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Abstract. In this paper we conclude the discussion of the basic properties and
bounds for the R operation. This allows us to complete the proof of the
ultraviolet stability of four-dimensional pure gauge field theories, as formulated
in Theorem 1.

Introduction

In this paper we perform all the remaining operations defining R, like cancellations
of the large terms in numerators and denominators in (1.100) [IV], localizations
in disjoint large field regions, and exponentiations. Then we prove bounds for the
obtained expressions. The main bounds are combinatorial bounds proving
convergence of the whole expansion defined by the R operation. This completes
the proof of the inductive representation of the effective densities, the representation
described in detail in Sect. 2 [IIT]. Thus we prove the following theorem:

Theorem 1. If the sequence of the effective coupling constants is contained in an
interval ]0,y] with a sufficiently small positive 7y, then the effective densities p, have
the form, and satisfy all the conditions and bounds, described in Sect. 2 [1II].

This is the main result of the whole sequence of papers of the present author
on non-Abelian gauge field theories. Theorem 2 of [I] allows us to remove the
assumption on the effective coupling constants in the above theorem, because this
assumption follows from the basic inequality (0.31) [1I], which is the result of
Theorem 2. The proof of Theorem 2, which is based on second order perturbative
calculations, is very awkward and long in the context of the renormalization group
approach to lattice gauge field theories, and has not been published yet, so we
have Theorem 1 with the assumption. As an immediate consequence of this theorem,
we get the ultraviolet stability bounds of the same type as for superrenormalizable
models in [16]:
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with the constants E_, E ., independent of k, T,, U,. Theorem 1 is the basis for
many other applications, for example, for an analysis of expectation values of
physical observables, like loop variables, averaged loop variables, etc. These
problems are very important for construction of the four-dimensional gauge field
theories, and they deserve detailed analysis and further publication. Another
important direction for future development is to include interactions with matter
fields, e.g. Fermi fields in quantum chromodynamics.

1. The Conclusion of the Operation R— Localization, Bounds, and
Exponentiation

In this section we describe in detail the remaining operations necessary to conclude
the R-operation, and mentioned briefly at the end of [IV]. The definition of the
operation R’ was written in the form (1.100) {IV] in order to make clear the
fundamental issues, like construction of a polymer expansion, and the exponentiation,
but now we come back again to the simpler notation used throughout the last
section, e.g., in the formula (1.99) [TV]. Consider one term on the right-hand side
of (1.99) [IV]. In this term the operations Ty, T,, and the integration with respect
to the variables V,, are left unchanged by operations and considerations of this
section, therefore we omit them in formulas below. The result of the R’-operation
on the obtained expression can be written in the form

7 1 ’
Xk Xk, 4960 (Vi) A eXP[ - g~2 A(Co, Uy 2(V5, VA))]
k

Xh,1/2_’.dV(rBoéTo(V,)X/ exp Ay )
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k

(1.1)

where we have omitted also the averagings over the choices of G,, T,. Most of
this section we will work with the above expression.

The basic problem for this expression is connected with the Wilson terms in
the exponentials in the integrals. A part of this term from the nominator has to
be combined with the term in the first exponential, to give the Wilson term of the
new action. The remaining part has to be cancelled, or approximately cancelled,
with the term from the denominator. This problem has to be analyzed carefully,
because the terms are multiplied by g, 2, so they are potentially dangerous
and they may spoil bounds. More precisely, the term from the denominator is
dangerous, and we start the analysis with the integral in the denominator. Writing
V' =expig, B, identifying A with one of its components, and using (2.8) [1], we get

1
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The last term in the exponential is small, because the function V is at least of third
order in the argument. It can be estimated by O(gi ~#)| A]. To consider the second
term in the exponential we make the following remark about the configuration
U,. It is a minimum of the functional

U— A(U), for U:U defined and regular on Z,

Msk(U) = MBk(Z)(Qi* V) on Z\A. (1.3)
By the results of Sect. G [15] we have the condition
(0A4,Jo)=0 forall 6A4:Qy,64=0 on Z\A, (1.4)

where J, is the current defined by U,, and @y, is the linear averaging operation
defined by U, and B,(Z). In particular, the above condition is satisfied for all 64
with supp 64 < A, therefore J, =0 on A. The functions 64 = H, ; B’ satisfy also
the condition in (5.4), therefore <H,,B’,Jo> =(DH, ;B ,ImoU,» =0, and we
have

1
—1<DH1,:¢B',C7F2 ImoU, ) =g—<DH1,kB’,(1 —{on™?Imal, ).  (1.5)
9k k

By the exponential decay of the minimizer, and the localizations of 1 —{, and B/,
the expression on the right-hand side above can be bounded by

1 .
g_B3MvoPo(gk)eXp( — odist (€2, A))3e, | A|
k

< 3B3 M, A3p3(gi) exp (— R,)(100M)*, (1.6)

where we have used the fact that A is contained in a cube of the size 100M. The
bound on the right-hand side above can be made arbitrarily small for sufficiently
small g,, but it is enough to have an absolute bound, e.g., the number 1.
Consider now the quadratic form in the exponential in (1.2). This quadratic
form is positive definite, and it is simple to estimate the lower bound. At first, we
apply the construction of Sect. F [15] to the configuration U, and doing a proper
gauge transformation we represent it on the domain Z as expifA,, with A4,
satisfying the bound | 4,|,|V"4,| < O(1)M®R,¢,. We also have to do the compens-
ating adjoint gauge transformation on the variables B'. Then we expand the
expressions defining the quadratic form with respect to A, up to the first order
in Ay. This was discussed in Sect. B [13]. The leading term in the expansion is
the quadratic form with the background field identically equal to 1. Replacing the
minimizer in this form by the k'® minimizer defined on the whole lattice, and the
function {, by the function identically equal to 1, we change the form by a quadratic
form bounded by O(exp(— R,)). Now the leading quadratic form is equal to
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{B',A,B") defined by (1.65), (1.66) [10]. Using the bound (1.67) [10] for this form,
we obtain

(Hy B, A (Co)H kB> 27,1 0B'17 — O()(M°Ryey + exp(— R)) [ B[17. - (1.7)

Consider the quadratic form || 0B'|* on the fields B’ defined on A, and equal to 0
on bonds of the graph G,. Using the fact that A is a rectangular parallelepiped
contained in a cube of the size 100M, and that G, determines the axial gauge in
A, we obtain the inequality

Y |B()* <d(100M) Y (0B)() (18)
be A peA

It follows by the same simple argument as in the proof of Lemma 2.4 in [11], it
is even simpler in this case, because we do not have the averaging operations. The
inequality is also much more general, holding for general domains A, and graphs
G, fixing a gauge in A, but with different constants. For example, if in this domain
A we fix an axial gauge in the direction of x,-axis, i.e., we put B'({x —e;,x))=0
for xe A, then the inequality (1.8) holds with the constant (100M)3. The inequalities
(1.7), (1.8) imply finally

Yo

v 2
CHy 4B, A1((o)H 4B 2 24(100M)°

B2, (1.9)
for g, sufficiently small. The above inequality holds for U, in an arbitrary gauge.
It allows us to prove Proposition 1 [IV], but at first we estimate the integral on
the right-hand side of (1.2). This integral is in the denominator of (1.1), hence we
are interested only in a lower bound, which follows from the boundedness of the
quadratic form. The integral is bounded from below by exp(— O(1)|A])=
exp (— O(M#*)). In fact, we need such a bound for the integral extended analytically
on G‘-valued configurations U. We construct such an extension replacing the
variables V, in the function U, by the averages M*(U) for Ue UL(Z, oy 4, %1 ;). The
expressions in the integral are analytic functions of U, and all the bounds above hold
with ¢, replaced by O(ag, + o, ;). This is an unessential change; it may result only
in stronger restrictions on g,, or y. Thus we have

| I -1
(IdV'f,ﬁGo(V')XCXP[“‘EA(CO, U z(V’ VA))])

1
= exp[ + EEA(CO9 UO) + I(UO) - Ek(A)}a

E(A)=(—}d(g)logg, > +10g 60)| A“\Gol, (1.10)
and the analytically extended I(U,) satisfies the bound
[I(Uy)| < O(1)logM|A| < O(1)M?>. (1.11)

From the equality (1.10) it is clear that we have to cancel the first term in the
exponential on the right-hand side, otherwise we will not get good bounds for this
exponential.



Large Field Renormalization 359

Now we prove Proposition 1 [IV]. For simplicity of the argument let us use
the fact that ¥V, belongs to the domain determined by the characteristic functions
Tk 1-€, it has an extension from Z N A° onto Z, such that U, ,(V,) satisfies the
inequality in (1.75) [IV]. We fix such an extension, and we consider the variational
problem for the function V'[ ,— A(U, ,(V'V,)), where V' satisfies mild regularity
conditions. Fixing the gauge G, for V' we get a small configuration, and we can
write V' =expiB’. We expand the function with respect to B’, the expansion has
the same form as in the exponentials in (5.2), but without the powers of g,, and
with {, = 1. Now the condition for a critical configuration is the equation

)
(6B ,H%,J, ;> +<6B,HY A H, B>+ <5B/’H=1k,k (a V>(H1,kB/)> =0.

(1.12)

Denote by P, the projection onto the subspace of B’ satisfying the gauge condition
B¢, =0. By the inequality (1.9) the operator PoH¥ A, H, , P, is positive, hence
invertible on this subspace, and the inverse is bounded by y, '2d(100M)°.
Equation (1.12) can be written as

0
EZV>UL¢B)

= _(POHT,kAlHl,kPO)—IPOHT,ka,Z' (1‘13)

B +(POHT,kAlHl,kPO)—XPOHf,k<

Using Proposition 4 [15] and the fixed point theorem for contractive mappings,
we can easily prove that the above equation has exactly one solution, which has
a bound equal to twice a bound of the right-hand side of the equation, i.e., it can
be bounded by 2y, 12d(100M)3 B34, . This proves the existence and the uniqueness
statements of Proposition 1 [I1V], and the bound (1.78) [IV]. The above equations,
bounds and statements are valid for g‘-valued fields, hence the existence of the
analytic extension follows immediately, and Proposition 1 [IV] is proved. It is
proved for ¢, instead of a general ¢, but the generalization is obvious.

Now we analyze the integral in the nominator of (1.1). The crucial term in the
action A} is the Wilson term — A(1/(g{())?, U;). We have to extract from it the
Wilson term — (1/g#)A((,, U,), in order to cancel the corresponding term in the
exponential on the right-hand side of (1.10), and to preserve enough of it to get
the small factors from large fields. For the remaining terms in the action we have
to discuss the localization only. To analyze the Wilson term we write at first

1 1 1 1
(@%W’ ) g Ut Qw@) p ) (119

The second term on the right-hand side is localized in A as a function of the field
Ui. We leave it in this form. In the future we will apply to it the localization
operation in the same way as for other terms in the action, and we will use it to
get the bounds for large fields. The first term we divide into two parts:

A(UY) = A(Lo, U¥) + A1 = Lo, Uy). (1.15)
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We localize the configuration Uj in the first term on the right-hand side in the
domain Z, i.e., we apply the representation

Uk = Ui z(M"(Uy))

n=1

1 u
= <exp i’ﬂﬂ,z(?l(’g [M'(UZ)(M.(Qi*Vk))ﬁ1][2\2“1)U;c,,z) . (1.16)

The argument of the function Hj , has a support in a layer of width 2M at the
boundary dZ, and it can be bounded by 44d?¢,, as it follows from the restrictions
given by the characteristic functions y,. We expand the first term on the right-hand
side of (1.15) with respect to the function Hy, ;:

A(Lo, Uy) = A(lo,expinHy Uy z) = A(Co, Ui z) + <DH; 2, {on 2 Im 0U} ,
+3C(Hy 2, AQCHY 2> + VLo, Hi 2)- (L.17)

The last three terms on the right-hand side are small, even after dividing by g7.
This follows from the above stated localization of the argument of the function
«.z> and from the exponential decay in the scaled distance of this function (the
inequality (190) [15]). From this exponential decay, and the localization of {,, we
get an additional exponential factor exp (— (1/2)0 MR,). It suppresses all powers
of log g, 2, and all powers of M. A bound of this type will be discussed later in a
more complicated situation, e.g., see the estimate (1.47), so we omit details now.
This implies also that the above terms are small if we take proper analytic
extensions. These extensions will be discussed later. Now let us only notice that
H; , is an analytic function of the configuration Uj restricted to the above
mentioned boundary layer. The second term on the right-hand side of (1.15) is
represented in a similar way. We apply (1.16) with Z replaced by €, and Z\Z™ !
replaced by Q,\£2,, and then the formula (1.17) with {, replaced by 1 —{,, and
Z by Q. The last three terms in this expansion are also small for the same reason,
more precisely we introduce a decomposition of unity connected with the partition
7., and terms of the obtained sum are small, and exponentially small in the distance
to 0.
Consider the main term in the expansion (1.17). We take a function {; €C§(Z} 4 1),
which changes from O to 1 on a neighborhood of the boundary dZ;, ; (on a layer
of the width 2 at the boundary, in L™ "-scale). We divide this term again:

A(lo, Uy z2) = ALo(1 = £1), Ui 2) + AL, Uy 2). (1.18)
Denote {y(1 —{;) = {. The configuration Uy, , depends on V", which is decomposed
into V'V, on B, according to (1.81) [IV]. The field V' = expig, B is small, more
precisely |B| < g; !9, by the restrictions (1.82) [IV] in the characteristic function
¥, hence we have
Ukz= U z(exp ingM.(Uo)l—g;:j}l, Vil )

h+1

—1
= (expinH 2(9 B)UY 2(M"(Uo) g2, V' T2 )™ (1.19)

Notice that the field V" on the domain (£2;3%) is equal to the old field V. We
denote the new background field by U} ,. Expanding the first term on the right-hand
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side of (1.18) as in the exponential in (1.2), i.e., using (2.8) [1], we get
A(G, Uy 2) = A exp inHy 2(g, B)UR 2) = A(, UR 2) + gi { DH 4, B,(n = > Tm 0UR ;>
+30i CHY 2B, A (OHY 4 2B + V(9 HY 1 2B). (1.20)

The last term above is at least of third order in g, B, therefore it is small after dividing
by g2. Notice that this time bounds are a bit more difficult and larger, because of
the many scales in the definitions of the operators and the field B. Thus the last
term is bounded by 0(1)|B, |62 < O(l)(lOOMRk)"NZB < g2 O()M?RE*2 A3p3(g,),
and dividing the number on the right-hand side by g7 we get still a small number,
if g, is small enough. We have assumed here that N < R,. Consider the quadratic
form in (1.20). According to the formulas (79) [15], (3.10) [13], it is equal to a sum
of several terms, which are small except the one term determined by the operator
D*{D. To see that the other terms are small we have to establish bounds for the
background field U ,. Here we are interested only in simplest global bounds on
the support of {. Using the estimate (1.80) [IV] and Theorem 1 [15] we see that
Uy, satisfies the usual regularity conditions (2) [15], for the sequence {7}
restricted to {7, with the constant O(1)B3BsM?°¢, instead of ¢,. From
these conditions we obtain that the sum of the above mentioned terms can be
bounded by O(1)B3BsM*A}pi(gi)ex|Bo| < O(1)B3BsM° 443 pi(gi)Ri* 2 &, and
this bound is small for g, small enough. Notice that we obtain a similar bound,
with a larger power of log g; 2 only, if we extend the configuration U, to G°-valued
fields in the way described in the paragraph before (1.10). Thus the quadratic form
in (1.20) can be written as a sum of the nonnegative form

T 1) I(DHS B0, (1.21)
pely

and the small form, with the above written bound. In the effective action we have
the form (1.21) with the minus sign, therefore it can be bounded by 0. Other bounds
for this form will be discussed later.

Now consider the first two terms on the right-hand side of (1.20). The first, the
Wilson action term, is a desirable term, which we will transform further, but the
second term, linear in B, should be small. This cannot be seen just by a simple
estimate of this term, and we have to use the fact that on the support of { the field
Uy , differs only a little bit from the field U, which is a critical configuration, and
for which the linear term is equal to 0. To use it, we represent the configuration Uy ,
again in the familiar way. We introduce the determining set B, = B} (Z) UB,(£2,33),
where the operation of joining of two determining sets is given by (2.14) [1II], and
we take the corresponding function Uy . It is supported in the domain ZnQj 32,
and on this domain we have

URz = Uy (IM' (U ) (M (U§'P)) ™1 IM (U§D))

-1
u

= (exp inHy, (%bg [M(UD,)(M (U§™))" 1]) UBI(M'(UE)A“))) L a

The argument of the function Hy_ has a support in the boundary layer of the width
2M, (in the L™ "-scale), at the boundary 00,73 The configuration Uy, satisfies
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the regularity condition (1.96) [1V] on (£2;5 )°'n 2,. In fact by the same argument
as the one leading to (1.96) [IV], we have to forget only about the field B’ in the
bounds. By the usual reasoning the field in the argument of the function Hj can
be bounded by 11d%¢, < 11d%(1 + B,)*NPog, < 11d*(1 + By)*REg,, hence

Lin|Hg |,(L'n)*|Viog, Hg | < Byexp(— MRy, )11d*(1 + fo)*Rice,  (1.23)

on Q7N 4, for j=h+1,... k. Consider the Wilson action term in (1.20). Using
(1.22) we expand it with respect to Hy , as in (1.17).

A(LUR 2) = A expinHy Uy )= A((, Uy ) + {(DHy ,{n > Im U3 >
+3<{Hy, A()Hg > + V,({, Hy ). (1.24)
For the new background field U,‘;1 we have, by (4.87):
U, = Uy, (M"(UG'")) = Uy, (M"(UT)) ,
= (Ug (M (Up)))* = Ug = (UG, (1.25)

where i, is a gauge transformation constant on blocks of the determining set B,
and equal to u, at centers of the blocks, i.e., on B;. This equality, the bounds for
the configuration U,, and the bounds (1.23) imply that the last three terms on the
right-hand side of the equality (1.24) are small, after dividing by g7. For example,
the second term can be bounded by

O(1)By BsM3¢,Byexp(— SMR,, ,)11d*(1 + B,)*Rlos,
(1 Qe Q4 + L7225\ + - + LY D200, \Qp L 5))
< g?O(1)A3B3Bs M**>R{™ ! p3(gi) exp (— Ry),

and the number multiplying g can be made arbitrarily small for g, small enough.
Similar, or better, bounds hold for the remaining two terms. Thus, the only
important large term is the Wilson action term on the right-hand side of (1.24).
We will consider it later, now we analyze the second term on the right-hand side
of (1.20). At first we localize the minimizer H] ; ;. We construct the generalized
random walk expansion for it, including Zn£2;7, as one of the localization
domains X, see Sect. C [13] for details. Other localization domains are the same
as in that paper; they are based on the partitions into M, -cubes in corresponding
scales, and they intersect the domain (€2} ;)°. The expansion has the form (3.107)
[13], where X, =Z N2}, and the terms of the expansion satisfy (3.108) [13].
We consider them on the domain Q2;N ;. More precisely the first argument
of their kernels is restricted to the support of {, hence the first term of the expansion
corresponds to the walk (0, X)), and is given by the function Hf ; y,. The remaining
terms correspond to walks intersecting (€27 ), hence the bound (3.108) [13]
provides the additional exponential factor exp(—(1/4)0, MR, ,,). We represent

HY .z as a sum of the first term and the sum of the remaining terms:
Taz=H1xo + Hy a7,y {1.26)

The decomposition yields the corresponding decomposition of the linear term in
(1.20). The bound

IDHy ap7 ¢ Bl < O(1)(L'n) ™ exp (— 200 MRy + 1) A1 1 (g (1.27)

0(@h+1
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allows us to estimate the second term of this decomposition in the same way as
the second term of the expansion (1.24) above, hence it is a small term. The first
term is equal to

g {DHY 4 x,B,{n 2 Im U} . (1.28)

This expression depends on the background field Uy, restricted to the domain
Zn ;7 (or rather to the neighborhood of this domain obtained by adding the
boundary layer of the width SM,L~Y*! at the boundary 9£;,), and the
dependence is analytic. We apply the representation (1.22), and we expand (1.28)
up to the first order in H, . A simple estimate of the expression (1.28) gives the
bound g2 0(1)42 B2 B; M"”Rkpo(gk), hence the first order term in this expansion
can be bounded by this number multiplied by the right-hand side of the inequality
(1.23), and by some absolute constant. Thus the first order term of this expansion
is small, and we have to consider the expression (1.28) with Uy, replaced by
Us, . Using (1.25), we obtain

9x{DHY 4 x,B,{n 2 Im Uy >
—gk<H1kxoR(“1) ,D*Cn‘21m5U0>
= gy CCHY j xo RGG M )BT o) + gi . n* 3 tr (HY 4 x,R(iig ') B),(x)
X,
: ; (037 DX)R(U (< x,x — ne, »)) Im U (0p,,(x — ne,)). (1.29)
v

The sum on the right-hand side above is localized in two domains on which
0" #0: the first is the boundary layer at 042, and the second is the boundary
layer at 0€2;,,. On the first domain we estimate the second sum in (1.29) by
(d —1)3&,13, hence the whole expression can be bounded by

gx(100MR, )"~ *4dB3 Aopo(gi) exp (— 68MR,)3(d — 1)z,

which is a small number, even after dividing by gZ. On the second domain the
second sum is estimated by (d — 1)L""0(1)B, Bs M®¢,n?, and the expression is
bounded by

gu(Ln)*” 1(100MR,,, )~ 14dB3 Ao po(g:)(d — 1)O(1)B3 Bs M,
< gZL (d- 1)NN(d l)ﬁoo(l)AZBZBst+5Rd lp (gk)

The number multiplying g7 is small if L™V is small enough, for example if

“N<(loggy ?)”" for sufficiently large v, or N = (v/logL)loglogg, 2. For the
smallness of the above bound we need v=2p,+dr,. Thus, with the above
assumptions, the second term on the right-hand side of (1.29) is small, after dividing
it by g2. Consider now the first term. We write it as a sum of two terms
corresponding to the decomposition { =(1 — ;) —(1 — {)(1 — ;). For the second
term the support of the function (1 —{o)(1 —¢,)=1—{, is sufficiently far from
the support of the field B. The distance is larger than 8 MR,, hence a bound for
this term has the additional exponential factor exp(— 68 MR,), and the term is
small. The first term is equal to g, <{(1 — {;)HY ; x,R(@@ ')B,J, >, and the function
multiplying J, satisfies the condition

Ql*k(Z)(1 {)HY ix,Rag")B=0 on Z\A.
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It follows from the definition of the function H}; x,, and from the fact that the
support of the field B is contained in A. This condition is exactly the same as the
condition for 64 in (1.4), therefore the above term is equal to 0. Thus we have
proved that in the combined expansions (1.20), (1.24) all terms are small, except
the Wilson action term on the right-hand side of (1.24). This term is equal to

AL Up) = A(Lo, Up) — ALy, Up). (1.30)
The second term on the right-hand side can be estimated as follows:
0= A(ly, Uo) < gi L™*"N*°0(1) A3 B3 B3 M * R 5 (gy.)- (1.31)

For N satisfying the conditions discussed above the bound on the right-hand side
above is small, after dividing by g7. The only term which remains as possibly large
is the first term on the right-hand side of (1.30).

Let us summarize the result of the above analysis of the Wilson action term
in the effective action A;. We have

1 1 1 1
—A Ui )= —A| =5 yUpz—3
((g )% ) <(g;:(~))2 a7 U) gz A0 Lo Uiz

— A, Ui z) — 5 Z 'I4C(x(P (DHlll,k,ZB)(p)lz

k psT
1

—g—zA(Co,UoHO(l), (1.32)
k

where the term O(1) denotes the sum of all the small terms obtained by the above
transformations and expansions. We will transform further the first two terms on
the right-hand side of the above equality. The first term can be written as a sum
of terms localized in components of the large field region. We divide them into
two parts, one is localized in Z, another in Z,\Z. The first is transformed as in
(1.17), ie., it is written as the sum of the Wilson term

1 1
‘A<<(g;;('))2 gk>ZU )

and the remaining terms, corresponding to the terms in (1.17). The remaining terms
are small by the same reason as in the case of the expansion (1.17). We have to
notice only that (1/(g%())*) — 1/g7 is bounded by O(1)(k —j) on 27\, ,, and the
exponential decay of Hj , suppresses this bound. The second part, localized in
Z\Z, is transformed in the same way as A(1 — {,, U} ), namely it is represented as

1 1
_A<<(g ‘) g2 >(Zk\\Z), U;("ZL})

plus the sum of the corresponding small terms, as in (1.17) again. The above Wilson
action term is combined together with the second term on the right-hand side of
(1.32), and the sum of these two terms is equal to

! Y3
A((g oy ek Ui )
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Now we introduce a new determining set B,, and a new background field U,. We
define By as equal to By on Z¢, and to {Z"®} on Z. More precisely

B, ={I';}, where I';=I{nZ° for j<k, I,=I}0uZ®.  (133)
On this determining set we define new gauge field variables V:
VIige=V"ze, VIz=ViValz (1.34)

Let us recall that ¥, =1 on A, and V, is defined on the whole set Z®, and equal
to V, outside A. The new background field U, is defined by

U= Uy (V). (1.35)

We define also the new function 1/(g,())? = 1/(g{())*>Z° + 1/(g%)Z. We use here and
above the same notation for a set, and for its characteristic function. Consider the
last Wilson action term above. We expand the configuration U} ,~-s on the
support of 1 —{, around the new background field U,. We use a representation
inverse to (1.16), i.e., we write

Uiy —>=UB{UB(Z %), [M(QF Vi)(M"(U,))~ 'IM (U}))

=1

1 *
= <€Xp inH 7= < —7log M (UM Qi Vi)™ 1]) Uk) - (1.36)

The argument of the H-function above has a support in the boundary layer of the
width 2M, at the boundary dZ~ 3, and it is bounded by 44d%¢,. Expanding the
Wilson action with respect to this function, we get again an expansion of the type
(1.17), with all terms small except the first one, which in this case is equal to

1
4 <(gk(-))2 (1=Co) U")'

This expression is now combined together with the Wilson action in the first
exponential in (1.1), only transformed in the same way as above, i.e., with the
configuration U, , replaced by U,, and with some new small terms. The sum of

< )
(gk(.)) ’ ’

which is the new Wilson action term for a final effective action, the rest of which
will be constructed later.

All the above transformations of the Wilson action terms from all the
expressions in (1.1) yield

1 1 1
-gﬁA(Co, Ui z(ViVa) — A(— Uz'é> + g—zA(Co, Uo)
k

k GOP
1 1 1 1
—oa( v -al (G - Do ) al v,
((gko)Z’U“) A(((gz('»z gf)C’U’) A((g;; ST )
1
LS ) (DHY . BRI + 000, (137)

2 peT,'
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The first term on the right-hand side is the basic Wilson term of a new effective
action, and we write it in the first exponential in (1.1), instead of the previous local
one. The second term is in fact a small term, because

1 1
GiOF # " O(N) £ O(R,)

on the support of {, so it can be bounded by
O(1)N2*4Bo(100M R, )*(0O(1)B; Bs Mg, + O(1)B35})* < O(1)B3 B2 M°R] 2,

and the bound is small for g, small enough. We include this term into the sum of
small terms denoted by O(1) in (1.37). Let us repeat the remark about the analyticity
properties of these terms, formulated already several times, e.g., before the formula
(1.10). Each term depends analytically on one of the background fields which
appeared in the above constructions, and the bounds are preserved if we replace
this field by the corresponding G°-valued field. This replacement will be described
more precisely later, when we will discuss localization. Consider now the third
term on the right-hand side of (1.37). It is a very important term, because the
exponential of this term gives the small factors connected with large plaquette
variables in the domain §. We have separated this term from the old action
exactly for this purpose. There is one problem connected with this term. We have
to extend the function Uy ,, or rather the function U§'™ in its argument, to the
G*-function, and then the obvious positivity properties of the Wilson action are
lost. We will show that this extension can be written as a small perturbation of a
positive Wilson action, from which we can get all the small factors. The extension
is constructed by replacing in

USAL) = U%}(Vk anAC’ VA(Vk I_Zn/\[))

the variables V, by M*(U), where UeUj(Z, % 4,2 ;). By the definition we have
U=U'U, where U is a G-valued configuration satisfying the regularity condition
[0U — 1| <o ,n?, and U =expinA’, where A’ is a g-valued function satisfying
the bounds |4}, |V} A'| <o . We write M*U)= MU' )M*(U), and M¥U’) =
expiQ,(nA’) = exp iB,|B|< O(1)a ;. In the proof of Proposition I [IV] we have
noticed that the function V, is an analytic function of the field V,, but now we
need a more quantitative statement. We would like to establish an identity of the
form

VA(MHU)) = V(MY U")V 5(M¥(U)), (1.38)

holding in the axial gauge, and to prove analyticity properties and bounds for the
function V’,. Of course the identity is a definition of this function, so the bounds
are important. We may replace also the k™ averages by fields V', V, satisfying
proper smallness, or regularity conditions. The function V', is determined as a
critical point of the function

Vo= AU V'V, V'V AV, (1.39)

where V' =expiB’, and B is sufficiently small. We expand the above function with
respect to (B, B'), B’ =(1/i)log V'. The expansion has the same form as the one
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in the exponentials in (1.2), only with {, =1 and g, = 1. Differentiating it with
respect to B', using the criticality condition for Uy = U, ,(V, V ,(V)), and inverting
the linear operator as in (1.13), we obtain the equation

- 5 / 5%
B +(PoHY A H,  Py)" ' Py Tk(a—A V)(Hl,kB +H, B

= —(PoH¥, A H, ,Py) 'PoH¥, A H, B (1.40)

The notation above is a bit simplified, in fact we should write H, , , instead of
H,, and Qy , OF B instead of B, but it does not matter, because we restrict the
operators to A and the boundary effects at the boundary 0Z are negligible. We
can prove again that Eq. (1.40) has exactly one solution B',(B’), which is an analytic
function of the g'-valued small field B, satisfying the bound

|B'\(B')| < 4d(100M)%y5 ' B3| B'|. (1.41)
This yields the formula

V' (MMU")) = exp iB/A(%log M"(U’)) (1.42)

for the function in the identity (1.38), and a quantitative control of the analytically
extended function V4. Consider now the extended function

Uo(U) = Uy o(M*U), V 5(MK(U))) = U, o(M¥U")M*U), V' s(MHU")V \(M*(U)))
(1.43)
in the axial gauge. Existence of the analytic extension follows from the results of
Sect. G [15], and from the results and bounds formulated above. From these

results it follows also that aj* average of the above configuration can be represented
in the form

MIU(U)) = MU o (B4U"), V oS5V )MV (U))
=V, (F{U)MIUo(V)), (1.44)

where V 2z(V’) is an analytic function of (1/i)log V', satisfying the bound
|V;.2(V) = 1| = O(1)Bs BsM|log V'|. (1.45)

The representation and the bound hold on the j domain of the determining set
B,(Z), for j=0,1,...,k They all hold on the domain A, and the field M/(Uy(U))
is also small on A; it satisfies the bound (1.84) [IV], with a,, instead of ¢,.
From the results of Sect. G [15] it follows again that the function H, , in the
representation (1.86) [IV] has the analytic extension A, = H,_4((1/i)log M (U, (U)))
satisfying (1.87) [IV], with o, + a, , instead of ¢,. This is the information we need
to discuss the third term on the right-hand side of (1.37). It will be used also later,
in the discussion of localization. Consider now the expression

A<(g or Y >

To simplify the discussion we localize it again in the domain Zj, , instead of Z.
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We will not repeat again all the considerations connected with this operation.
They should be obvious; let us state only that all terms of the expansion
corresponding to (1.17) are small by the exponential decay of the H-function, except
the term A((1/(g;())* )01, Ui, ). The configuration U}, = depends on the field
V'V, =expig,BexpiQ.(nA,) on 2,72NZ},,, and on the field V" on (2;3%).
We consider here the function A, extended analytically to the fields U. Denote for
simplicity the above configuration by U}, ,. It is an analytic function of A,, hence
of U, and we have the expansion

Uy, ([R(expig,B)expiQ.(nAo)lexpig,B, V")
— (expinHj, ,(Rexpig, B)].(Ao)) Uy, »(cxpig, B, V/))*+2.  (1.46)

The argument of the function Hj, , has a support in the domain 2,33 N Zj},, ,. This
is very important, because the exponential decay of this function suppresses strongly
large values of 1/(g;(-))>. The above expansion yields the usual expansion of the
Wilson action, i.e., the expansion of the form (1.17) with proper changes. Again,
all the terms in this expansion are small, except the term A((1/gy()*)1, Up )
For example, consider the most dangerous term, the term linear in Hj, ,. It can
be bounded in the following way:

1 -
'<DHZ+2,@WC ImaUh+2>

K
< Z z Bjexp(— 5d(xaQZ121))0(1)L4NB§BSM6(°‘0,1¢+°‘1,k)

Jj= lxer

1 1
(5]{ + O(k _.j)>£j é O(I)g(ao,k + al,k)EkL_NNl +Bo

h
"B3BsM° Zl Y. exp(—30d(x, 2;3%)) exp (— 30M(h —j))(1 + h—j)* *Fo
J= xe]";’
S0()ACB3BsM°po(gi)q: (g )R L™ N T n 2372
éO(I)AOClBgBSMlopO(gk)Q1(gk)RIZL_N' (1.47)

The last bound above is small under the usual conditions on N. Bounds for the
other terms in the expansion are similar. Thus we have

1
a2 o1 ;:+2 U) |= 1 Uh+2 k V” o(1 1.48
A((gx(-))zc ( )> (( Gy o Vreaepiad ))+ M (149

where the terms in O(1) are small, and depend analytically on the field U restricted
to the domain Z. The gauge field in the Wilson action on the right-hand side is
G-valued, hence the action is positive, and it provides the necessary bounds for
large plaquette variables.

We have finished the operations connected with the Wilson action terms in
(1.1). It is an important part of the procedure, and also the most difficult one,
because it involves the problem of cancellation of the terms in the numerator and
the denominator in (1.1). This problem dictates some basic aspects of the
R-operation, for example it determines the number N of the usual renormalization
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steps we have to perform for a given large field region, before we can do this
operation. In the course of the above transformations we have created many new
terms in the effective action. They have been obtained by expanding some Wilson
actions, so they have a similar structure; in particular they are easily localizable,
but they depend on several different background fields. They have, however, two
important common features: they are all small, in fact their sum is also small,
although we need boundedness only, and they depend on background fields
restricted to a neighborhood of the region Z, therefore they are boundary terms,
according to our classification of terms in effective actions. We denote the sum of
all these terms, including the term I(U,) from the denominator, by C,. As the
result of all the transformations above we obtain the following equality:

1
(1.1) = %Xk, a96,(Vi)x €Xp [ —4 <m> Uk>:|

’Xh,l/zdeU(ng)éro(B)X' exp|: - %<DH’1’,1<,ZB» (DHY, B>

1 4 . "
- A<—(g;{,())2 (1> Upsa(expigy B,V )) +Cy

+ E(Ug) + R (UY) + B(Ug, 4) + B{(U, A)
— Ex+(—2d(g)logg, * +1logao)|Bo\ Ty | — Ek(A)]- (1.49)

Let us recall that the term R, is not complete yet at this stage. It is equal to
R,_, + R"® where R"® is the contribution from R,_; connected with the last
T-operation. The essential contribution to R® will be constructed by this
R-operation. Let us recall also that the term By, is the sum of the new boundary
terms created by the N preliminary integrations considered in the previous section.

Our problem now is to reconstruct the effective action corresponding to the
new determining set B, and the background field U,, possible with some new
boundary terms. We have done it for the main term in the action, and we have
obtained the Wilson action in the first exponential. Now we will extract other
terms from the effective action in (1.49), more precisely these terms which contribute
to the new action. We divide the terms in the second exponential in (1.49) into
two parts: the first part includes the first three terms, and these terms of the rest
of the effective action, for which their localization domains intersect the region Z,
the second part includes the remaining terms, ie., the terms with localization
domains disjoint with Z. The second part contributes to the new action, more
precisely if we replace in it the field Uy by the new background field U,, then we
obtain all the terms of the new action with localization domains disjoint with Z.
To obtain such terms, we expand the terms of the second part around their values
at the configuration U,. These expansions are obtained from an expansion of the
configuration U} on the domain Z¢, around the configuration U,, which we describe
first.

Let us write explicitly the configuration U}, and its dependence on the variable
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fields:
Uy = Uy (V'] g, exp ige BM (UG g, V' T (1.50)

h+1
The determining set By restricted to the domain A¢, and the field V[ 4, coincide
with the corresponding determining set, and the field, for the new configuration
U,. Therefore the expansions of U are connected with changes made inside the
domain A. The first expansion is with respect to B, and we have as in (1.19)

= (expinH} (g, B)UD)* (1.51)

where UY is the configuration in (1.50) with B = 0. This configuration considered
on Z° depends weakly on the field V[ ;-2 ¢, and we try to cut off this dependence
completely. The argument of UY is equal to M (UD) = expiQ.(1A,) on Zy Q2.
We expand with respect to it, but around some special configuration. We define
it in the following way. Take the determining sets

B, =ByUB,(2;%,), B, =ByuB,((2;1,)), (1.52)

where the operation of joining two determining sets is given by (2.14) [111], and
take the corresponding functions U 8> Us,- These functions are supported in the
domains €27 ,,(2;5,)° correspondingly, and they are introduced in order to
break the configuration U} into two independent parts by the boundary conditions

at the boundary 042;7 ,. Define the configurations
Ul = UBI(V”rACa Mk(Ug)AL))rAn_Q""a 1 rz,’:m_();:: 1 )a
U2 = UBz (1 [(9;:; Jney e v [(ﬂ;;;zz)c)’

U1,2={U‘ on Dy (1.53)
U, on (237,)

In the configuration U, , the arguments are separated completely across the
boundary 0£2;7 . It seems to be singular on a neighborhood of this boundary,
but in fact it is regular, and satisfies the regularity conditions typical for an h-order
configuration on the domain (Q;, )" 2;33%. It is so, because the arguments of
the corresponding functions are equal to 1 on this domain, and the exponential
decay properties enforce the additional regularity. We construct the expansion of
Uy around the configuration U, ,. From the results of Sects. D, E [15] we obtain
~ -1

Ui =(exp iﬂHIZ(GIZJt,z’Hq,kQ-(WAo)rzanglzl)Ul 2)(uk) . (1.54)
We have written explicitly the form of the operator dependence of the function
H; on the fields J, ,, 0,(nA,). The second field is obviously localized in the domain
Z;n 82,72, and we will use this localization and the exponential decay of the
function Hy, to get exponential factors in the localization procedure. The field J ,
is not localized, but in the composition G;J; , we may localize it, because of the
properties of the kernel of the operator G;. The property important here is the
equality G; Qg = 0, see the definition (3.148) [13] and the identities (3.149)~(3.153)
[13]. The field J 1,2 Testricted to Q57 is equal to Jy, and it satisfies the criticality
condition {dA4,J,;> =0 for 64 such, that QsléA =0. This condition for A, and
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the condition for G; coincide on the domain £2;7 ,, except the boundary layer of
the width 2M ;. We use this fact to localize the considered expression. We introdtice
a function 8eC{ (€25 1)), such that 8 =1 on the union of (2,7 ;)° and the above
boundary layer, and changes from 1 to 0 near the boundary of this layer. We write
GiJy,=Gi(1-0)J; +G;0J, ,, and the second term of the sum is localized
properly. For the first term the kernel of G}(1 — 6) does not satisfy the condition
for averages on the domain where the function 1 — 6 is neither equal to 1, nor to
0. We improve this writing

Gi(1-0)=Gi(1 - 0)(1 — 0 HF )+ Gi(1 - 0)Q5 Hy, .
Of course, we have the equality
Gi(1-0)(1 — O HE 2§, =0,
hence the above condition for J, implies
Gi(1-6)(1—-0g Hy)J,=0.
Thus we have
GiJ1,=Gy(1-0)0f 0, HE J, + G;0J 5, (1.55)

where the function 6, is equal to 1 on the domain where 6 #0, 1, and changes
from 1 to 0 on a neighborhood of this domain. The expression on the right-hand
side above has a good localization property, which yields the required exponential
factors. The two formulas (1.51), (1.54) give the expansion of Uy around the
configuration U, ,. This configuration restricted to Z°¢ is equal to U,. Next, we
expand U, around the configuration

U, a= UV'T 4, V). (1.56)

The field V' is in the axial gauge in A, hence it is small inside A, and averages
of U, 4 are also small there. More precisely the condition (1.84) [1V] is satisfied
for it. This allows us to write

U= UBI(V”I—/P’M’((UI(,A)I_AAQZ’(M.(Uk,A))_IM‘(Uk,A)I—Z‘:)

-1
Uy

1
=(exmnHBl(—;logM’(Uk,A)FZ;f)U,“A) ) (1.57)

The field in the argument of the function Hy has again a right localization, and
the function is decaying exponentially off the domain Zj. Finally, we obtain an
expansion around U, introducing the field V} into the argument of the function
U, 1 We have
=1
A

B ) . 1 , U,
Ui a= UV 4, Vi ‘VkV‘A“)=(expmHk<—;longh)Uk> - (158)

The sequence of the four formulas (1.51), (1.54), (1.57), and (1.58) yields the required
expansion of the configuration Uy around U,.

Now we apply the above expansions to terms of the second part of the effective
action. We repeat all the considerations and constructions of Sect. 3, [111], and
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Sects. 3—6 [1] so we will be very brief here, and we will mention only basic issues.
Consider a term EY(X, Uy, z) with X < Z¢, and let zeQ,\, , , for n = j. As in Sect.
3 we take the cube []en, containing the point z, and we consider the case X < [1™2.
Using a somewhat simplified version of the transformation (3.3), (3.18), (3.19) [1]
we write

EV(X, Ug,2) = EV(X, U}, 2) + [EV(X, U (B,(To), exp iQ.(nH; (g, B)) M " (U})), 2)
_EU)(X’ UJ(BJ(DO)’M(U’?))’Z)]’ (159)

where [J, =[] (the operation ~ is defined here in terms of M-cubes of the
L™"lattice). To the expression in the square bracket above we apply all the
transformations and estimates of Sects. 3—5 [1] (with # replaced by L™"). We obtain
a sum of expressions with good bounds, depending analytically on Hjy(g,B)
restricted to the cube [],. The field B is localized in A, and we try to decouple it
from the cube [],, and also we try to decouple components of Z. More precisely,
we apply the expansion (6-9) [I] to the above expressions, the expansion with o
defined as the set of cubes A disjoint with [], and A”. We write this expansion in
the form (6.10) [I], where the summation is over domains Y,eD, containing [,
and at least one of the components of A™. The other terms in the expansion vanish,
because of the localization of the field B. The nonvanishing terms in the expansion
can be estimated as in (6.24)—(6.29) [I], in fact the bounds are even simpler and
better in this case, because on the domains with nonzero parameters s the field B
is equal to 0. Terms RY(X, Uy) are considered in the same way. For the terms
with localization domains X not contained in [1°2, and for the boundary terms
in the second group, we write the following simpler identity

EV(X, Uy, z) = E9(X, U}, 2) + [EV(X, exp inHj (9, BUY, 2) — EV(X, U, 2)],
(1.60)

and we repeat all the above described operations for the expression in the square
bracket. As a result of the final localization expansion we get a sum of terms with
the above described localization domains Y. For a fixed domain Y, we resum all
the expressions constructed above, and having Y, as the final localization domain.
This resummation is almost exactly the same as the one discussed in Sect. 6 [1],
it is controlled by the renormalization procedure for E-terms, the renormalization
and the bounds (2.31) [1II] for R-terms, and the bounds (2.42) [1II] for B-terms.
In effect, for a given Y,, we obtain a term which is small, and satisfies the exponential
bound (2.42) [11I] in d,(Y,). We consider all these terms as boundary terms
connected with corresponding components of Z, and we will consider them later,
together with other terms of the first part of the effective action in (1.49). Let us
notice only that the above expressions are analytic functions of UY on Y, and the
analyticity domain is restricted on the cube [],, or on the domain X, by the
analyticity properties of the original term. Outside the cube [],, or the domain
X, this analyticity domain is quite large, restricted only by the analyticity properties
of the function Hy, . The bounds mentioned above are satisfied for these analytically
extended expressions.

Next, we consider the first terms on the right-hand side of the equalities (1.59),
(1.60). We apply again the same equalities to them, but using the representation
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(1.54). Then we repeat all the other operations described above, in particular the
localization expansions, which give the second set of expressions localized in the
domains Y,, but depending analytically on the background field U, ,. The first
terms on the right-hand sides of the equalities depend on the field U,, and we
repeat again the procedure using the representation (1.57), and then once more
using the representation (1.58). After the last operation we obtain again the original
terms on the right-hand sides of the last set of equalities, but taken at the
background field U,. These are the desired terms we need to reconstruct the new
action, in fact we get almost the whole new action, except the terms with localization
domains intersecting the domain Z, and the new terms of R®, which will be
obtained by the R-operation.

Now we consider terms of the first part of the effective action in (1.49), except
the first two terms, and all the above constructed new terms with the localization
domains Y,. The first operation is exactly the same as in the previous case, i.c.,
we apply either the equality (1.59), or (1.60), and the localization operation is
determined by the set o, of cubes A disjoint with [],, or X, and with A~. We
obtain some new terms, and all the terms depend on the background field UY. Let
us take one term in the above sum. It has a localization domain X intersecting Z.
We assume that Uy is the background field for this term, and we denote it by
E(X, U?), although it may be any term in the sum. Take the smallest localization
domain Y,eD, containing X, and containing these components of Z, which
intersect X. For the domain Y, we take the determining set B/ (Y;)=B(Y;)UBy,
and the representation

UR=U(B{(Y,), M (UR)) = UB(Yy), (u) =" expiQ.(H)R(() )M (U ) 405y,
v rA“mY‘{» M.(UE)AL))[AH.(ZZZZIAYI’ v’ r(n;,’?l)‘nyl))- (1.161)

Here Y9 is the domain on which the determining sets B;(Y,) and B} coincide,
hence Y,;\Y{ is a boundary layer at the boundary §Y,, of the width 2M, at most,
for the corresponding scale. Notice that we have to keep the gauge transformation
u? in the above configuration. We cannot remove it, because we use the two
different representations for fields at the boundary of the boundary layer. We use
the fact that u?(x) is an analytic function of Hy restricted to this block of the set
B, to which the point x belongs. This function is given by the explicit formula
(106) [12]. We substitute the representation (1.61) into the function E(X, UY). We
apply the localization operation to the function Hy, with the set &, of cubes A
disjoint with A, and we represent this expansion in the form of the expansion (6.10)
[I], where the summation is over domains Y’ such that each component of Y/
belongs to D,, contains at least one component of A, and intersects the boundary
layer Y;\Y?. A term in this expansion depends on the background field U, ,
restricted to Y, = Y, U Y5. Consider the configuration U, given by (1.53). For the
domain Y, we take the determining set B, (Y,) = B(Y,) UB,, and the representation
U, =UB,(Y,), M (U,))=U(B,(Y,),(u;. L exp iQ‘(’THBI)R(u1,+ )M (U, A)[(YO)%YZ,

2

V' pery, MU 40 U o s (1.62)

where we have used the expansion (1.57). The same remarks apply to this
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representation, as to (1.61), in particular Y9 is the domain on which the determining
sets B, (Y,) and B, coincide. The function

1 .
H, — Hm( ~logM (Uk,A)fz’k')

is small on the boundary layer, and it depends analytically on the field U, ,. We
substitute the function on the right-hand side of (1.62) into the considered term of
the expansion. For the obtained expression we construct again the localization
expansion for the function Hy, with the set 6, of cubes A disjoint with A, and we
resum it and write it in the form of the expansion (6.10) [I]. The summation is
over domains Y’ such that each component belongs to D,, contains a component
of A, and intersects Y,\Y9. A term of this expansion depends on the field U,_,
restricted to Y;=Y,u Y%, which depends still nonlocally on the gauge field
variables V. We repeat once more the above construction for the field U, 4. It
is given by (1.56), and we take the determining set B,(Y;) =B(Y;)UB,, and the
representation

Uk. A= U(Bk(st)’ M.(Uk,A))

= U(By(Y3), ((uy, 4)~ ' exp iQ-(ﬂHk)R((“k,A)+ )M (U 95 vy V”‘—A(m}’_f Ve,
(1.63)

where we have used the expansion (1.58). Here the function H, is given by

1 1
H, = Hk< -;10g VUA) = Hk< - ?108 Vk(V‘X")‘IFA) (1.64)

We substitute the representation (1.63) into the term of the last expansion,
corresponding to the domain Y5, and we construct the localization expansion for
the function H,, determined by the set G, of cubes 4 disjoint with A. We resum
it and we get the expansion (6.10) [1], with the summation over domains Y}, such
that each component belongs to D,, contains a component of A, and intersects
the domain Y5\ Y9. A term of this expansion depends on the background field U,
restricted to Y, = Yy u Y7, This is the final localization, because all other functions
in the constructed expressions depend on the new gauge field variables, or on the
background field U,, restricted to this domain. Combining all the expansions we
represent the term E(X,UP) as a sum of terms, the summation over domains
Y, Y5, Y, satisfying all the conditions described above; the term corresponding
to the given domains depends on the background field U, restricted to the domain
Y,=Y,uY,uY,uY,. The dependence is analytic. Now we should resum all
terms having the same localization domain, but at first we have to discuss more
carefully the analyticity properties, and bounds for terms of the above expansion.

Let us start with the analyticity properties. We express a term in the above
expansion as a function of the variables (U, J). We introduce these variables in the
usual way into the localized function H, in (1.63), hence into u, ,. We replace
M'(U, ), V" by the corresponding M'(U), and V@ by the function VP (M*(U)).
Such an extended function on the right-hand side of (1.63) is an analytic function
of (U,J) with a large domain of analyticity. The function H,(s(Y})) on (Y9N Y,
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is also very small, because of the localization of the argument, and the exponential
decay, hence the regularity properties of the configuration (1.63) are almost the
same, as the regularity properties of U(B,(Y3),(M (U)[ 4, VP (M*(U)))), which,
considered on the domain (A~), are almost the same as these properties for the
configuration U(B,(Y;3), M (U)). We substitute the extended function (1.63) into
the function of the right-hand side of (1.62), in the place of the field U, ,, and into
H; as the background field and in the argument of this function. The remaining
ﬁelds in (1.62) are replaced by functions of U in the usual way. The function Hy

is very small on Y,\ Y9, again by the exponential decay and the localization of
its argument. Hence the regularity properties of (1.62) are almost the same as
these properties of U(B;(Y,), (M (Ug )l (y95v,» M (U) ey, MO (UEP(U)) 40
Hrnay;,)), which, on (A7), are almost the same as of the configuration
U(B,(Y,), M (U)). We substitute the extended function (1.62) into (1.61), and we
introduce the variables (U, J) into other expressions in the usual way. We obtain
the final function of (U, J), for which the regularity properties on the domain (A~
are almost the same as for the configuration U(B;(Y,), M (U)). On the domain A~
the regularity properties are similar to the properties of the configuration Uj. A
precise description of the regularity properties is given by the following statement:

the extended function U} described above is an analytic function of the variables
(U,J) in the space Ug(Yy,d,,d,), with values in the space U;“(Y,,4d,,4,), i.c.,

(U, NeU5(Ya,80,8,) = UL(U,De Ui (Y, 8, ,). (1.65)

Let us recall that the last space above, the space of values for the function U, is
the space defined by (1.64)—(1.69) [I1V] for n = N. The above statement has been
proved already, in a slightly less general form, in the proof of the equality (1.89)
[1V]. The arguments needed for the proof of (1.65) are almost exactly the same as
there; in many places it is enough to replace ¢; by o, ;, or to make similar simple
changes, therefore we do not repeat them here. Let us explain only that the statement
(1.65), similar to the equality (1.89) [IV], is one of the basic points of our
construction, and the preliminary integrations of the previous section were done
in order to create a smaller space of values of the function (1.65). In particular,
the space U”“(Y],o?o,o?l) is contained in the analyticity domain of the term E(X)
we consider, hence in the analyticity domains of all terms in the obtained effective
action. It is clear for terms of By, by the inductive assumptions formulated in the
previous section (see the inequality (1.70) [IV] and the assumptions connected
with it). It is also clear for all new terms created by the previous localization
operations. Finally, it is simple to see for all the old terms, because they are
connected with the old determining set, for which the regularity conditions on the
crucial domain £} ,,\ €, .+, are weaker than the regularity conditions for the
new determining set. This implies the basic fact that the function E(X, U}) is an
analytic function of the variables (U, J) on the space US(Y,, &, ;).

Let us consider now bounds for the terms of the obtained expansion. We discuss
here only exponential factors, the other factors, like the powers of L/y or oy,
coming from the renormalization procedure, were discussed thoroughly before.
The exponential factors are important here, because they control the resummations



376 T. Balaban

we have to do, and they give an exponential factor for the final resummed terms.
The inductive assumption yields the factor

exp (—xd (X)) < exp(— frd; (X)) exp(— (1 — B)x(L/n) " d,(Y,))
= exp(— Brd;(X))exp(— (1 + 3B)rdi(Yo)) for j<Kk,

where Y, is the smallest domain {rom D, containing X, and exp(— (1 + 4f)xd,(X))
for j =k, from the improved bounds after the k'™ renormalization transformation
T. Every localization operation above yields, after the resummations connected
with a fixed domain Y},i= 2, 3,4, the factor exp(— (k;, — )M | Y}]). If Y,u Y50U
Yy # (J, then the exponential decay of the functions Hy, Hy , H, and H(B;(Y),")
yields the additional factor exp(— dd((Y9) nY, N Y}, X)), where i is the first index
with a nonempty domain Y, and d(,") is the scaled distance, see the definition
(2.36) [11]. Thus we obtain the follwing exponential factor for the term in the
expansion, corresponding to domains Y, Y5, Y/, with a nonempty union:

eXp<—/3Kd,(X)—(1 £330y (Yo)—d(YOF A Y, A Y X)— 3 o6y — DM Y;-1>,
i=2
(1.66)

where i, is the index of the first nonempty domain Y;. We have the equality
4

Y \Z =(Yo\2)u U (Y;\ Z); therefore the above exponential provides a complete

i=2
exponential factor for the domain Y,\Z. The domains Y} connect Y;\Z with A,
and the third term in the exponential yields a connection of X with Y; . Therefore
we also have exponential factors connecting different components of Y,\Z.
Introduce the following definition of the relative linear size d, ,(Y) of a domain
YeD,:
d, ,(Y)=M " (the length of a shortest tree graph contained in Y
and intersecting all M-cubes of the components of Y\ Z). (1.67)

The above considerations imply that we can extract the factor exp(— (1 + 3f)
Kkd, ,(Y,)) from the exponential (1.66), and the following exponential remains:

4
exp( — Bred;(X) = 30d((YOF N ¥, 0 Vi, X) = 3 30, — )M ™| Y:-|>.

i=2
This we use now to control the resummations. We fix the domain Y = Y,, and we
resum at first over all the admissible domains Y;. Then, for a particular type of
terms, we sum over all admissible localization domains X. For E-terms and R-terms
this includes renormalization in the form described in the proof of Theorem 2 in
Sect. 2 [III]. We sum also over j. For the boundary terms we have just the
summations over X and j. Finally, we sum over different types of terms. All the
above summations were discussed in Sects. 6,7 [1], and in Sects. 2, 3 [TIT]. Consider
now the exceptional terms, for which all the domains Y; are empty. Then there
are only the first two terms in the exponential (1.66), Y, = Y, = Yand Y,\Z = Y, \ Z.
If the last domain is nonempty, then d,(Y,) = 4d, ,(Y,)=d, ,(Y), and we can still
resum over all terms with domains X such that Y\ Z is fixed and equal to Y\ Z.
The sum is bounded by a constant times the same exponential factor as before.
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The sum of the remaining exceptional terms, and the sum of terms with the new
localization domains equal to a component of Z, satisfies a much worse bound,
similar to the bound (2.48) [III] for the sum of the boundary terms. This sum is
localized in a component of Z. We make the last resummation, we sum all the
terms with localization domains contained in a component of Z ™. For the remaining
terms we use a part of the exponential factor to get a small constant in the bound.
Thus, after all these resummations we obtain a sum of expressions, the summation
is over domains YeD, satisfying the property that the intersection YNZ™ is a
union of components of Z~, containing at least one component. The expression
corresponding to such a domain Y depends on the new background field U,
restricted to Y, and also on the fields A4, B, V" localized in Y. We denote this
expression by V(Y,U,). It has an analytic extension V(Y,(U,J)) defined on the
space US(Y,d,,d,), and satisfying the bounds:

VY, (U, 3)| = aexp(— (1 + 2f)wd, 4(Y)) (1.68)

for Y\Z~ # ¢, with a constant o, which can be chosen arbitrarily small for y small

enough, and
k

V(Y,(U,J)I<0(1) Y [T9nY], (1.69)
=1
if Y is a component of Z~. Here {I"}} denotes the old determining set, obtained
after the last renormalization transformation, with which we have started the
analysis in Sect. [IV].

We have reconstructed almost the whole new action connected with the new
determining set B,, except the terms with localization domains intersecting Z, and,
of course, except new R®-terms. Now we add all the missing terms with localization
domains intersecting the domain Z, more exactly we add these terms to complete
the effective action, and we subtract them from the remaining expression. They
may be resummed in domains Y described above, and the obtained expressions
satisfy the bounds (1.68), (1.69). We subtract them from the corresponding terms
V(Y), and we obtain new terms satisfying these bounds. For simplicity we denote
them by V(Y) also. After the addition of the above described terms we obtain a
new action, which contains all the necessary E-terms, and all the R-terms and
boundary terms connected with the first k— 1 operations RT. It contains
also some R-terms and boundary terms connected with the k™ renormalization
transformation T, but these will be completed yet. Denote this action by A;. The
result of aH the preceding operations can be written as the equality:

1
1.1) = yu 7k a0 O(V’)}gepr’<A—,U>
(1.1) = a7k 4%6 (Vi k (gk(.))z k
“Xn,172 j dBo (g, B)or,(B)) eXpl: —3{DHY, ,B,(DH ; ,B)
1 ( . ”
—A<T'7C1’ ;:+z(explngsV))*ZV(Y,UR,B)
(9:() Y

+ EZ) + (= 3d(g)log gy * +1og o) [Bo\ To| — Ek(A):]’ (1.70)
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where E,(Z) denotes the sum of normalization terms and vacuum energy terms
with localizations intersecting the large field domain Z.

Now we try to remove the characteristic functions y, ,x. We introduce the
decompositions of unity

T=0(Q74)) + 2x((€25%))

in components of Z. The components with the second, large field function are
included again into the large field domain of the new action, except that we will
transform further the integral expression in (1.70), and we will write it in a more
convenient from. For the components with the first, small field function we can
remove the characteristic functions y, ,x, because they are equal to 1. This is clear
for y. 4 The restrictions introduced by yx, imply that |0V, — 1| < 2¢, on the
corresponding components of Z, and the bound (1.78) [IV] for the function V.
These bounds and the axial gauge conditions for ¥ = V,(V,) ! imply the bound
(1.83) [1V] for V4, ie., |V — 1| < O(1)BsM®¢,, by the same reasoning as in the
proof of Lemma 1 [14] (even a simpler one). The number M, in the definition
(1.101) [IV] is not fixed yet; we choose it as equal to the above bound, ie.,
M= O(1)Bs M®. This implies that the characteristic function y is also equal to 1.
Thus, the components of Z are divided into two classes. For components of the
first class, denoted by {X,...,X,}, there are only the characteristic functions
7(X77°), which are combined with the function y,(€2;%), here £, is the old k™
domain. These functions are gauge invariant, and the effective action is gauge
invariant; therefore we can remove the gauge fixing o-functions O6,nx, (Vi) by a
reversed Faddeev—Popov procedure. This is possible only if we integrate the density
with respect to the gauge field variables V,, at least on the components X;. Thus,
the density without the d-functions connected with these components is equivalent,
but not equal, to the density with these functions, the equivalence understood in
the same sense as for the formula (1.99) [1V]. For the components of the second
class, denoted by {Y,...,Y,}, we have the large field characteristic functions
2(Y7™®), and the previous functions y, 4 x; together with the d-functions d4 (V5),
where A, = ANY,, G,=GynY,. The above operations, i.e., the introduction of the
decompositions of unity, and the removal of the J-functions leading to the
equivalence relation, are the last operations defining the complete R-operation.
To write its final form, we introduce a new T-operation. It is defined for a component
of Z by a composition of the integration in (1.70) localized in this component, and
the integration together with the T,-operation in (1.100) [1V], also localized in
this component. We use the fact that these integrations factorize in components
of Z. We denote the component by X, it may be any component of the first, or
of the second class, and we define

LY [dBlyol0uB) (B (X)

= 5d
24d! {QInX,Z;nX),r

'_fdVh‘_(QZ:Zl)‘nXXh,l/Z((‘QZ:- DN X)TW(Z,n X)

T(X)

'exp[*%<DH’{,k.xB,CDH'{,k,xB>
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1 " b " ~
— Al =30 x Use2(expigi B, V") | + VX7, Uy)
(9:())

+ Ey(X) + (—2d(g)log g, ? +logao)l(Bo\To)ﬁX|—Ek(AﬁX)]. (1.71)

Here T=T,n X, and rT denotes the usual axial gauge tree graph, described in
the previous section, but constructed for the coordinate system obtained by
applying the Euclidean transformation r to the original coordinate system. As it
was mentioned in connection with the definition (1.100) [IV], we take only the 2¢
reflections for subsets of coordinates, and the d! permutations of the coordinates.
All the expressions in the above integral operation are localized in the domain X.
With the help of these operations we define the R-operation:

Rp)(Vi) = Z Z Xk((Qk N(Y) 2N (Y5) )

,,,,,

(1
(mzz Tz *))e"p”’“<(gk(-))2’”“>

) 1-_11 (Y7 W a1i06, (Vi) Ti(Y2)

{ Y Z ]—[ T,(X;)exp ), V(Y, Uk)}, (1.72)
nz0{Xq,. Y

where £, is the new k"™ domain deﬁned by the determining set of the configuration
U,. Notice that the terms V(Y, U,) depend on the sequence {9, Z;} restricted to
the components of Z contained in Y, and that the sum in the definition (1.71) acts
also on the last exponential in (1.72). The sum in the last exponential does not
include terms with localization domains equal to one of the components of Z~;
these terms are included into the operations T.

In order to proceed with further operations, we have to find bounds for the
operation T,(X). We consider the analytically extended expressions. In the
definition (1.71) only the quadratic form in B and the term V(X") depend on
(U,J). We expand them up to the first order in A’,J, the first order terms
are already small. This is clear for the expansion of the quadratic form, for
which the first order term can be bounded by O(1)B3 A3 p3(g,)1Bol(0g s + 21 4) <
O(1)B2 A7 CoyMRE* 2 p3(94)q0(9x)gr» and this bound is small. The expression V(X7)
is a sum of a big number of terms, mainly boundary terms from all the
renormalization steps, depending on the configuration (1.61)—(1.63) localized in
X~. For all these terms the expansion in A’,J creates a connection between their
localization domains and the set Bou (/' X"), a connection with a proper
exponential decay. This allows us to resum all these terms, in the way discussed
in connection with the other terms V(Y). The resummed expression has the same
bound as above, with a different constant O(1). Thus the operation T, (X) can be
represented as the operation for a regular G-valued configuration U, with the
additional small, and possible complex valued, term in the exponential. All the
expressions in the definition (1.71), for the configuration U, are real, and the
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exponential density in the integral is positive. This implies the inequalities

ITu(X, (U, ) F| =Ty (X, (U,0)e’ F|

STUX, (U, 0)[e”F| < (Ti(X, (U, 0)1)sup | F|,  (1.73)
ITe(X, (U, 1] =T(X, (U, 0))e’|

= Ti(X,(U,0))e " = (Ti(X, (U, 0)) e ****", (1.74)

where o is the small term of the first order in A’,J, and F is a function of the
integration variables in the integral (1.71). The expression T, (X, (U, 0))1 is obviously
positive, although it may be very small, hence T,(X,(U,J))1 #0, and from the
above inequalities we obtain

I(T(X, (U, N7 TH(X, (U, J)F| < e™""'sup | F). (1.75)

From the inequality (1.73) it is clear that we have to find a bound of T} (X, (U, 0))1,
which we denote for simplicity by T, (X)1. At first we bound all the expressions in
the exponential, except the Wilson action and the quadratic forms. The expression
V(X") is bounded in (1.69). Similar bounds hold for vacuum energy counterterms
and normalization constants, except that for the last we have the corresponding
constant O(logg;” 2) instead of O(1). In effect we get a bound, to which every large field
domain Z; contributes the constant O(1)logg; *|Z;| < O(1)logg; 2(MRJ-)“d’j(Zj) <
O(1)M*R{* ' d(Z;), where d is the linear size defined in terms of MR -cubes instead
of M-cubes. Next, we bound the Wilson action and the quadratic forms, or rather
the corresponding Gaussian integrals. We have to obtain all small factors connected
with large fields. Here the situation is almost exactly the same as in [16], so we
summarize the results, and we discuss only some new issues. Consider large field
characteristic functions introduced in the /" step. There is the function y;(P;), which
yields the factor

1 _ _
exp(— Vo*z’gj(Bs '¢;)2(LM,R)) dIPj|>
J

in the usual way, using Theorem 1 [15] and (71) [16]. Here the volume is for the
L™ J-scale, and 7y, is an absolute positive constant (in this factor we may take
7o = 1/2). The function x}(Q;) yields the factor

1 _

exP( - %Voé‘;(zéj)z(LMz Rj) ZIQ,"),
J

by expanding the Wilson action locally in the approximate fluctuation field, and

using the positivity bound for the resulting quadratic form. The characteristic

function xY~1¢(R;) yields the factor

1 _
exXp ( - Vo*zéf(LMz Rj) lej]>,
9g;
by the same positivity bound for the quadratic form. Take the cover of the large
field region P;uQ;UR; by MRj-cubes, ie., the smallest domain containing this
region, which is a union of MR;-cubes. This domain is a union of components

denoted by Z{, hence it is equal to | J;Z{". For each component the above large
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field factors yield an exponential factor, which can be estimated by
exp (—yomin {3B3 2 45,241, A} p3(9,)(d{(ZP) + 1))
< exp(— 1704139 )d(Z) + 1) — 2polg;)).

These are the fundamental large field factors, which control convergence of the
expansion of the effective densities. The above large field domain has also the
following important property:

z,c oz (1.76)

Besides the above large field factors there are also the factors arising in the
preparatory steps to the R-operation, and described in Sect. 1 [IV]. These factors
are connected with components of a large field region Z;, which satisfies the
conditions (i), (ii) at the beginning of Sect. 1 [IV]. Thus, if one of the functions
1 — 4 is introduced in such a component, we get a factor

11 1
R > Sl R
exp( 4ngnB;‘ 2:3,,,)

for some m satisfying j — N <m <j. It can be bounded by

exp(—§B3 (1 + Bo) 2 A3pi(g;) < exp(— ATp5(9;))-
The function 1 — y,,, where y,, is given by (1.27) [1V], yields the factor

| -
eXp < - 3’0?(25m)2> <exp(— 7041+ Bo) ZA%p%(gj)) Sexp(— VOA%P%(QJ'»
The second function in the decomposition (1.28) [1V] yields the same final factor.
The function 1 —y; 4 yields the factor

11
eXp(- ;15};(0(1)331‘42)'16?> <exp(—Aips(g;),
as it was proved in Sect. 1 [I1V] after the definition (1.75) [IV]. Finally, consider
the function 1 — ', where y' is given by (1.82) [IV]. Now the situation is much
more complicated, and to get a small factor we have to consider two cases. The
restrictions introduced by the function 1 — ¥’ mean that at least one bond variable
B'(b), beB,, satisfies the inequality | B'(b)| = &), where j is the index of the considered
large field region satisfying (i), (ii). In the first case we assume that b = 2,73\ Q; . |,
so it is a bond belonging to the last domain P, \ P,, in which the axial gauge was
fixed, the gauge defined in Sect. 1 [TV] before the definition (1.82) [TV]. In this
case we will get a small factor using the Wilson action. Assume that the plaquette
variables of V” on this domain are small, i.e, | V"(8p') — 1| < efor p' = 2, A\ 2}, 1,
and transform the field V" into a field satisfying the axial gauge conditions. The
gauge transformation v is determined by ¥, only, because V' satisfies the conditions,
and is given by v(x) = V(I', ), where the contour I, , was defined in Sect. 1 [IV].
We obtain the field V, = V"* =v_V'V,v] ', which satisfies the regularity condition
above, and the axial gauge conditions. By elementary reasoning, the same as in
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the proof of Lemma 1 [14], we obtain the estimate
|V,(b)— 1] < 6(100MR;_y . ,)*c < 6(100M(L + 1)N*°R )%,

where we have taken into account that £2;¢ , satisfies the condition (i). The esti-
n~2

mate holds for b < £2;5\2},, and on this domain the field V, is given by
Vo=expiQ;_y(L7/A,), where A, satisfies (1.87) [IV]. This implies the estimate

[Vo(b) — 1] = 10;_ (L 7A¢)| < O(1)B3Bs ML~ Ve,
hence

[o(x) = 1] = | Vo(I,.) — 1] < (d + 1)100MR,_ ., O(1)BZBs ML~ Vg,
<O()BB;MTR,N®L Vg,

From the above estimates we obtain

A .
|V'(b)— 1] < 6(100M(L + 1)R} +h0)2 + O(I)A—?B§B5M7R} +ﬂo%’%y~5;.
J

By our assumptions on N the number multiplying 6} is small, e.g., it is smaller
than 1/4, hence we have |B'(b)| < 12Rfe + 1/26. If we take ¢ =(24R}) ™9, then
|B'(b)| < ¢;. This implies that at least one plaquette variable has to satisfy the
opposite inequality, ie., [V"(0p')— 1| = (24R%)™'5; for some p' < ;73\ 2}, ;.
Then the Wilson action yields the factor

oxp o3 Q4RE) 207 ) mexp (— 4348 2R} 11, Sexp(— R} *pi(0)
Consider now the second case, i.e., we assume that |B'[ <¢; on Q;2\8027 ., but
|B'(b)| = 6} for a bond bef2; ., nB,. To get a small factor in this case, we use the
quadratic form in the expansion (1.20). We make all the previous transformations
of the Wilson action localized by the function {, with the only difference that we
take now the function {; changing from 1 to O in the neighborhood of 00Q}7 ,,
instead of the neighborhood of 002}, ,. We estimate the terms in the expansions
in the same way as before. Although we get a worse bound this time, because of
the worse bound for the field B, the bound is still a small constant. The remaining
quadratic form (1.21) is treated in a similar way as the form in (1.7). For the field
U, inside U9, we change the gauge again, we fix the axial gauge for M*U,) on
a neighborhood of Z, and then the Landau gauge for U, on such a neighborhood.
We obtain (1.83)—(1.87) [1V] with k replaced by j, and with an additional factor
R; on the right-hand sides. Next, we fix the Landau gauge for U9, on ZnQ}73,
and we get a representation corresponding to (1.87) [IV]. We expand the quadratic
form up to the first order with respect to the corresponding field A,. The first
order term can be estimated by

| B ||20(1)BngM6Rj5j < Afpf(gj)N(IOOMN/"’Rj)dO(I)BgBs MGRjAoPo(gj)gr

The leading term in the expansion is the quadratic form (1.21) with the minimizer
calculated at the external gauge field equal to 1. Using the local version of the
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bound (1.7) we can bound this quadratic form from below by

vo 2 1@B)(p)*.

/ e
P eBoni2y 4

Thus we obtain the inequality

(DHY ;;B,(DH} ;;B>>7v, ), |@B)(p)

p'eBon ;)
_O(l)AOA%BgBSMd+6R?+3pO(gj)p%(gj)gj~ (1.77)

We assume that g; is sufficiently small, so that the constant on the right-hand side
above is small, or O(1). For the quadratic form on the right-hand side we have an
inequality similar to (1.8), but now we need a simpler inequality. We have to bound
one bond variable | B(b)|*> by the quadratic form. By the same remark as in the
case of the inequality (1.8), we get

|B(b)|* < 6(d + 3)(100M(L + )N°R)**2 Y |(@B)(p)|*, (1.78)
p'eByn 2y
for a bond beB,n €2} . We take the bond b, for which [B(b)| = g; ' 6;= 4, p,(9;),
and the inequalities (1.77), (1.78) yield the following large field factor:

exp (—37[6(d + 3)(100M(L + NP R))** 171 A2, (g;)) < exp(— R;* " pi(g;)).

This is the largest factor among all the small factors we have obtained from the
large field characteristic functions in the preparatory steps. We assume that
2p; —(d + 5)ry > py, and we estimate the factors by exp(— py(g;)).

All the integrals with respect to the group valued variables in the definition
(1.71) are estimated by 1. Similar to the integral with respect to B, we have to
include only the constant with the logarithms in the last line into the integration
measure, and we estimate the quadratic form in B from below by 0. The integrals
with respect to the fields 4; in (2.21) [III], or (1.25) [IV], are estimated using the
positivity properties of the quadratic forms, and we get the factors exp O(1)| Z;n 2],
where the volume is for the corresponding scale. Finally, the summations over the
admissible sequences can be replaced by the factors exp O(1)(MR ;)™ 4| Z;|.

Let us summarize now the results of the above estimates. We have obtained
the following inequality:

k
T,(X)1 < sup exp{ .Zl O(1)M*R}* 1d}(Zj)}
=

k
: Ul [Texp (=370 AT P5(g)d{(ZP) + 1) = 2po(g)) [ ] exp (= po(g;)),
(1.79)

where the last product is over components of Z; satisfying the conditions (i), (i),
for which some large fields are created during the preparatory steps. The supremum
is taken over all admissible domains, satisfying all the conditions described in the
previous sections, in particular the conditions (1.76). Notice that the above
inequality holds for all large field regions, not only for the regions satisfying the
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conditions (i), (ii). For the last regions we will prove that the expression on the
right-hand side can be estimated by exp(— 2p,(g,)). For general regions we will
prove the inductive statement below. The expression on the right-hand side of
(1.79) is a product of factors coming from the successive renormalization steps.
The product of factors coming from the first j steps is connected with the region
Z;, and can be factorized in components of Z;. If Z is a component of Z;, and
j(Z) is the index of a first large field region contained in Z, then we write the factor
connected with Z in the form exp(—«;(Z)—2py(gjz)). The basic inductive
statement concerns these factors, or the numbers k;(Z). To formulate it, we
introduce an operation S, naturally connected with our procedure. If Z is a union
of MR;-cubes of the lattice Ty, ¢ = L™/, then we take the cover Z’ of Z by a smallest
union of LMR;, ;-cubes, and we add ten layers of such cubes. We denote the
obtained domain by S(Z), ie., S(Z) = Z'"'°. Such a domain arises as a new large
field region in our procedure, if no large fields are created in a neighborhood of
Z, more precisely in S(Z)\Z. The operation S may be iterated. Next, notice that
the expression in the first exponential in (1.79) has a universal character, it can be
written for an arbitrary sequence of domains, in particular for the sequence arising
by applying the operation S many times to a given domain Z. We use this remark
formulating the following statement:

The factor exp(— k;(Z)) controls K renormalization steps, under the assumption
that no large fields are created in these steps, where the number K is the smallest
positive integer having the property that the domain S¥(Z), considered as a
domain in the lattice of the scale L~Y*®) satisfies the conditions (i), (ii), with
N = R;. More precisely this means that

J+K
ki(Z)= Y OMMRI 1 d(S"I(Z)). (1.80)

n=j+1
We prove this statement by an induction with respect to j. At first we estimate the
sum on the right-hand side above. Consider the domain S" /(Z). The domain Z
is a union of MR;-cubes (], Z = U [, and by the definition of the operation S

ez

we have $"79(Z)= [ $"7/(0J). It is easy to see that $”7/([7) is a cube, which is

dcZ
a union of LJ_;MR,-cubes, where

The MR, -cube in the center of S" J([]) contains []. Denote by Z" ¥ the cover
of Z by MR, -cubes in the corresponding scale (i.e., by L" MR, -cubesin L ~/-scale).
Thus $"/(Z)= ) [35°', and this implies
DOCZM*H
d,(8"(Z)) < (631(MR,) | 2| < (63)'3- 24" (20 )
if the linear size on the right-hand side is different from 0, or d,(S" /(Z)) < (64)* if
it is equal to 0. From the scaling property (6.31) [1] we obtain

d;(Z(H’/)) é L’1/2(n7j)d}(Z) § Zﬁ(nij)d}(z)
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for n —j > 1. The square root appears here, because for some steps we do not gain
the scaling factor L™! (then R,,, ; = LR,,). Consider now the sum in (1.80). Let n,
be the last index n such that d,(Z"~9) > 0. Then S"*!J(Z) is contained in a cube
of the size 64MR, , ;, hence it satisfies the condition (i), and doing at most R;
further steps we obtain a domain satisfying both conditions (i), (ii). Thus
K <ny—j+R;, and we have

jtK

Y. O(MMIR} ', (S"(2))

n=j+1

< Y O()MIRI (1262 dy(Z)

n=j+1

no+R;
+ Y O()MURH(64) < 0(1)3(126)' ML 'R{ ™ dy(2)

n=ng+1
+ O(1)(64)* ML 'R < O(1)(64)' ML ' RYT2(d)(2) + 1). (1.81)
Now we prove the statement for j= 1. Take a component Z of the region Z,. It

is determined by some of the large field regions Z{?, in the sense that the property
(1.76) is satisfied, i.e., Z = ( J(ZQ) 2. Then d}(Z) < Zd;((Z‘f’)”), and

di((Z9)?) = 79327 1y (Z) + 29) < 2(14)(dy (Z29) + 3).
This implies
di(2) + 1 =2(14) Y (d\ (Z) + 1),

and

[Texp (=370 A41p3(g )@ (ZD) + 1)) S exp(—§70(14) 42 p3(g,)(d1 (Z) + 1))

From the definition of x(Z) we get the following bound:
K1(Z) Z 570(14) AT p3(g,)(d1 (Z2) + 1) — O()MRT" 1 d' (2). (1.82)

Thus, by the estimate (1.81), the statement holds for j = 1, i.e., the inequality (1.80)
holds for j =1, if

#70(14)7A1p3(g1) = O(12(64)' M L ' RY*2.

This condition is satisfied for p, large, and ¢, sufficiently small. Assume that the
statement is true for some j, and take a component Z of Z,, ;. We consider two
cases. In the first case no large fields were introduced in the last step, hence
Z =8(Z,), where Z is a component of Z;, and from the definition of x;, ,(Z) we
have

K41(2) = K(Zo) — O)MIRE L (2), (1.83)

The equality Z = S(Z,)), and the inequality (1.80) holding for j and Z,, imply that
this inequality holds for j+ 1 and Z. In this case we should consider also the
domains Z such that Z = S(Z,), Z,, satisfies the conditions (i), (ii), and a new large
field was introduced in the preparatory operations. Then x;(Z,) =0, and we do
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not have a better bound for it, but we have the new factor exp(— po(g;)). We define
Ki+1(Z)=polg;) — O()M*R{; {d;, (Z). 1t satisfies (1.80), because Z is a small
domain, it is contained in a cube of the size I00MR;, , hence K =R;,, for Z. In
the second case Z is obtained from some number of components of Z;, and some
number of new large field regions, joined together into the one component of Z; .
by the operations of the last step, in particular by adding layers of MR, ;-cubes.
Denote the components of Z; by Z, and the new large field regions by Z¥) ;.
The property (1.76) implies

Zc U(Z(J~")),~1OUU(Z§iZ»1)~2- (1.84)

For the domains Z{"” there are defined the numbers «;(Z{"), and for Z%, , we have
the factors from (1.79). By the definition we have

Ki+ (2)= Z(Kj(Z§n)) + 2170(9,(2}"}))) + Z(VOA%PEZ)(QJ# 1)(d}+ 1(Z§‘ilL O+ D+ 2po(gj+ 1)

- O(I)MdR‘;ill }+ 1(Z2) — 2p0(gj(Z))' (1.85)

We show that this number satisfies (1.80) by an induction with respect to the number
of domains in {Z{,Z{, }. We have proved (1.80), if this number is equal to 1,
because then we have either the situation covered by (1.83), or by the first induction
step. Assume that (1.80) holds for a number of domains smaller than the number
for Z. Define the graph G in the following way: the set of vertices of G is {Z, Z{! , },
and a pair of domains is a line in G if the union of corresponding domains in
(1.84) is a connected domain, i.e., if the corresponding domains intersect, or touch
each other. By (1.84) the graph G is connected. Take a maximal tree graph contained
in the graph G. This tree graph has some nonzero number of endpoints, i.e., vertices
which are connected by one line with the rest of the graph. Take one of them, and
denote the corresponding domain in (1.84) by X. Remove the vertex, and the
connecting line, from the graph. The obtained graph is still a connected tree graph,
hence the union of the domains in (1.84) corresponding to the vertices of the
obtained graph is a connected domain. Denote this domain by Y. It is equal to
the corresponding union (1.84), and the number of domains in the union is smaller
than the number for Z, hence the assumption of the induction hypothesis is satisfied,
and the corresponding number «;, (Y), defined as in (1.85), satisfies (1.80). The
statement (1.80) holds also for X and «;, ,(X), because there is the exactly one
domain in X. By the definitions of X and Y, and by (1.84), we have Z = X U Y. By
the definition (1.85) we have

Kiv1(Z) =K ((X) + 55 1(Y) + 2po(gixy) + 2P0 vy) — 2P0 9j2))
FO(MIRE L, (X) + O()MIRIE L, (V) ~ OMIREL L (2)

J
(1.86)
The index j(Z) is equal to one of the indices j(X), j(Y), hence

2p0(Gjxy) + 2P0 G5r)) — 2P0 (Gjz)) 2 2(1 + Bo) ™ 1Po(gj+ s
The domain Z is connected, and Z < X u Y, hence

dj (X)) +dj (V) +2d 2 dj 1 (2),
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and
Kis 1(Z) Z ¢ 1 (X) + 154 (V) 4+ 201+ Bo) ' polg)+1) — O(1)2dMIRYEL.  (1.87)

Consider the sum on the right-hand side of (1.80), with j+ 1 instead of j. The
domains X, Y intersect, or at least touch each other, hence the intersection of
S§*7I7N(X), S"7iT 1Y), for n>j+ 1, contains at least a cube of the size 20MR, .
This implies that

d,(8"THZ) = d, (ST HX)) + dy(S"TTTH(Y)).

The domains X, Y determine the corresponding indices K, K,. Now the situation
is symmetric in X, Y, so we may assume that, for example K, < K,. The domain
S¥1(X) satisfies the conditions (i), (ii), in particular it is contained in a cube of the
size 100MR; | ,g,, and it intersects the domains S¥!(Y). It is clear that applying
n, times the operation S to the last domain, where n, is a rather small number,
e.g., n, < 10, we obtain the domain S¥**"'(Y) containing S*'*™(X). This implies
that "/~ 1(Z)=8""7"!(Y)forn=j+1+ K, +n,,and that K< K, +n, + R, .
To prove the statement for x;, ;(Z) we estimate the sum in (1.80):
Jj+1+K

Y. OMMIRGIId,(S" ™ 1(Z))

n=j+2
Jjt1+4+Ki+nt .
<Y OMMARII(STX))
n=j+2
j+1+K2+m+R}+1 .
+ Z O(l)MdeI}(l;,(S”"“(Y))
n=j+2
< 541 (X) + k41 (Y) + O(1)2(100M)'RY: 2
S K1 (Z) =201+ Bo) " polg 1) + O(1)3(100M)'RELE S 144 (2),  (1.88)

for p, large and y small enough. This completes the inductive proof of the statement.

Let us draw some conclusions from the statement. At first, the domain X in
the definition (1.71) satisfies the assumption of the statement with K = 0, therefore
Ky (X) 20, and we have the fundamental inequality

T, (X)1 Sexp(—2(1 + fo) ' Po(g))- (1.89)

Next, we have noticed already that the inequality (1.79) holds for the T-operation
connected with an arbitrary large field region. The inequality (1.80) holds quite
generally for such regions, hence also an improved bound (1.89), with the additional
term — k,;d,(X) in the exponential. This implies the inequality (2.50) [111], hence
Corollary 3.

The next step is a construction of an exponentiated cluster expansion for the
expression in the curly bracket in (1.72). The first operation is the Mayer expansion
of the exponential, the same as in (7.1) [I]. We obtain a sum of terms over
{X{,...,X,} and subfamilies D = D,. Each term determines the localization

domain Xy = () Yu [J X;. This domain is decomposed into components, but
YeD Jj=1

now we define them in a different way. At first we take components of X\ | ) Y,
i=1
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and we consider two such components as connected, if they are contained in one

localization domain Y of a term in the product. This means that each component

has a correct tree graph decay factor, controlling summations over components.
r

Thus we write X;, = | ] X/, and the expression corresponding to X{, factorizes in

P
the components. For the fixed decomposition we resum all the expressions
determining the same components. We obtain the following polymer expansion

d=1+Y ¥ HFX) (1.90)

r2 XY X0) P

where the activities F(X') are defined by

F(X’)=Z Z andz ]jT;(th)]_[ V(Y)exp ¥ o(Y)V(Y). (191)

q X }D YeD O 1 YeD YeD

Here the summation is over {Xj,...,X, } and D such that the connected
localization domain they determine is equal to X'. To get a convergent exponentiated
expansion of the right-hand side of (1.90), we have to obtain the bounds for the
activities. Using (1.68), (1.73), (1.89), we obtain

o

I<Z Z S TT exp(—2(1+ Bo) 'polgi) + 1)

,,,,, X D h=1

Jq‘

( [Toaexp(—(1+ 2ﬁ)de.Z/(Y))> exp ) aexp(—(1+2p)xd, ,(Y)),
YeD YeD
(1.92)

where Z' = U Y, u U X,, and we have estimated the expression |s| in (1.73) b
i=1 h=1
1. We estimate the second product above in the following way:

[1oexp(—(1+2B)xde,(Y))

YeD

Sexp(—(1+ ﬂ)deiqu(X/))exI)(_ ??FﬁKM*”X’\U Yi])

q
gl eXP<(1 + B+ 2dﬂ)rcM 94X, |> [T o> exp(—4prd, ,(Y)), (1.93)
h= YeD
where we have used the fact that o is sufficiently small, e.g., «'/®> < exp (— (1 + B)x2d),
to produce the exponential factors connecting graphs in domains Y, in the cases
they intersect outside Z'. The sum of the last products above is estimated in the
usual way:

Z ﬂ o exp(—3prdy 4 (Y))

D YeD

=YY [] P exp(— pkdy (V) Scoexp T o' exp(— bprdy 4 (Y)

FR LT Y = Yex'
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<c¢, exp< Y OMatPM Y, na(X'\Y,)]

iY,cx’

+ hgl 013 M 2+ 1 |6thr\0(X’\th)|> <coexp O(1)aPM 4 X\ 2|,
(1.94)

where ¢, = 1, if the empty subfamily is admissible in the sum over D, and ¢, = «'/?

in the remaining cases. The first casc is possible, if X' is one of the domains X,
and then we have the small factor from the bound (1.89) of the operation T (X ).
The last exponential on the right-hand side of (1.92) can be also estimated by
the above bound. We have |X'\Z'|<|X'\uY,, and we use the fact that
0Nt <1 <1/(6-29fxk for x large enough, hence the above bound is cancelled
by the corresponding part of the second factor on the right-hand side of (1.93).

q
The product over h there is estimated by [] exp2x(100R,)?, and this product is
=1

combined with the first product on the right-hand side of (1.92). We assume that
gy 1s so small that

—2(1+4Bo)” 1po(gk) +1+ 2K(100Rk)d s ~%p0(gk)

(for example, take B, = 1/7, then this means that —(1/4)p,(g,) + 1 4+ 2k(100R, ) <0,
and before we had stronger restrictions on py(g,)). Combining together all the
estimates we obtain
IF(X)I<), ) exp(—q3polgi))co
4 X

X,

1
exp(— (1 + P)rd, (X)) exp ( L BrM ™4 X"\ L Yi|>. (1.95)

Now there are two cases to consider. Either the domain X’ contains one of the
domains Y;, then the sum over g above begins with g =0, but then ¢, = «!/3, or

the domain X' is disjoint with | | Y;, and then the sum begins with ¢ = 1. In the
i=1

last case we extract the factor exp(— po(g,)) before the sum, and in both cases we

estimate the obtained sum by

1
Y oY eXp(—q%po(gk))éza(XZ’ exp(—43po(9:))

Ji qu)
< exp (exp (—3Po(9,)) 100°(MR,) | X"\ U Y;)).
(1.96)

Finally, we have
1
exp(—3po(gi))100°R, ¢ < exp(—3polgi)) £ ﬁﬂ’c

for g, small, hence the above bound is cancelled by the last exponential in (1.95),
and we obtain

IF(X)] = cyexp(—(1+ prd, (X)), (1.97)
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m

where ¢; =exp(—po(gs)) if X' does not intersect () Y;, and ¢; =a'/? in the
i=1

remaining cases.

The estimate (1.97) is sufficient for convergence of the exponentiated cluster
expansion, and we have

{-} =expR®=exp ) R¥(X). (1.98)

The summation here is over domains X eD,, which have nonempty intersections
with Zj,. In fact, admissible domains, i.e., domains with nonzero expressions R"®(X),
have the intersections sufficiently large, because they contain at least one large
field region connected with one of the T,-operations. The expression R'®(X)
depends on the background field U, restricted to X, and it can be extended as an
analytic function of the variables (U, J), defined on the space US(X,d,,d,). It is
given by the convergent series (7.13) [I] (with proper notational changes), and it
satisfies the inequality

IR®X, (U, D) < 0(Dey exp(— (1 +3f)rd, (X)) (1.99)

The exponentiation (1.98) completes the R-operation. Now we divide the terms
R'®(X) into two groups. To the first group we assign all the terms with the

m

localization domains X intersecting the large field region Z;u () Y7, to the

i=1
second group the terms with the domains disjoint with this region. The terms of
the first group are new boundary terms, and they are denoted by B'®(X). The
terms of the second group give the basic contribution to the R-terms in the k™
renormalization step. By their definition the linear size of the domain X in (1.99)
can be replaced by d,(X), and c, is equal to exp(— po(g,)), hence we have the
following more precise bound for them:

IR(X, (U, 9))| < exp(— po(ge) exp(— d,(X) (1.100)

By their construction it is also clear that they are Euclidean covariant, i.e., they
have the property (2.32) [III].

With the above definitions we have completed the construction and the
description of the new action after the k' transformation RT. We have

1 1
Al —. U, | =4, —. U )+ YROX,U)+ Y B®X,U,). (1.101)
k<(9k('))2 k> "((gk('))2 k) ; * ; *
This new action satisfies the induction hypothesis, as it follows from the
construction and the properties of the new terms. The new large field region is

equal to Z, v U Y;, and the operation T, for a component Y of the set | ) ¥; has
i=1 i=1
the form

T (Y) = 1Y)t 406 (Vi V A TR(Y). (1.102)

From (1.72), (1.98), and the above definitions, it follows that the result Rp, of the
R-operation can be written in the form (2.18) [TIT], with all the expressions satisfying
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the induction hypothesis described in Sect. 2 [III]. This completes the proof of
Theorem 1 and Corollary 3.

Let us make the final remark about another possible representation of the k'
density. We divide the terms of the sum in (1.98) in the same way as before, and
we consider the part of the expression (1.72) with the product of the operations
T, (Y;) acting on the exponential in (1.98) with the boundary terms only, in fact
with the terms with localization domains intersecting U Y;. We write this expression
in the following form

[ Tyt [H(T’ (Y1) (Y,-)epoB’“"(X)J, (1.103)

n:§

i

and we consider the expression in the square bracket. We apply successively the
same steps as for the expression in the curly bracket in (1.72), so we describe now
changes and differences only. We apply the Mayer expansion, and we write the
polymer expansion (1.90), using the fact that the T;-operations are normalized,
i.e., if such an operation is applied to a function which does not depend on the
integration variables connected with the operation, then it is equal to 1. The
activities in the polymer expansion are given by (1.91), but without the first two
sums, and the product of the T,-operations is restricted to the operations with
regions Y; contained in the localization domain of the activity. Also, we use the
ordinary notion of connectedness to define components. The activities are estimated
as in (1.92), with the corresponding changes, i.e., without the first two sums, the
first product over h is replaced by the product of e* over indices i such that Y; = X',
the number f is replaced by (1/4)f, and o by O(1)c,. All these changes have to be
done in the next formulas, and we do not mention them any more. We have the
inequality (1.93), but with the linear size d,(X'\ v Y;) in the first exponential on the
right-hand side, and without the product over h. The sum over D is estimated as
in (1.94), and we get the bound (1.95) without the first two sums and the first
exponential. This bound is enough for the convergence of the exponentiated cluster
expansion. This requires a comment, because in this bound there are no tree decay
exponential factors for the domains Y;. In fact, looking carefully at a standard
proof of the convergence of the expansion (e.g., in [26]), we see that in the present
situation such factors are not needed, because there are no summations over these
domains, they are fixed. Thus, we obtain (1.98) for the expression in the square
bracket in (1.103). We denote the terms in the sum again by B'®)(X), because the

domains X intersect () Y;. We substitute the right-hand side of (1.98) into the

i=1
expression for the effective density, and we obtain

Rpk:Z z Xk<{ Z Ti(Zy) )H 1Y _6 378 A1X15 (VkVAI)(T/( 1)
Q.7}

Zic { Yy, V)
-exp [A'k +YROX)+ Y B’("’(X)]. (1.104)
X X

For this representation the domains Y; are still large field domains, but there are
no integral operations connected with them, there are only the characteristic
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functions, the d-functions and the functions T, (Y;)1 multiplying the action density,
hence T,(Y;) is the multiplication operation. These functions depend only on the
new field variables V, restricted to Y;, therefore they do not participate in operations
connected with next renormalization transformations. The action is also simple;
it is the usual small field action outside Z,, with the additional boundary terms
with localization domains containing one of the domains Y;. The contributions
from the previous large field regions is isolated in these boundary terms, and in
the functions T,(Y;)1. The representation (1.104) can be used alternatively in the
inductive description of the effective actions, and the above considerations leading
to it give the proof of Theorem 1.
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