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Abstract. Consider the + phase of the two dimensional nearest neighbor
ferromagnetic Ising model at a temperature below Tc. Let v+ be the restriction
of this measure to a coordinate axis. We prove that there is no one dimensional
translation invariant summable interaction for which v+ is a Gibbs measure.
This is proven by showing that if such an interaction existed, v+ would have
large deviation properties different from those it actually has. Percolation
methods are used in the proof.

In this note we consider the two dimensional nearest neighbor ferromagnetic Ising
model. The formal Hamiltonian may be written as

where J > 0 , σ = (σJ x e Z 2 , σ x = + 1 and the sum runs over the pairs of nearest
neighbor sites of Z 2 .

Let Λn be the box { — n,...,n}2 and μw> + t J be the Gibbs measure with +
boundary conditions on (Λn)

c. (Throughout this paper we will always take the
usual factor β equal to one in the definition of Gibbs measures). As n-> oo, μπ> + > J

converges weakly to the + phase μ+ j . μn,~,j and μ_ 3 have analogous definitions.
Set

Jc = inf {J > 0;μ_,j φ μ+,j}

Given Ac=.Z2, let ^(Λ) be the σ-algebra generated by the random variables
{σx:xeA}. Denote by L the line Z x {0} and let v ± J be the restriction of μ±J to
#XL), i.e., the measure induced by μ ± J on L.

We will prove below

Theorem. Assume J>JC. Then there is no one dimensional translation invariant
summable interaction such that v+J is a Gibbs measure for this interaction.
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Our motivation to consider this type of question arises from the desire of better
understanding how generally a measure is Gibbsian. (See open problem Bl in
[Rue], p. 169). While the result in this paper is only a negative answer in a very
particular case, it shows that even measures that appear naturally in connection
with simple statistical mechanics models may be non-Gibbsian (in the sense stated
in the Theorem). This possibility was pointed out in [GP1, GP2 and Gri] (see also
[Isr 3]), in connection with problems related to real space renormalization group
procedures. In these papers restrictions of Gibbs measures to sublattices obtained
from the original one by "decimation" were for instance discussed. It is possible
that the methods used in the present paper may help to elucidate some of the
problems raised in those papers. We have also some hope that the methods used
here can be adapted to deal with measures which are invariant for some stochastic
dynamics, for which it is in general interesting and hard to decide whether the
measure is Gibbsian or not (see [Kun and LS]). One should remark that if a larger
class of interactions and a more general definition of Gibbs measure is adopted
[Isr 1, Isr 2] one can find an interaction for which not just one measure, but all
the measures in an arbitrarily large finite set are Gibbsian. These interactions
nevertheless give rise to all sorts of pathologies and seem therefore to be of little
physical significance (see the remarks on pages 119 and 120 of [Isr 2]). We should
also remark that in [Koz and Sul], necessary and sufficient conditions for measures
to be in certain classes of Gibbsian measures are provided. But these conditions,
which involve continuity of conditional probabilities, are in general hard to verify.
We were not able to use them in this paper and in some other cases (see [LS]).

Next we recall the definition of the class of interactions mentioned in the
Theorem. For this purpose let &f(Z) be the set of finite subsets of Z and
Ω = {- 1, + 1}Z. Given Ve0>f(Z) and ieZ, set

Given now ωeΩ, we define τtω by (τiω)j = ωj-i. A one dimensional translation
invariant summable interaction is a function Iw(ω% We£Pf{Z\ ωeΩ such that

(ii) £ sup|V(ω)|<oo.
W.OeW ω

Remark, (i) and (ii) imply that for any Ve&f(Z\

]Γ sup\Iw(ω)I < oo. (1)
W .WnVΦφ ω

A measure μ is a Gibbs measure for the interaction Iw{ω) if for every Ve0>s{Z)

and σeΩ a version of the conditional probability

μ{ω:ω/ = σί for ieV\ωi = σi for ΐeF c}

is given by

9-Hv(σ) I y e~Hv(σ')

σ'eBviσ)
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where

Hv(σ)= Σ M*)
W WnVΦφ

and

Bv(σ) = {σ'eΩ'.σ'i = σf for ieZ\V}.

We turn now to the proof of the Theorem. Since J > Jc is fixed, it is generally
omitted.

Define

(below we will redefine Sn as a subset of Z 2 , but this should not give rise to any
confusion). And m* = Jσ o dμ+. Our reasoning is as follows. The following large
deviations property for v+ is known to hold ([Sch,CCS]):

Proposition 1. Assume J>JC, then there exists a convex function φ : [ - l , l]->
[0, oo) (which depends on J) such that φ(m) = 0 if and only ifm = m* and

l im |S n Γ 1 logv + , J {ω: |S M r i χω ι G(α,b)}=- inf φ(m) (2)
n -*• oo ieSn a<m<b

for any —l^a<b^l.
On the other hand, in [FO and Oil] large deviation properties were proved

for the empirical field associated with a large class of Gibbs measures, including
all the Gibbs measures for translation invariant summable interactions, considered
above (the same result was also announced independently in [Com]). It follows
from this result, via a contraction principle (see Sect. 6 in [OH]) that any Gibbs
measure in this class satisfies a large deviation property of the form (2) above, but
the corresponding function φ(m) has a unique zero if and only if there is no other
translation invariant Gibbs measure for the same interaction having a different
density (see the last remark in Sect. 6 of [Oil]). Therefore Theorem 1 will be proved
once we prove

Proposition 2. Assume J>JC. If v+J were a Gibbs measure corresponding to a
translation, invariant summable interaction, Iw(ω), then v_ j would also be a Gibbs
measure for the same interaction.

Our proof of Proposition 2 is based on a simple idea exploring a result in
[Rus], but the technicalities may obscure the arguments. Therefore we first sketch
our approach. We want to show that for any *f, v+ conditioned on {ω ί = — 1 if
\i\ ϊ> /} is stochastically lower than v_. It would then follow easily that as /-^ oo
this conditional measure converges to v_, implying what we want to prove. But
the procedure above involves conditioning on a set of v+ probability zero. So we
have to introduce a cut-off, conditioning on {ωt = - 1 if / g | i\ ^ n) for appropriate
n and use carefully the definition of a Gibbs measure. This is done in the proof of
Lemma 2 below. We start with several definitions (some appeared before and are
recalled) and Lemma 1, where we use results and percolation techniques from [Rus].
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Subsets of Z 2 :

Λn = {-n,...,n}2,

L=Zx{0},

S, = {-/,.../} x{0} for *f^0,

*/|Λ = SΛVi f o r i ^ < " ,

^ = L\V, for *f^l, Ko = £.

Measures:

i) μ£ is the Gibbs measure for the two dimensional Ising model with "boundary
condition": σx = — 1 if xeR^ σx = + 1 if xe(Λn)

c\Rr

ii) By FKG, as n -+ oo, μ£ converges weakly to a measure μ'.

= σ-algebra generated by the spins {σx:xeA},

= Π
finite

i) Given two measures μ t and μ2

 o n ^(Z 2 ), we write μ t ^ μ2 if J
for every coordinatewise non-decreasing continuous function /: { — 1,1}Z2->(R.
ii) An event is said to be positive if its indicator function is a coordinativewise
non-decreasing function.

Lemma 1. For any ( ^ 0, μ( ̂  μ_.

Proof. By FKG, \jί is an extremal Gibbs measure for the system on the lattice
Z2\Re, with formal Hamiltonian

jceZ2

where
ftx = (J/2) (number of nearest neighbors of x in R/j.

Indeed, if μ is any Gibbs measure for this system, μ ̂  μ̂ , and therefore μ̂  cannot
be decomposed into a non-trivial convex linear combination of these measures.
From the extremality, it follows that J ^ is trivial when measured by yί ([Rue],
Theorem 1.11).

We will use now percolation techniques from [Rus]. The reader should consult
this paper for the definitions of terms like "infinite cluster," "*circuit," etc, used
below.

Let Cu [respectively C/\ be the event that there is an infinite (+) cluster in the
upper [respectively lower] half plane Z x {1,2,...} [respectively Z x {— 1, — 2,...}].
Then

μ'((Cuγ)^μ'((CuY\{σx=- 1 for xeS^})^{ax= - 1 for x e ^ J

= μ°((Ctt)
c) μ > / = ~ 1 for xeS,^}.

But Lemma 8 in [Rus] states that the first factor in the right-hand side above is
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one, while the second one is clearly positive. Hence //((CJC) > 0. Now the triviality
of &„ implies //((Cu)

c) = 1. Analogously μ '((Q c ) = 1.
Now it is easy to finish the proof, with a standard argument. The absence of

infinite ( + ) clusters in the upper and the lower half planes implies the occurrence
of a * circuit of—surrounding any given finite region (remember that the spins
are constrained to be — 1 on R,). This fact implies \J[ g μ_ (see the proof of Lemma
1 in [Rus] for details). •

We will denote by E + expected values with respect to v+. Saying that v+ is a
Gibbs measure for the interaction Iw(ω) is clearly equivalent to requiring that for
any Ve&f(Z) and any event Ee^(V)9

£ e-Hv(«>)

/» (3)
σ"eBv(σ)

is a version of the conditional expectation

where, as before

Bv{σ) = {σ'eΩ'.σ'i = σt if ieZ\V}9

and 1E is the indicator function of the event E. Below we use the notation fίE{σ)
for fVtD(σ) when V=Sr We denote by σ_ the configuration identically — 1 on Z.
Recall also that μ£ _ is the Gibbs measure for the two dimensional Ising model
with—boundary conditions outside A€ = { — / , . . . , / } 2 and that μ_ is the limit of
μ{ _ as f -* oo.

Lemma 2. Under the assumptions of Proposition 2, ifEe^(S^ is a positive event, then

where f^E corresponds via (3) to the interaction Iw(ω\ supposed to exist in the
assumptions of Proposition 2.

Proof. Take an ε > 0. By the definition of μ\ there exists an n0 such that if n ^ n 0,

(4)

(1) implies that / / £ ( ) is continuous. Therefore there exists nx such that if σ'
satisfies σ\ = — 1 for ieSni, then

(5)

Set n = max(no,n1).
By an application of the theorem of convergence of martingales (see Theorem

35.5 in [Bil]) we have

(6)

as N-+ oo, for almost every σ. But for any n the set Dn = {σ'eΩ'.σΊ = — 1 if ieSn}
has v+ positive measure. Therefore there exists σ'eDn such that (6) holds when
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σ = σ'. Take now ΛΓ ̂  ή such that

(7)

Using (5) and (7)

β/3 g E+(\E\<F{R( „
μ + ( | { Λ . = σ!( for

By FKG

Using (4) and Lemma 1,

Since ε is arbitrary, it follows that

/ , > _ ) : £ μ_(E).

The proof of the lower bound is analogous but simpler since, clearly, by FKG,

/ , > _ ) £ / , > ' ) - β/3 Z Έ(\B\P[RtJI)){<f) -2ε/3

^μ^(σ')-2ε/3.

Proof of Proposition 2. From Lemma 2,

for any positive event E which depends only on finitely many spins. By standard
arguments, using inclusion-exclusion, we can drop the condition of positivity of
E. But this implies (see Theorem 1.9 in [Rue]) that v_ is a Gibbs measure with
respect to the interaction Iw(ω). •

The Theorem follows now by the arguments given before Proposition 2.
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