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Abstract. This paper studies the solutions of the Ginzburg-Landau equations
on R 3 in the presence of an arbitrarily distributed external magnetic field. The
existence and regularity of the solutions at the lowest energy level are
established. The solutions found are in the Coulomb gauge. If the external field
is sufficiently regular, the solutions are shown to have nice asymptotic decay
properties at infinity.

1. Introduction

In the Ginzburg-Landau semi-quantum mechanical theory of superconductivity
the behavior of a superconductor cooled below the transition temperature in the
absence of an external magnetic field is described by the equations

D2

Aφ+^(l-\φ\2)φ = 0,

(l.i)

curl2A+±(φ*DΛφ-φ(DAφ)*) = 0, '

which are the equations of motion of the free energy density

(*=1\cm\A\2+1-\DAφ\2+U\φ\2-l)2. (1.2)
Z Z o

Here the complex scalar field φ is an order parameter so that \φ\2 gives the relative
density of the superconducting condensed electron pairs, called the Cooper pairs
which behave like charged bosonic particles, A is a gauge photon field, and DAφ
= Vφ — iAφ. In this model, λ>0 is a dimensionless coupling constant with λ<\
and λ > 1 describing type I and type II superconductors respectively, the electric
field is absent, the magnetic field is determined through H = curl A, and the ground
states (or the superconducting vacua) are given by A = 0, φ = eiθ, ΘETR.1. The
Ginzburg-Landau equations (1.1), which have been accepted as the fundamental
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equations for low-temperature superconductivity theory, were first introduced by
Ginzburg and Landau in 1950 in their phenomenological approach to super-
conductivity (cf. Ginzburg [6]) and later derived by Gorkov [7] theoretically from
his formulation of the Bardeen-Cooper-Schrieffer theory. The relativistic gen-
eralization of the above model in the context of quantum field theories is
recognized as the abelian Higgs model which has shed great light on many aspects
in particle physics.

It is well-known, that, when an external magnetic field He x t is applied, various
distinguished phenomena such as the Meissner-Ochsenfeld effect, surface currents,
and the Abrikosov mixed state occur in superconductors cooled below a critical
temperature. In order to use the Ginzburg-Landau equations to obtain an
appropriate description of these phenomena, one needs to study the solutions of
the equations with full nonlinearity under the influence of an external field.
Unfortunately, in this direction, mathematical results are still fragmentary. For
example, Carroll and Glick [4] proved an existence and uniqueness theorem for a
weak solution of Eqs. (1.1) under the condition that both λ and He x t are suffi-
ciently small and H e x t is a constant field; Odeh [13] considered the existence of
periodic weak solutions of (1.1) on R 2 simulating the lattice structure of the
Abrikosov mixed states with the assumption that the external field was absent and
λ> some critical value; Klimov [10] studied the existence of multiple weak
solutions of Eqs. (1.1) over a bounded domain in R 3 also assuming that no external
field was present.

Besides the above restrictions, the regularity of these solutions has never been
analyzed. The difficulty lies in the fact that, in order to study Eqs. (1.1), one has
always to choose the function space of the gauge potential A as the set of all vector
fields with zero divergence (i.e. in the Coulomb gauge) to make (1.1) a
nondegenerate elliptic system. This choice may render the regularity study of the
weak solutions almost impossible if no symmetry assumption is made: as in the
case of the Navier-Stokes equations, one will have an extra "pressure term" Vp
which lies in the orthogonal complement of the subspace of divergence-free vector
fields in L2 in the equation for A. In the context of fluid dynamics, this pressure
term is natural but it will be a nuisance in the Ginzburg-Landau equations. In
other words, the full Ginzburg-Landau equations have not really been solved.

In this paper we prove the existence of regular solutions of the Ginzburg-
Landau equations on R 3 in the presence of an arbitrarily distributed external
magnetic field. The solutions found are in the Coulomb gauge and stay at the
lowest energy level. These solutions are physically most interesting because they
are energetically stable. Asymptotic decay properties of the solutions will also be
established under some additional regularity assumptions on the external field.

It should be noted that if the external field is absent, the Ginzburg-Landau
equations (1.1) over R 2 and R 3 have extensively been studied in recent years since
they give static solutions of the abelian Higgs model in particle physics. On R3, an
argument based on some topological considerations shows that all finite energy
solutions of Eq. (1.1) are superconducting vacua (cf. Felsager [5]). On R2, there
have been a lot of interesting contributions. In the work of Nielsen and Olesen [12]
the finite energy solutions, now called vortices, are explained as string-like field
configurations in three dimensions of the Ginzburg-Landau theory. For the
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critical choice of the coupling constant λ = 1 (the intermediate phase between type I
and type II superconductors) the second order Ginzburg-Landau equations can be
solved by the first order BogomoΓnyi equations [3] and the prescribed vortex
problem is completely settled (Jacobs and Rebbi [8, 15], Weinberg [18], Taubes
[16, 17], Jaffe and Taubes [9]). For arbitrary λ > 0, it has been shown that the finite
energy solutions of the system (1.1) have exponential decay properties due to the
broken U{\) symmetry (Jaffe and Taubes [9]), that (1.1) possesses a family of
topologically nontrivial radial-symmetric finite energy solutions (Plohr [14]), and
that the nonlinear desingularization phenomenon (Berger and Fraenkel [2])
occurs for these solutions as λ-±co (Berger and Chen [1]).

The author wishes to thank Professor Joel Spruck for helpful conversations.

2. Existence of Regular Solutions

Let H e x t be an external magnetic field. In the presence of this external field, the
Ginzburg-Landau energy density becomes

£ = - |curl A|2 + - \DAφ\2 + - {\φ\2 -1)2 - curl A H e x t
Z Z o

and the corresponding equations of motion are in the form

(2.1)

curl2 A + l- (φ*DAφ - φ{DAφT) = curlHext.

For convenience, we shall use the notation

LP — I/(IR 3) Wk'p = Wk' P(1R3)

W1'2 = thQ completion of the set C^(1R3)

under the norm | |A| |£i > 2 = J \VA\2d3x,

where p^ 1, k= 1,2,..., and if A = (Aj) is a vector field, then VA = (djAk) and |FA|2

= trl(VA) (PA)τ] = Σ(djAk)
2. Define

Namely, K consists of those vector fields in W1'2 satisfying the Coulomb gauge
condition.

For (A,φ)eKx W^2, the total energy is given by

E(A,φ)= J g{Kφ)d?x.

The functional E is not finite at every point in K x W^2 but it is bounded from
below if H e x t e L2 :
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Now we are ready to state our existence and regularity theorem for solutions of
the Ginzburg-Landau equations (2.1).

Theorem 2.1. For H e x t e L 2 n ^ 2 , Eqs. (2.1) have a solution (A,φ)e(KnW{

2>2)
x W^2. This solution is of finite energy and solves the minimization problem

Em = mm{E(A,φ)\(A,φ)eKxW^2}. (2.2)

Moreover, if H e x t is smooth, so is (A, φ).

Proof The key point in our approach to the above problem is that we will not try to
solve (2.2) directly in the space K x W^2, otherwise, we shall still end up with the
unwanted extra "pressure term". Instead, we will consider the minimization
problem

/M = min{/(A,ψ)|(A,φ)6^1 2xWί0

1;2}J (2.3)

where

1 I I ^ ^ I I ^, 0 ) = I | | p A | | £ 2 +

It is easy to see that / is bounded from below on W1*2 x W^2, so Im is a finite
number.

We need the inequality (cf. Ladyzhenskaya [11])

£ £ , Aê  2. (2.4)

Let {(Aj, φj)} be a minimizing sequence of the problem (2.3). From a simple
interpolation inequality, we find

\ \\VH\l^\ W^ΦjWh+l 11(10/-*)\\hύ sup/(A7 ,^.)+l|He x t | |i2, (2.5)

therefore, using (2.4) and (2.5), we see that {Aj} is a bounded sequence in L6 and

W1'2. For simplicity, we may assume there exists A eLfnW1'2 such that A7 -—• A

in L6 and WU2. From the compact embedding WU2(Ω)->LP(Ω) (where 1 ^

and Ω c R 3 is a bounded domain) we may further assume

A7 - U A in

From

and (2.5) we conclude that {Vφj} is bounded in L2(Ω). Moreover, it follows from
|(/>7 |

4 ^ 2 ( | < / ) / - l ) 2 + l and (2.5) that {φj} is bounded in L\Ω). Hence, we may
assume {φj} is weakly convergent in W12(Ω). From a diagonal subsequence
argument, we are easily convinced that one can find some φeW^2 nL^oc and
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assume φj—>φ in Wlf2(Ω) for every bounded domain ΩcIRA In particular,

Consequently, for any bounded domain Ω,

where

O Ω

On the other hand, Vε>0, there is a bounded domain ΏεClR3 such that

f | H e x t |
2 Λ c < β , ΩDΩε.

R3-#

This implies

lΩ{Apφ^l{Apφ^ε\\VAj\\L^

and therefore,

J Ω (A,φ)^J m + εM, ΩDΩε, (2.6)

where MΞΞ sup ||PA ; ||L2. But | |ΓA| |L2^ lim inf H F A ^ , hence, (2.6) becomes

^ / m + f curlA H e x t d
3 x ε

IR3

Letting Ώ-+R 3 , we get, by the arbitrariness of ε > 0, the inequality /(A, φ) ̂  Im.
Therefore, the minimizer of I is found. (A, φ) is the solution of the equations

(2.7)

- V2A + ~ (φ*DAφ - φ(DAφ)*) = curlHext.

Standard elliptic regularity argument proves that (A, φ) e \_Wιll2r\W1'2] x W^c

2. If
H e x t is smooth, so is (A, φ).

Since for AeK, | |PΆ||L2= ||curlA||L2, so Im^Em. In order to show {A,φ) is a
solution to both the Eqs. (2.1) and the minimization problem (2.2), we have only to
verify that A e K.

Indeed, let ueC£(ΊR.3) be an arbitrary scalar test function. We have, using
(2.7b), the identity V (ψ*DAφ) = (DAψ)* (DAφ) + ψ*D2

Aφ, and then Eq. (2.7a),

J V(V A) Vud3x= j (V2A)-Vud3x
R3 R3

= j 3 <fe (V • LΦ(DAφ)* - φ*DAφ-])u - H e x t (curl Vu)j d3x = 0.
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Hence V A is a harmonic function on IRA But V A e L2, therefore we must have
F A Ξ O , namely, A is globally in the Coulomb gauge. This proves Theorem 2.1.

If the external field is absent, the energy minimizing solutions are no other than
the superconducting vacua. However, it can be observed that the presence of a
small external field will change this situation: the lowest energy level will no longer
contain the vacuum solutions.

In fact, let ΩcIR 3 be a small bounded domain so that the first eigenvalue λγ of
the problem Au + λu = 0, u\dΩ = 0 satisfies λγ>\. Suppose H e x t is produced from a
vector potential A e x teC^(Ω): H e x t = curlAext, where V Aext = 0 but A e x t φ0. For
A = Aext, φ = 1 we have

£(A,0)=l(||Aext||£2-||curlAext||£2)<O.

Therefore Em<0 and the lowest energy level does not contain the vacuum
solutions.

In the subsequent sections, we will not restrict ourselves to the energy
minimizing solutions obtained in Theorem 2.1. The results concerning asymptotic
decay and so on are proved for finite energy solutions. To simplify the statements,
we shall always assume the solutions are sufficiently smooth. This assumption can
be ensured by requiring that the external magnetic field H e x t be sufficiently smooth.

3. Boundedness of the Order Parameter

Our asymptotic decay results depend on the following pointwise boundedness of
the order parameter φ. The approach here follows the main line of Taubes [17].

Lemma 3.1. // (A, φ) is a finite energy solution of the Ginzburg-Landau equations
(2.1), then \φ\^l on IRA

Proof Let Ω be an arbitrary bounded domain in IRA Then from Eq. (2.1a), for any
ψeW0

U2(Ω), we have

Re f d3x\DAψ (DAφ)*+U\φ\2-l)ψφ*}=0. (3.1)

Define a function ^/eCJ)(R1) with the properties

f l , \s\ύ29

Introduce a family of cutoff functions ηe(x) = η(\x\/ρ), xelR 3, ρ > 0 . Set
Ω ρ ={xelR 3 | | x |<ρ} .

Suppose Ωρ

+ = {xeΩ β | | 0 (x) |>l }φ0 if ρ2:some ρo. For ρ ^ ρ 0 define
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where (\φ(x)\-l)+ = max{|0(x)|-l,O}. Define f = φ/\Φ\ on (R3) +

= {xeΈL3\\φ(x)\>l}. Then f*f=ί and on Ω3

+

ρ,

Replacing ψ in (3.1) by ψρ, we have, by using the simple relations DAφ = (V\φ\)f
+ \φ\DΛf,ReU(DΛf)*l = O,

(3.2)

From (|(/)| —1)^(|(/>|2 —1) (on Ω$ρ) and the Schwarz inequality we have

J (\φ\-ί)Vηβ.r\φ\d3xZ(l (\φ\2-l)2d3

Xγ'2( $ \Vηβ-V\φ\\2d3xY'2.

(3.3)

But, away from the zeros of φ,

Hence

\V\φ\\S\DAφ\. (3.4)

From the definition of ηe, we have

where C > 0 is a constant independent of ρ > 0. Inserting the above inequality into
(3.3) and using (3.4) we find

J (\φ\-ί)Vηe V\φ\d3x ^ ^ | | ( I Φ | 2 - 1 ) | | L 2 | | # > I I L 2 . (3.5)
Ωtβ Q

Combining (3.2), (3.5), and the inequality

we obtain

AC

Letting ρ->oo one finds mes((R3)+) = 0. Hence \φ\ ^ 1 on R 3. This contradic-
tion shows that (1R3)+ =0. Hence the proof of Lemma 3.1 is complete.
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4. Decay of l-\φ\2

Let Dkφ = dkφ — iAkφ. We have the identity

DkDjφ-DjDkφ= -iFkjφ, Fkj = dkAj-djAk. (4.1)

Define g = DAφ, gk = Dkφ. Using (4.1) and (2.1) one finds

Φ2gf -2iFklgk + i(cmmcxάφ, (4.2)

where the summation convention over repeated indices has been observed.

Lemma 4.1. // (A, φ) is a finite energy solution of Eqs. (2.1) with H e x t e Wlf2, then
\g\ e W1'2. Hence, as an immediate consequence of (2.4) and a standard interpolation
inequality, we have |g|

Proof. Let ηQ be the cutoff function defined in Sect. 3. Multiplying both sides of (4.2)
by η2gf and integrating by parts, we have

the left-hand-side - J {ηQ

ιg?DkDkgι}d3x

= ~ I η2

ρ\Dkgι\2d2x~ J3 (dkη) Q gΠηρDkgι)d"x,

31 + 2
| t h e r i g h t - h a n d - s i d e | ^ - — - | | g | | ^ + 2 J \Fkl\\η2

βgkgι\d3x

J |(
R3

Therefore, by virtue of (3.6) and a simple interpolation inequality, we obtain the
bound

J f / ρ

2 |D t g, | 2 d 3 x^C i +2 I IFMlgugύd'x, (4.3)
R3 R3

where Cγ > 0 is a constant depending on E(A, φ), | |H e x t || wx,2, and λ but independent
o f ρ ^ l .

From the Holder inequality we have

ί \Fkl\η2

ρ\gkgt\d3x^2 J |H| |g | 1/ 2 | ?/ρg| 3/ 2J 3x^2| |H| |L 2 | |g | | i/ 2

2 | |^g| |£/ 6

2; (4.4)
R3 R3

from (2.4) we have

l l^ l lL«^C| |Fι/Jg | | | L 2 ^C[ | | ι // | g | | | L 2 +| |F^ | | L c« | | g | | L 2] . (4.5)

Away from the zeros of gb for fixed 1=1,2,3,

\dk\g,\\ = ̂  litDkgι + Sι(Dkgιr\ ί \Dkgι\. (4.6)

Combining (4.4), (4.5), and (4.6) we find

C3\\ηeDΛg\\lί2, (4.7)
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where C2, C 3 > 0 depend on E(A, </>), | |H e x t || wίι2, and λ but are independent of ρ ̂  1.
Inserting (4.7) into (4.3) and using a simple interpolation inequality, we have

where C 4 > 0 only depends on C2, C3. Letting ρ-»oo in the above inequality one
obtains \DAg\eL2. Using (4.6) again we conclude that IglePF1 '2. This proves
Lemma 4.1.

Lemma 4.2. For any ueWίtP, p>3, we have w->Ό as |x|->oo.

For a proof of this lemma, see, for example, Jaffe and Taubes [9].

Theorem 4.3. // (A, φ) is a finite energy solution of the Ginzburg-Landau equations
(2.1) with the external field satisfying H e x t e W1'2, then 1 -|(/>|2->0 as |x|-*oo and
\φ\ < 1 on IR3 or otherwise \φ\ = i.

Proof Set w= 1 — \φ\2. Then, by virtue of Lemma 3.1,

Hence, applying Lemma 4.1, we see that VweL6nL2. From (2.4) we obtain
weW1'6. Hence w->0 as |x|^oo (Lemma4.2).

Finally, from Eq. (2.1a) and the relation

V2 \φ\2 = φ(D2φr + φ*D2

Λφ + 2 \DAφ\2,

we get V2w^λ\φ\2w. Since w-+0 as |x|->oo, so, using the maximum principle, we
have w > 0 on R 3 or otherwise w = 0. This completes the proof of Theorem 4.3.

5. Decay of H and DAφ

We shall put some additional assumptions on the external field H e x t to ensure the
decay of H and DAφ.

Theorem 5.1. Suppose H e x t e W2'2. If (A, φ) is a finite energy solution of Eqs. (2.1),
then H = c u r l A e W2'2. In particular, H—•() as |x|—>oo.

Proof Since curl 2 A= — V2A+ V(V A), we have curl 3 A= — F 2 H. As a conse-
quence, applying the operator curl to Eq. (2.1b) one finds

P 2 H = |(/>|2H + f ( i ) y l (/) rxZ)>-cur l 2 H e x t . (5.1)

Let ηQ be the cutoff function defined in Sect. 3. Then for fixed j= 1,2,3,

\2d3x.J η2

QHjV2Hjd3x=-2 I (Vnp-VH^QHjd3x- J η2\VHj\
R 3 IR3 IR3

Hence, by the Schwarz inequality,

l+WHjh.WV'HjW^, (5.2)

where C is a constant independent of ρ ̂  1. From (3.6), Lemma 4.1, and (5.1) we see
that V2UEL2. Letting ρ-»oo in (5.2) we get VHJGL2. Hence UeWU2.
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On the other hand, since ηρHeW2'2, by the well-known L2 estimates (cf.
Ladyzhenskaya [11]) we obtain

where C l 5 C 2 > 0 are constants independent of ρ ^ l . Letting ρ-κx) in the above
inequality one finds H e W2'2.

From the Sobolev embedding

(5.3)

and Lemma 4.2, we have H-»0 as |x|-»oo. This proves the theorem.

Theorem 5.2. Under the assumption of Theorem 5.1, if, moreover, A e K, namely, the
solution is in the Coulomb gauge, then DAφe W2'2 and hence DAφ->§ as |x|->oo.

Proof From (2.4) we see that AeL 6 . Now rewrite (4.2) as follows:

+ ^ γ \Φ\2Sι+ ^ <j>2gf-2iFklgk + i(cmmext)l(p. (5.4)

Let ηβ be the cutoff function introduced in Sect. 3. Multiplying both sides of
(5.4) by >72gf and integrating by parts, we have

+ 2jyβ\A-Vgι\\gι\d3x+\\\A\gι\\l2

L l + | | H e x t | | ^ , 2 | | g ! | L 2 . (5.5)

Using the inequalities

ί »/β

2|A Fg / | |g I |d
3xg| |A| |L β | |g / | |L3||»;ρ |Fg J | | |L Ϊ >

R3

and the fact that AeL6, geZ/(2rgp^6) in (5.5) we can find a constant C
independent of ρ ^ l such that ||77ρ|Fg/| | | L 2 ^ C . Letting ρ->oo one gets Vg^L2.
This proves geW1'2.

Now, since r\Qgx is of compact support, we can find an absolute constant Cι > 0
such that

^}, (5.6)

where C 2 is a constant independent of ρ ^ 1.
Except for the first term on the right-hand-side of (5.4), all other terms belong to

L2. Hence, using the decomposition
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and (5.6) and (5.4), we obtain the bound

\\ηβgι\\w^SC3\\A V(ηρgι)\\L2 + C4, (5.7)

where C 3 , C 4 > 0 are constants depending on ||g;||^i,2, ||A||L6, | |H | | L 2 , | |H e x t 11̂ 1,2
but not on ρg: 1.

On the other hand, using the Holder inequality, we have

IL3 S II V(ηρgι) \\lf

using the Sobolev embedding inequality, we have

where C 5 > 0 is an absolute constant. As a consequence, one finds, after inserting
the above estimates into (5.7), the inequality

II^II^^C 6 | |A | | L 6 | |g, | |^ 2 | |^ g / | |^ 3

2 + C4, (5.8)

where C 6 is independent of ρ ^ 1. It then yields from using a simple interpolation
inequality and letting ρ->oo that gιe W2'2.

The behavior g->0 as |x|-»oo follows from (5.3) and Lemma 4.2.

6. Exponential Decay Estimates

We shall show in this section if H e x t decays exponentially fast at infinity in a sense
to be made precise shortly (in particular, if H e x t is compactly supported), so do H,
DAφ, and 1 — \φ\2. This means the interaction is now of a local character.

Let (A, φ) be a finite energy solution of the Ginzburg-Landau equations (2.1)
with H e x t e W2'2 and AeK to ensure the decay properties established in Sect. 5.

From the identity

and Eq. (4.2) we obtain

| 2 -A(l- |0 | 2 ) |g

r 1 (Φ2g* • g* + (Φ*)2g • g)- 2ίFkl(g?gk - gigf) + i(curlHe Jjfef - g l ) φ

+ 4|H|} |g | 2 -C(ε,A)|curlH e x t |
2 , (6.1)

where εe(0,1) is arbitrary.
Since 1 — \φ\2, H—>0 as |x|—>oo, from (6.1) we see that a sufficiently large ρ > 0

can be chosen to make

V2 |g|2 ^ 2 min {λ, 1} (1 - e) |g|2 - C(ε, λ) |curlH e x t |
2 (6.2)

for xeΈL3-Ωn.
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Assume now curlHext decays exponentially:

| cur lH e x t | ^C 1 έΓ μ W , x e R 3 , Cx>09 μ>0. (6.3)

Set

σ(x) = C2e-{1-^/2m^,

where C2, m>0 are to be determined. We have, using (6.2),

V2(σ-\g\2)Sm2σ-2(l-ε)mm{λ,l}\g\2

, l } (σ- |g | 2 )-(m 2 εC 2 -C 3 )e" ( 1 ~ ε ) 1 / 2 m | x | , (6.4)

provided we choose

m = min{|/2(l-ε) 1 / 2min{/l 1 / 2,l},2(l-ε)" 1 / 2μ}. (6.5)

Take C 2 > 0 sufficiently large to make m2εC2 — C 3 ^ 0 . Then (6.4) becomes

(7 2 (σ- |g | 2 )^2(l-ε)minμ,l}(σ- |g | 2 ) . (6.6)

Also, we may choose C2 large enough to make

( σ - | g | 2 ) | w = ^ 0 .

Since σ — |g|2—•() as |x|—>oo, applying the maximum principle in (6.6) we have

| g | 2 ^ = C 2 ^ ( 1 ~ ε ) 1 / 2 m N , \x\>Q, (6.7)

where m is determined through (6.5).
From Eq. (2.1a), we easily find

= λ\φ\2w-2\g\2,

where w = 1 — \φ\2. We can use a similar argument as that in the derivation of the
exponential decay estimate for \g\ to obtain the bound

where C 3 > 0 is a constant and m = (l — ε)1/2min{/l1/2,m}.
The exponential decay of H can be deduced from (5.1) under the additional

assumption

| c u r l 2 H e x t | ^ C 4 e - y | x | , xelR 3, (6.8)

where C4, y>0 are constants.
Indeed, (5.1) gives us the inequality

Γ 2 | H | 2 ^ 2 | 0 | 2 | H | 2 - 2 | g | 2 | H | - 2 | H | | c u r l 2 H e x t |

^ e x t |
2 ) . (6.9)

Consequently, using (6.7) and (6.8) in (6.9) and arguing as before we can obtain the
estimate
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where m = 2min{(l-ε), (1 -ε)~ 1 / 2y,m} and C 5 > 0 is a constant depending on
εe(0,l).

In summary, we have

Theorem 6.1. Let (A,φ) be a finite energy solution of Eqs. (2.1) with AeK and
H e x t 6 ^ 2 ' 2 .

(a) // H e x t decays according to (6.3), then for any εe(0,1) there is a constant
C(ε)>0 such that

0 ^ 1 - \φ\2 S C(ε)e-{1 ~ε)mM, \DΛφ\ ̂  C(ε)e" ( 1 ~ ε ) m 2 W ,

where x e R 3 , mί = min{/l1/2,2m2}, and m2 = min{λ1/22-ι/\ 2~1 / 2, μ).
(b) //, in addition, H e x t satisfies the decay property (6.8), ί/ierc /or any εe(0,1)

ί/zere is α constant C(ε) > 0 swc/z ί/iαί

| H | ^ C ( ε ) e - ( 1 ~ ε ) m 3 | x | , x e R 3 ,

w/zer̂  m3 = mm{l,2m2,y}.

Note, (a) If H e x t is of compact support, then, in the above decay estimates,
m2 = 2"1 / 2rnin{A1 / 2,1} and m 3 =min{l,2m 2 }.

(b) If H e x t satisfies both (6.3) and (6.8), then the solutions produced by
Theorem 2.1 enjoy the above exponential decay property.

In the following we make a brief discussion about the flux quantization
problem typical in superconductivity theory.

Suppose that H e x t decays according to (6.3). Let (A, φ) be a finite energy
solution satisfying the general assumption in Theorem 6.1. Let M be a surface in
IRA We shall call M an extended surface, if M is noncompact, orientable, without
boundary, and there is a sufficiently large number ρ o > 0 such that MnBρ is a
2-manifold with boundary d(MnBρ) = MndBρ for all ρ ̂  ρ 0 and the total length of
the curve d(MnBρ) does not grow faster than the exponential functions eδQ(δ > 0) as

ρ->oo, where β ρ = {

Theorem 6.2. Let M be an extended surface in R 3 and consider the normalized
excited magnetic flux passing through M defined by the integral

M

(a) ΦM is an integer.
(b) // M can continuously be deformed into a plane, then ΦM = 0.

Proof. Assume ρ^ρ0 is sufficiently large so that \φ\>j; for |x| = ρ. Let d(MnBρ)
take the inherited orientation from M. Using the Gauss formula and Theorem 6.1
(a) we obtain

J H'dS + ί J dlnφ S f φ~ιDAφ-dx
B d(MB) ~ 'MnBe d(MnBQ)

ί dϊ
d(MnBe)

On the other hand

-i J d\nφ= j
δ(MnBρ) d(MnBg)

d(MnBβ)

9-(l -ε)m2ρ (6.10)
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where N is an integer. Letting ρ-κx) in (6.10) we see that the proof for part (a) is
complete.

Finally, since ΦM continuously depends on M and ΦM is an integer, therefore
ΦM is invariant under any continuous deformation of M. If M is a plane, we can
rotate M to obtain M~, namely, the same plane with opposite orientation. Hence
ΦM — ΦM- This implies ΦM = 0. Part (b) is proved.

Remarks, (a) Theorem 6.2 tells us that although the external flux passing through
an extended surface M can take any value, the excited flux through M may only
attain a number of quanta.

(b) The zero net flux property stated in Theorem 6.2 (b) appears to be a special
feature of the Ginzburg-Landau theory on R 3 . It may imply that magnetic strings
in R 3 are closed and vortices living on any cross section of R 3 appear in pairs with
opposite local winding numbers or topological charges.

7. The Case of an Arbitrary Source Current

In the presence of an arbitrary external source 3-current J e x t , the Ginzburg-
Landau equations become

*(l-\φ\2)φ = 0,
(7.1)

curl2 A + l- (φ*DAφ - φ(DAφ)*)= - J e i t

which are the equations of motion of the Lagrangian density

Note that the left-hand-side of (7.1b) is divergence-free by virtue of (7.1a),
therefore we must assume J e x t satisfies the natural consistency constraint

F J e x t = 0. (7.2)

Using (2.4) and the Holder inequality, we easily see that the action L= J

is bounded from below on the space K x W^2 if J e x t e L 6 / 5 . By a similar approach
as that in the presence of an external magnetic field, one obtains

Theorem 7.1. Suppose J e x t e L6/5nL2

0C and satisfies the consistency condition (7.2) in
the following weak sense:

f J e x t Vud3x = 0, Mue C^(R 3 ) .
R3

Then
(a) Eqs. (7.1) have a least action solution (A, φ) in the space Kx W^2; this

solution is regular, that is, (A,φ)e W2

O'2 x Wχo'
2. If J e x t is smooth, so is (A, φ).

(b) / / J e x t e L 2 , then 1 -\φ\2^0 as \x\^oo and \φ\ < 1 o n R 3 or otherwise \φ\ = ί.
(c) If J^eW1*2, thenH = cm\A,DAφeW2>2 andU, DAφ-^0 as |x|->oo.
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(d) Assume J e x t eW1'2. If | J e x t | ^ C2e~^x\ then the exponential decay estimates

in Theorem 6.1 (a) hold for 1 — \φ\2, DAφ. Also, Theorem 6.2 holds here for the

excited flux passing through extended surfaces in R 3 . In addition, if |curlJ e x t |

~y\χ\ the decay estimate in Theorem 6.1 (b) holds for H.
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