonality condition. Moreover
observing that exp(6A + xA?)e0Sp (&), we get the conclusion. W

Proposition 4.5. Let U be a monic operator in &, of order 0. Put y”(U)=
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(u* )iez)u,p=0,1, and suppose that U (i < 0) satisfy the orthogonality condition. Then
VY (U) belongs to OSp (&), that is U enjoys (4.9).

Proof. Put A=(a;j),;cz =YD~ LU*DU). The entries are given by
105 = (=) {KWXL U D p — (U5, 4%},
aZi,2j+1=(_)i{<H?—0u_>01>B <ﬁw _>“>c}
a2i+1,2j=(_)i{<7ig1, 15—’00>B+<—IZ1—11 1:_>!0>c},
Agirrzi+1=(=V{CUY_ U Dp+ CULo U D)
Because of the assumption on the orthogonality condition and D~!'U*DUe

&5°™, we can easily see that a;=0 for i<0, j>0, and that a;=1 for ieZ.
To show that D~'U*DU =1, we have to verify a, ;=0 for j=1, because

“lU*DU = Z ao, - ;D 7. We use the induction. Put U =1 + uD ™' + lower order
j=o

terms. Then we see that a,o = (u%,u3°>p + (u,,43°>c =u—u=0. Since the
recursive relation aq;_; =(—)"*{D(ao;) — a,;} follows from D(4)=AA—A'A
(see (2.9)), we get ay —; = D(age) — a0 =0. By the induction on j, we can show
thata, _;=0for j>0. W

Combining Propositions 4.4 and 4.5, we obtain the following corollary.

Corollary 4.6. Let = be a superframe satisfying the orthogonality condition, and
W(E) be the super-wave operator associated with E. Then, for the initial value
Wo=W(E)|,=0,¥ " (W,) belongs to OSp(&).

Let 7 be the set of multi-indices o = (;)}=o (neN). We denote |a|= Y «; for
i=0

aen. The void index is denoted by ¢. We write %, = t%t% -3, 3 and &, =

tﬂo tﬁ 4n +2-

Now we state the main theorem in this section.

Theorem 4.7. Let W be a super-wave operator for the SKP hierarchy associated
with the superframe EcUSGM®. If E satisfies the orthogonality condition (4.11),
then Wi, —....,=o(neN) is a super-wave operator for the OSp-SKP hierarchy.

Proof. In this proof we set U= W|,, _,, .. -o. Expand U* and U ™! to the formal
power series in (ty,4 2, tans3)i=0"

U*= Z tgddteven(U*)aﬁa U—1= Z tgddtgven(U—l)aﬁ‘

a,fen a,fen
It is enough to show that
D71 (U*),sD = (=) (U™ "), (4.20)
We prove (4.20) by the double induction on |«| and | #|. From Proposition 4.4 and
Corollary 4.6, (4.20) holds for « = = ¢. Suppose that (4.20) holds for « = ¢ and
p with || <m (meN). Put = (B,){-oen, where |f|=m + 1 and f, #0. From the
equations
D4, ., U*¥=—U*B%,,,— D**2U* 4.21)

D4n+2U_1=U—1B4n+2+D4n+2U-1> (422)
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which can be deduced from (4.2), we obtain
BuU)gj=— ¥ (U*)yp(Bluso)yp —D*" 2 (U¥)y5 .,

B+ =F—e,
where e;=(3,;}i-oem. By (4.20) with a= ¢ and f=F, f—e,, and by D~ (Bl + 1)y, 4 D=
— (By4n+2)g,4» We see that

b~ 1(Bz"+2)¢,ﬁ"D = - (B4n+2)<b,ﬂ”°

Therefore we obtain

B.DTHU*)yD= Y, (U )y Bapsr)ppr — (U™ 1)y, D¥"+2
B +B"=F—e,

=B (U™ "),5 (by (422)).
Next, suppose that (4.20) holds for « with |a| < 2m (meN) and arbitrary f. Let
& =(d;)!=¢, where &;=0 or 1,d=1 and |&| =2m + 1. From the equations
Dyn+3(U*)=U*BZ,+3 —D*3U, (4.24)
D4n+3(U_ )=-U" B4n+3+D4n+3U_1’ (4.25)

we obtain

(U*)zp= Z G;sgn (i)D4i+4n+6(U*)&—e,»—e,,,ﬂ

0=<i
+ Z sgn (o, &', o) (U* )y g (B 1 3)arpr — D*" 3 (U*),_, .
o +o =d—e,
B+p =8
Here we have defined sgn (i) and sgn (o, «”,«’) through

(xe a— ae
Uiy 3todd' i = sgn (i) tigq”,

odd Py todd - Sgn (OC ) aﬂy )’) tzdcf" P

where P, is an arbitrary monomial of parity |y|mod2, yen. By the induction
hypothesis, we see that

D—X(U*)i—en—iiei,ﬂD = (Uﬁl)a—e,,—oziei,ﬂ
D™ (U*)p D =(—)* (U )y,
1(U*)a enB _(U 1)
On the other hand, we have
l(toddteven(UD4”+3 U-l) o ”)*D
=(=)""t3athven Y. sen ¥,y Y + DD (U )*),5 D* 3 (U5 D

vty =a”
o' +o"=p"

From D™!((U™1)*),,D = (U),, and the induction hypothesis, we obtain
DTHU)*)ys D =(=)" (U)y s

if & +0,

aen

and

D! (Bin+ 3)a”,ﬂ”D =(- )la,ll(B4n+ 3)a”,[3"'
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Hence we get
D_I(U*)omD = Z, g;sgn (i)D4i+4n+6(U—1)&—ei—e,,,[3

+ z sgn ((Z’, 0(//, a/)(U_1)a’ﬂ’(B4n+3)a”,B” - D4n+3(U—1)&—e,,,ﬂ‘

e
o +of =d—e,

B+B8"=8
Comparing the right-hand side and the coefficient of 4%, of U™! in (4.25),
we see that
D™HU*); ;D= — (U™ 1),

One can show similarly that D™ (U*),,D = (U~ '), for the case that |a|iseven. W

5. Soliton Solutions to the SKP Hierarchy

We proceed to the construction of soliton solutions. Let «,, f,, ¢, be even generic
elements in &/ and #,,w, be odd ones (—2N <v < — 1). Consider the following
condition on a super-wave function:

w(x,0,t, 4, &) = <Z£ i(x,0,0)D~ )(epo(x 0,t,1,%))

I=
and

W(X, 6, L oy, nv) = va(x, 0’ L, Bvawv) for even vV, (5'1)
(D™ y*w)(x, 0,8, 00,,m,) = ¢, (D™ )*W)(x, 6,1, ,,®,) for odd v.
The operator (D~ 1)* is the formal adjoint operator of D~*
0

(D7) = -5+

A superanalogue of Cauchy’s residue formula reads [8]

Res; -, { A(di/dé)aé—g),.ﬂf (¢ n)} DN ),
1

a“‘—g)mf(i 5)} — (D% (o, m),

where D, . =(0/0¢) + £(9/04), and « is an even constant, # an odd constant. We
remark that

Res; ., { A(dA/dé)

((D™)*w)(x,0,t,0,1) = Res, - a(A(di/dé)W(thD)D Hexp H)7— = n§’1>

The condition (5.1) implies the following linear equation:

Wis-- - wan) [, -2v)i§ £ (4 1,—2v+1)}§{§§§"]
- _(¢O —2v)1<v<N|((|Zs —2v+1)1§v§N)’ (52)
where
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;=D exp H)(a,,n,) — ¢,(D~ exp H)(B,, »,).

Solving (5.2), one gets an N-soliton to the SKP hierarchy. We can rewrite (5.2)
into the super-Grassmann equation:

‘W

[

—0, (5.3)

where W= (w_;),.,(w_;=0 for j= 1),
<D=exp<9A+xA2+ Y t,,F"),
n=1

A=(5u+1,v),u,vel’ F=((-—)v5u+ lgv)u,veZ

E = (Ep,v),usl,veNc WIth

2 2 .

o o2 —c,pM (u:even) for IN<v< —1,
eV e, BB V2 (u:odd) v:even

= [ =me T e 0,B,7 142 (uieven) for —2N<v< -1,
",y an(ﬂ—l)/z_cnﬂv(u—l)IZ (,U'Odd) v:odd

E,,=0,, for —oco<v<—2N.

Acknowledgement. The authors thank Dr. M. Noumi for stimulating discussions on the basis of the
KP hierarchy.

References

1. Bergvelt, M. J.: A note on super Fock space, preprint, Max—Planck Institut 1988
2. Date, E., Jimbo, M., Kashiwara, M., Miwa, T.: Transformation groups for soliton equations. Proc.
RIMS Symp. “Nonlinear Integrable Systems—Classical Theory and Quantum Theory—Miwa, T.,
Jimbo, M. (eds.), pp. 39-119, Singapore: World Scientific 1983

: J. Phys. Soc. Jpn. 40, 3806-3812 (1981)

———: J. Phys. Soc. Jpn. 40, 3813-3818 (1981)

———: Physica 4D, 343-365 (1982)

: Publ. RIMS, Kyoto Univ. 18, 1077-1111 (1982)

. DeWitt, B.: Supermanifolds. Cambridge: Cambridge Univ. Press 1984

. Friedan, D., Martinec, E., Shenker, S.: Nucl. Phys. B271, 93-165 (1986)

. Tkeda, K.: A supersymmetric extension of the Toda lattice hierarchy. Lett. Math. Phys. 14, 321-328

(1987)

10. Kac, V. G,, van de Leur, J. W.: Super boson—fermion correspondence. Ann. Inst. Fourier 37,
99-137 (1987)

11. Leites, D. A.: Introduction to the theory of supermanifolds. Russ. Math. Surv. 35:1, 1-64 (1980)

12. Manin, Yu. L, Radul, A. O.: A supersymmetric extension of the Kadomtsev—Petviashvili hierarchy.
Commun. Math. Phys. 98, 65-77 (1985)

13. Mulase, M.: Solvability of the super KP equation and a generalization of the Birkhoff decomposition.
Invent. Math. 92, 1-46 (1988)

14. Radul, A. O.: Algebra-geometric solutions to the super Kadomtsev—Petviashvili hierarchy, preprint,
1988

15. Sato, M.: Soliton equations and the universal Grassmann manifold, Lecture Note Series, Sophia
Univ. No. 18 (1984), (Notes by M. Noumi in Japanese)

16. Sato, M., Sato, Y.: Soliton equations as dynamical systems on an infinite dimensional Grassmann

N )



78

17.

18.

19.

20.

21.

K. Ueno, H. Yamada and K. Ikeda

manifold. In: Proc. U.S.~Japan Seminar “Nonlinear Partial Differential Equations in Applied
Science”. Fujita, H., Lax, P. D., Strang, G. (eds.) pp. 259-271. Kinokuniya: North-Holland 1982
Ueno, K., Yamada, H.: A supersymmetric extension of nonlinear integrable systems. In: Proc. Conf.
“Topological and Geometrical Methods in Field Theory. Westerholm, J., Hietarinta, J. (eds.),
pp- 59-72. Singapore: World Scientific 1987

,. Super Kadomtsev—Petviashvili hierarchy and super Grassmann manifold. Lett. Math.
Phys. 13, 59-68 (1987)

, Supersymmetric extension of the Kadomtsev—Petviashvili hierarchy and the universal
super Grassmann manifold. Adv. Stud. Pure Math. 16, Conformal Field Theory and Solvable
Lattice Model (1988), pp. 373-426

,. Soliton solutions and bilinear residue formula for the super Kadomtsev—Petviashvili
hierarchy. To appear in Proc. 16-th Int’l Collog., “Group Theoretical Methods in Physics”
Yamada, H.: Super Grassmann hierarchies—A multicomponent theory—. Hiroshima Math. J. 17,
373-394 (1987)

Communicated by H. Araki

Received November 28, 1988





