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Abstract. Families of unimodal maps satisfying
(1) T λ : [ - l , l ] t - > [ - l , l ] w i t h Γ ( ± l ) = - l and |ΓΛ'(1)|> 1,
(2) Tλ(x) is C 2 in x2 and λ, and symmetric in x,

(3) Γo(0) = 0, 7\(0)=l with^-T λ (0)>0

are considered. The results of Guckenheimer (1982) are extended to show that
there is a positive measure of λ for which Tλ has a finite absolutely continuous
invariant measure.

The appendix contains general theorems for the existence of such measures
for some markov maps of the interval.

(A) Introduction

Jakobson published a theorem in 1978 that states that for the family of unimodal
maps Tλ: [0, l]ι—•[(), 1] defined by Tλ(x) = λx(l — x), there exists a set of parameters
/ of positive lebesque measure for which Tλ possesses a finite absolutely continuous
invariant measure.

Since that time there have been several attempts to present a more compre-
hendable proof. Rychlik (1986) has produced a cleaner proof than Jakobson
using similar techniques. Benedicks and Carleson (1983) use statistical methods
and a widey different approach to achieve a similar result. Rees (1985) has pre-
sented a proof in the complex case.

In 1982 Guckenheimer proved that for reasonable families of unimodal maps,
there is a positive measure set of parameter values for which the corresponding
map has sensitivity to initial conditions (a map T has sensitivity to initial
conditions if 3ε>0Vx, δ>0 3y, \x-y\<δ, 3w, \Tn(x)-Tn(y)\>ε). Specifically, he
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considered the class of one parameter families of maps ^ = {/;} which satisfy
(1) ΓA:[-l,l]h-[-l,l]withΓ(+l)=-l and |7Ϊ(1)|>1,
(2) Tλ(x) is C 2 in x2 and λ, and symmetric in x,

(3) To(0) = 0, 7;(0) = l w i t h - 7 , ( 0 ) >0.
dλ

The idea of the proof is a simplification of Jakobson's approach, and relies on a
recursive geometric construction. Since detailed estimates need only be carried out
for one typical recursive step, such a construction provides a geometric skeleton
for the calculations involved. This presents a conceptually simpler proof.

In this paper I demonstrate that for the same parameter values for which Tλ was
shown to have sensitivity to initial conditions, there is actually an absolutely
continuous invariant measure for Tλ.

I am indebted to the guidence of John Guckenheimer and to many constructive
discussions with Don Ornstein and Yitzak Katznelson.

This proof differs from other proofs of Jakobson's theorem in two ways. Firstly,
relying on the geometric construction to organize and simplify allows the reader to
have a more clear picture of what is involved in the proof before (or without) going
into the details. Secondly, the appendix contains several theorems for the existence
of a finite absolutely continuous invariant measure for certain markov maps of the
interval. These theorems are tailored to be more easily reached through the
technique for inducing, thus the inducing steps can be simpler without losing the
conclusion of the existence of an absolutely continuous invariant measure.

A brief description of Guckenheimer's method is as follows. First, the original
unimodal map Tλ for λ near 1 is induced on an interval J o around 0, producing a
symmetric map Ύιλ with monotone branches and a folded piece over an interval
J j (see Fig. A.I).

This is best understood by letting h= Tλ\I_Jo and considering the preimages
h ~ %/o) I f TλΦ) £Γeh~ n(J0% then as λ is varied so that Tλ(0) moves from one end of
Γ to the other, the tip Tx ;(0) of the induced map will move from the bottom to the
top of the induced picture, and the number of monotone branches will remain the
same although they will go through a continuous deformation. If λ is chosen

Fig. A.I
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Fig. A.2

sufficiently close to 1, T1>Λ will have a finite number of monotone branches with a
uniform bound on their linearity and \T[>λ\ >L> 1, and the central folded branch
can be made arbitrarily sharp.

The variables can be renormalized so that the interval J o can be considered as
[ — 1,1] and the tip 7i ;(0) moves from bottom to top as λ moves from 0 to 1.
Excluding from consideration those A's for which T l i Λ(0)e J l 5 this map is then
induced on the interval Jγ producing a map T2 λ(x) with countably infinite
monotone branches and a folded piece over a central interval J 2 (see Fig. A.2).

Again, this map can be understood by letting hltλ = Tltλ\Jo_Jl and considering
the preimages ftJ~,λOΛ) As ^ varies so that the tip T l jλ(0) moves from one end of a
component Γ eh^^(J x) to the other, the tip T2 λ(0) of the induced map will move
from the bottom of its graph to the top, and the entire graph will go through a
continuous deformation. The central folded piece of T2 λ is a result of the central
folded piece of Tx λ being composed with the monotone branches of Tx A n1 times.
Thus if n1 is very large the fold becomes quite sharp, since T2">Λ(0) increases
exponentially in nv In this way the relative length of J2 is controlled by the
duration of return time. The slope and distortion of the linear branches of T2 A can
be controlled by insisting that if Tltλ(0) φ Γ sh^λ(J\) then Tιλ(0) lies sufficiently far
away from Γ so as not to distort the linearity of the corresponding branch.

Thus by making some careful parameter exclusions, the map T2 λ will have
sufficiently linear and steep monotone branches, and a smoothly folded and
sufficiently sharp central folded branch.

This map is renormalized, parameter values for which T2 λ(0) e J2 are excluded,
and the map is induced on J2 producing a map T3 A and the recursion continues in
this manner.

In order to arrive at a good final picture for this recursion process without
excluding too many parameter values certain estimates must be carried through-
out the process. This is done by establishing bounds which control the linearity
and slope of the monotone pieces, the distortion and sharpness of the quadratic
piece, the speed at which the tip moves, and the way the picture deforms with
respect to changes in the parameter. Given a map which satisfies those bounds,
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new bounds are calculated for the next induced map. By excluding certain
parameter values at each step Guckenheimer shows that the bounds remain finite
or go to infinity at a controlled rate. By showing that proportionately fewer
parameters can be excluded at each step, he concludes that the entire recursion can
be done for a positive measure of parameter values.

One thing that must be shown in order to exclude proportionately fewer
parameters at each step is that the central intervals are proportionately smaller,

that is ̂ VTV^ ^ ul T L e t t i n g sk=τkλ{fy>tnere i s a constant C depending on

the above mentioned bounds for which l(Jk)<CSk

1/2. Since Sk behaves exponen-
tially with respect to the duration of return time, parameters can be excluded so as to
make return times sufficiently long to conclude that Sk+i> Sk. Thus the Sk grow at
a fast double exponential rate and central intervals are proportionately smaller.

The final picture is a sequence of nested intervals Jo C J t C... with the map 7^ ;

on Jk — Jk + ί consisting of branches mapping over Jk with slopes 17̂  ; | > L > 1 and

distortion
T"

00, λ <2kD.
oo, A7 Jk-Jk+i

From this picture it can be concluded that the original map has sensitivity to
initial conditions.

For a more detailed exposition of these ideas, see Guckenheimer (1969,1982).

(B) Assumptions, Definitions and Bounds

Definition. For a transformation TeC2 the distortion of T at a point x is defined as

T"(x)
dis(T)(x) =

(T'(x))2

Then dis has the composition formulae:

dis(Γ2)(x),

What is demonstrated by this last formula is that under repeated application of
a map to a point, the distortion that is caused under any one application can be
reduced through subsequent stretching. In the appendix of this paper it is shown
that certain expanding markov maps with bounded distortion and arbitrarily
short branches mapping onto neighborhoods of a central point c may possess an
absolutely continuous invariant measure by virture of having a good ratio of
longer branches near c.

It will be assumed that a parameter value λ is given for which Guckenheimer's
construction can be carried out indefinitely. It is assumed that at the ith step of the
recursion there is a map Ύ{: J^Ji consisting of monotone branches mapping onto
Jb and a central folded piece over a central interval Ji+ί (see Fig. B.I).



Continuous Measures in One Dimension 297

Fig. B.I

Definitions. Let Hi = Ji — Ji+ίi and define ht= Tj\Hι and fι=Ti\Jι + ί so that ht is the

monotone branch part of T{ and j { is the central folded piece (see Fig. B.I). Let si+1

— fi'Φ) (where 0 is the critical point of β. To exploit the quadratic nature of fi let

q(x) — x2 and define pt such that fi(χ) = pioq{χ) for xeJί+1.

It will be assumed that there exist positive bounds Do, L>2, Ku K2, K3, K4,
and K5 such that for all ϊ.

Bound 1. si+1>sf,

Bound 2. dis(/ι ί)<2/D0,

Bound3. \h\\>L,

Bound 4. dis(pj) < Kλ,

Bound 5.
1 M

Bound 6. l(Ji+ί)<K3sΓ+ψ,

Bound?. l{Ji+ι)>K4sf+\,

Bound 8. ,-1/4

Bounds 1-4 are directly from Guckenheimer (1982), bounds 5 and 6 follow
from bound 4, bound 7 is a consequence of a parameter exclusion in Gucken-
heimer (1982), and bound 8 follows from bounds 6 and 7.

(C) An Outline of the Proof

Guckenheimer's recursive step can be viewed in terms of a stopping time n^x). The
preimages of Ji+ι in Jt under Ht form a set of intervals NcJt such that

h":N >Ji+i f ° r some n = l 5 2 , 3 , . . . . These intervals fill up all of Jb so it
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possible to define an integer valued function n^x) almost everywhere on Ji+ί by

This makes it possible to write Ti+1 explicitly in terms of 7̂  as Tί+ ί = h^f^x)
for xeJi+iΛϊΓis the preimage of Jt + λ under ht that contains/f(0) and %iis defined
as ^ = nf(0)5 then fi + l(x) = h«fi(x) for xe/ f '^Γ) , hence / Γ ^ Γ ) will be the new
central interval Jί + 2 of 7]+l . Also, /ii + 1 W = /i?lW/i(x) for x 6 j i + 1 - / ί " 1 ( 0

Since dis(/f) (x) behaves like 2 f° r x n e a r 0' ^ e parameter exclusions in
Sί+lX

Guckenheimer (1982) must be chosen so that π{ is sufficiently large as to ensure
bounds 1 and 4, and nt(x) is sufficiently large at all x to ensure bounds 2 and 3.

The idea in this paper is to leave ni and the definition of fi + 1 as is, but to
redefine nt(x) slightly smaller so as to allow sufficient longer branches to satisfy the
hypothesis of Theorem 4 in the appendix. The conclusion will be that a finite
absolutely continuous invariant measure will exist for To. By restricting λ
sufficiently close to 1, To will have a finite number of branches, thus producing a
finite absolutely continuous invariant measure for Fλ. The proof is outlined as
follows.

Consider To on J o , where J o is assumed to be a symmetric interval around 0 of
length less than 1. Let ^ be the minimal partition of Ho with respect to which h0 is
continuous and monotone. Let SPγ be the partition of J o consisting ol0t and J λ. Let
&i = K\&\)v Jn so that for any M e ^ 2 either M = JU ho(M) = Ju or ho(M)e0l.
In general, let ^n = hoί(^n-1)vJ1 so that for any Me0*n either hk

o{M) = Jί for
some k = 0,1,..., n — 1 or hn

0~
 ι(M) e 0t. The partitions &n form a refining sequence,

and since SPn contains the sets IiQk(J0) for k = 0,1, ...,n— 1, these partitions are
increasingly dominated by preimages of J γ. It is these partitions that will be used to
define a new stopping time rather than the partition consisting entirely of
preimages of J v

Define z i sucht tha.t( — zi,z1) = Jι and consider f0onJί. The distortion dis(/0)

behaves like ^ for x near 0. For n = 0,1,2,... define xn such that dis(/0)(x)
s x x 2

<Π~λD0 for x e ( —z1? — xn)u(xn, zx). It will be shown that xπ->0 like
(sιL?~1D0)~112 (If / 0 were quadratic with fό' = sί then xn would equal
(s1L"~1D0)~1 / 2.)Let JBW = ( —xw_ l3 —xn)u(xm xn-ι). These sets Bn will give a lower
bound on how small the stopping time may be taken and still preserve a reasonable
distortion.

As before, let Γ be the preimage of Jγ which contains /0(0), and let J 2 = fo~
 1(Γ)

with z2 taken to be such that (— z2, z2) = J2 Since π 0 is such that hπ

0°{Γ) = Jί9 then fι

can be defined as f1(x) = K°f0(x) for x e J 2 .
Since f0 will have some amount of distortion at z1? let b0 be the minimal n such

that xn<zί; that is, such that dis(/ 0)(z 1)<L"~ 1D 0. Let e0 be the minimal n such
that x«^z 2 ; that is, such that dis(/ 0)(z 2)<Ln~ 1D 0. Redefine Bbo = ( — z1, xbo)u(xbo,
zt) and £ e o = ( - x e o - i , - z 2 ) u ( z 2 , xeo-ι). Now H1=Jί-J2 is partitioned into
disjoint sets Bbo, ...,Beo, such that dis(/ 0 ) | β n <L n ~ 1 D 0 .

On Ht a stopping time η(x) will be defined creating a new function gx(x)
= hη

o

ix)fo(x) ϊorxeHv This will be done in such a way as to satisfy three conditions:

Markov Condition. The map gί must consist of monotone branches mapping onto Jo

or J\ with a high proportion of them mapping onto Jo.
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Linearity Condition. The stopping time η must be large enough to ensure that gx has
reasonable distortion and good slope.

Return Condition. The stopping time η must be small enough to allow a finite
measure to be pulled back through it via a Rohklin argument to another finite
measure.

In order to satisfy the markov condition, the sets Bn will be moved slightly so
that fo(Bn) fits into the partition 3Pn\ that is, new sets Bn will be defined such that the
endpoints of the intervals fo{Bn) will be division points in the partition 0>n for
n = bo,...,eo. This can be done in such a way that Bn will still provide a lower bound
for how large η must be in order to satisfy the linearity condition, as well as

ί e° ~ \preserving the property that / (J BkuJ2 is of the order (sγΠ
 1D0)

 1 / 2 which
\fc=«+l /

allows η to be taken as small as is reasonably possible to satisfy the return
condition.

The stopping time η will be defined as follows: For x e Bm consider the position
of x in 0>n. Either fo(x)ehok{Jί) for fc = 0,l, . . . , n - l or fo(x)ehn

o~
ι(M)9 where

M e & is some interval for which ho:M >J 0. If fo(x)eho V i ) for
k = 0,1,..., n — 1 let η(x) = k. Otherwise let η(x) = n.

Then gi{x) = hη

o

ix)fo(x) is defined on Hι and consists of monotone branches
mapping onto J o or J1 (see Fig. C.I) and compare with Fig. A.2). A branch of g1

that maps onto J x will be identical with some branch oϊh1. Indeed for any x such
that gj(x) e Jj it will be the case that gί=hί for some neighborhood of x since both
functions represent the first return of /0(x) to J\ under h0. Consequently the
distortion on the branches of g0 that map onto J γ is bounded by 2D0 and their
slope is greater than L by bounds 2 and 3 on h0.

On the other hand, if x lies under a branch of g0 that maps onto J o , let n be such
that x e Bn, then dis(/0) (x) <Ln~1D0 and by the way Bn will be defined it will follow
that η(x) ̂  n. Hence dis(/zo~ 1f0) (x) will be of the order Do by the composition rule
for distortion and the fact that \h'0\ > L. Furthermore, if x e Bn and ^(x) ^ n, then x

Fig. C.I
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will be of the order ( s j L " " 1 ^ ) " 1 7 2 and gί(x) = (/#*%(x))'(x) will be of the order
Lη -2sι '(sίL

n~1D0)~~ll2>s{14 assuming s t is large compared with L and Do.
For convenience, let go(x) = ho(x) for x e Ho = Jo — J t . Then the estimates for g i

on J0 — J2 are compatible with the hypothesis of Theorem 4 in the appendix.
At the ίth step of this process it will be assumed that there is a map gf defined on

J0 — Ji+1 consisting of monotone branches each mapping onto one of the intervals
J o , J l 5 . . . , Jj. Let 0lι be the minimal partition with respect to which g{ is continuous
and monotone and for 7 = 0,1,..., Πet $) be the collection of intervals in 0tι over
which gt has a branch mapping onto J j . It will be assumed that &)CJp and that
every branch of gt in ^jnHj is identical with some branch of hj. The following
bounds will be assumed for gf:

Bound a. For fc<j^z dis(gί)Uj n J j <2 f c D i / and dis(g ί )U; n J j <2 j D 0 ,

. For k<j^i \ύWhΓΛj>s)^ and |g}| |^jn J j>L.

A claim will be made that the Dt remain bounded in the recursion.
A new map gi+ ί will be defined for x e Hi+1 by using a stopping rule η^x) and

defining gi+i=gTix)fi(x)' This will be done in such a way that, firstly, gi + 1 consists
of monotone branches each mapping onto one of the intervals J0,...,Ji+ί with a
large proportion of them mapping onto one of Jo,..., Jb secondly, η( must be large
enough to ensure that gi+ x satisfies bounds a and b; and finally ηt must be small
enough to allow a finite Rohklin pullback of a finite measure.

This process will utilize the following partitions; let 3P[= \J 0ί\ v {Ji +1} and
fc = 0

define ^ ^ g Γ ^ - i ) v {J ί + 1} for n = 2,3,.... Then for any Me^ either gf(M)
= Ji+ι for some fc = 0,1, ...,n — \ or g " ~ 1 ( M ) e ^ for some j = 0,1,...,/. These
partitions form a refining sequence and since ^ contains the sets g[k{Ji + 1) for
fe = 0, l,...,n —1, they are increasingly dominated by preimages of Ji+1.

The set Ji + 1— J{ + 2 is then divided up into pairs of intervals Bι

n for n = bi,...,ei

/ \
such that disig^KΠ'^DQ and / |J Bι

n\jJi + 2) is of the order

(•s^+ilΓ'^'Do)"1/2. These sets will give a lower bound for γ\{.
The sets B\ will be moved slightly into sets B\ such that /f(Sj,) fits into the

partition ^" . This will be done in such a way that Bι

n will still provide a lower bound

for ηt and / (J B[KJJ1 + 2 is still of the order (5 / + 1 L"" 1 2 / D 0 )~ 1 / 2 .

Then ηt will be defined as follows: For x e Bι

n consider the position of fix) in ^ .
Either / f(x)egf *(Jf + 1)for some fc = 0,l, . . . , n - l or/ f(x)6gf ("~ υ(M), where Mis a
component of ^ for some j = 0,l, ...J. If fi(x)eg[k(Ji+i) for fe = 0,1, ...,n — 1 let
^f(x) = fe, otherwise let ^f(x) = n.

Then gi+i(x) = g?<(x)/i(.x) is defined on Hi+1 and will consist of monotone
branches mapping onto the intervals J0,Ju...,Ji + ι. Any branch oϊgi + ί that maps
onto Ji + 1 will be identical with some branch of hi + u hence will have distortion
bounded by 2ι+ιD0 and slope greater than L by bounds 2 and 3.

On the other hand, if x lies under a branch oΐgi + 1 that maps onto Jk for some
k < i + 1 (that is, x e ^ + % let n be such that x e Bι

n. Then η^x) will be greater than n
and x will be of the order (si+ XU

+ ι2ιDoy
1/2, hence g'i+ 1(x) = (g?l(x)/ί)

/ (x) will be of
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the order Uι -2si+ί - {si + 1L
n~ ι2iD0)~1/2 > sli\ using bound 1 and assuming that s0

is large compared with L and Do. The distortion will be shown to be bounded by
something of the order 2kD0. This is done by analyzing the distortion formula

This formula demonstrates that under repeated application of the map gb the
distortion that is caused by ft or any application of gt is reduced through
subsequent stretching.

The first term of the sum, α = 1, contains the distortion of ĝ  at g?ι(x) ~ 1fi(x) and is
already bounded by something of the order 2kD0 since gη

ί

ι{x)~1fi(x)e&ι

k. The last

term, ηΛχ) v r / γ ~ τ : dis(/£) (x), is controlled by analyzing the slope of gf along the

trajectory /f(x), gfi/j (x), ...,g^(x)-1/j(x). In controlling the remaining terms, poten-
tially large distortions of the order 2JD0 with j>k are balanced against the amount
of stretching that must occur on the type of trajectors that /j(x) must have in order
to pick up such large distortions and then land on an 0ί\. A final bound of the order
ΫΌQ is established. This is the manner in which it is shown that gi+1 satisfies
bounds a and b.

As mentioned before, the partitions gPι

n are increasingly dominated by
preimages of Jί + x as n grows large. It is precisely these preimages that give rise to
branches oϊgi+1 that map into Jί+ί. It will be shown that Ji+1 is sufficiently small
so as to make the domination occur so slowly that such branches have relatively
small measure, something of the order sd

i+ί times the measure of Hi+1, which is
sufficient for the hypothesis of Theorem 4 in the appendix.

Since points x e Bι

n are of the order (si+1L?~ι2iD0)~lί2, bound 7 can be used to
establish that et is bounded above by something of the order Iog5ί f 2 For xe Hi+ u

ηlx) is uniformly bounded by et. With πt such that /i (0)egί~
7%//+ λ) the details of

the construction will yield that π{<e{. If m/ + 1(x) is defined such that g ί + 1(x)

- To

m- 1 ix\x) for x e H i + ί then mi+i(x)S Π fe + 1)
k = 0

The limit of the recursive process will be a map g^ : Joh->JO which, satisfying
the hypothesis of Theorem 4 in the appendix, posesses a finite absolutely
continuous invariant measure μ. Using a Rohklin argument this measure can be
pulled back to an absolutely continuous invariant measure for To iff the integral
j maD(x)dμ is finite (where m^x) is such that goc(x) = TQMCO(X)(X)). It will be shown that

i - 1

this integral is finite if the sum £ f] (ek +1) μ{Hk) is finite. This sum converges
i k = 0

since ek^1 is bounded by something of the order logs f e 4 1 ? and the results of
Theorem 4 imply that μ(Hk) is bounded by something of the order sk+u
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(D) Detailed Proof

ί. The ith Recursive Step

i.a. Assumptions on gt. To begin the recursion, let g0 = h0 on Ho. At the ith step of the
recursion it will be assumed that there is a function gt defined on J0 — Ji + 1

consisting of branches 0ί\ mapping onto the intervals Jk for fc = 0,1,..., /. It will be
assumed that 3$[e Jk for fc = 0,1,...,/. The function gt will be assumed to satisfy
bounds a and b. The functions hi on Ht and f = Pi(q(x)) [where #(x) = x 2 ] onJi + 1

will be assumed to satisfy bounds 1 through 8. It will be assumed that the branches
M\r\Jk of gι are identical with some branch of hk.

ί.b. Distortion of f. Let zi + ι be such that Ji + 1=( — zi + u z i + 1 ) . Define xl

n

= inf{x6 J i + 1 , x>0; d i s ί/^xJ^L""^^}, and let b^minjn; xΐ<z i + 1}. Let B^
= (-z i + 1 , -Xftjuίxj,., z ί + 1) and for rc>^ , let Bi = (~xi_ l5 -xi)u(xi, x ^ ) . For
convenience, redefine xj,t = zt + 2.

Thus J ί + 1 is partitioned into sets Bι

n such that dis(/f) over Bι

n is at most

Lemma 1. 3C1 independent of i such that

Proo/.

for some C\ independent of i. Similarly,

for some C[ independent of i. Let Cx = max
C \ 1 / 2

, (2C[) ' ). Π

Lemma 2. 3C2 independent of i such that

Proof

Xln

0 0

0 2 < :

K 2 s 1
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Similarly,

1/iW) -/i"(0)| >Λr-Si+1 (4f > ) 2 (ϋ-WDoΓ1. D
2K2 ZK2(l^i)

i

i.e. The Partition. Define the partition $P\ = \/ 0t\ v {Jt + x} and recursively define
fc = 0

0>n==gΓ1(^>n-\)vJi+v Then \SPι^=\ is a refining sequence of partitions, and ^
contains g[ \Ji + x) for fc = 0,1,..., n — 1, hence these partitions increasingly appro-
ximate the set of preimages of Jί + 1 under gf.

Define πt to be the return time of /f(0) to J / + 1 under gf; that is, g"/f(0) ̂  J i + x for
ft<π; and g^/^O)^ J ί + 1. Let iVf be the component oϊ g[πi(Jί+1) containing /f(0).

In order to ensure that gi+1 is markov, the sets Aι

n will be redefined so that they
n- 1

fit into the partitions ^ . For n>bb if yι

ne (J gj~k(Ji+1), then let yι

n be such that

(ylΏC V gΓV i +i) and 1^-^(0)1 is minimized. If γni{J gΓ*(Ji + i), then let M
k=0 k=0

be the component of ^ J + 1 containing ^ and let j J, be such that ( j/J j^eM and
\Yn — f$)\ ^s maximized (see Fig. D.I). It is quite possible for many of the y\ to be
identical.

Let a\ be the endpoint of N { covered by fi{Ji+ί) and let a\ be the remaining
endpoint. With ψn as defined, 3et such that yι

n = aι

2 for n^tet and yι

nφ[_a\,al2] for
n < ^ . Let ^ - 1 = ^ - 1 , and redefine fβχ so that feι = a\. Only the points
ybι-ι,..., j?βι will be considered in the following arguments.

For n = b ί 5..., e{ let Λi

n = (yi

n_1, yl

n). The endpoints of Aι

n lie in the division points
of the partition ^ , and Άι

n is divided up by that partition into intervals each of

yn+i

-4—h

f.(0)

Vn-1 yn yή+1

———H
M _ _ _ _

Fig. D.I fi (0)
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w h i c h is e i t h e r a c o m p o n e n t of fi~k(Ji + ι) for fc = 0 5 1 , . . . , n — 1 o r of

Lemma 3. 3C3 independent of i such that for bt^n^eh

Proof

by Lemma 2. By bound 6, /(Jί + 1)<K 35 ί~+

1/ 2, hence the maximum length of a
component in 0t\ is less than 17 ίK3s[+

ί(2 and the maximum length of a component
in ^i

nr\Ji is less than sf~
1/4 for n < ί. With the assumption that LΓ 1K3sf+ψ < sf~

 1 / 4

?

an upper bound of sf1/4 can be used for the lengths of components in y M\. Then

either | j/ ! ,-/ i (0) |< |^-/ i (0) | or \fn-γn\<lΓ*-"sTx* Hence

for some C 3 independent of ί, assuming sf~
1/4 is small compared to

Let x? = /ί-
1(ίi)n[0,l] and B^frW).

Lemma 4. 3 C 4 independent of i, such that for n = bh ...,eh

n-bι

Hence by Lemma 3, 3C4 independent of i such that \xι

n\<C4L
 2 \zi+1\. Π

The following will allow the measure to be pulled back in a finite fashion at the
final section of the proof.

Lemma 5. 3C5 independent of i such that bi<C5\ogsi+ί and ei<C5\ogsi + 2

Proof | x e ι - i l> |z ί + 2 | implies by Lemma 1 and bound 7 that

hence

e ι - 2 < 2

for some C independent of i, thus e ^ C ^ l o g s ^ L for some C5 independent of i.
Similarly, bt being the minimum such that | x ^ | < | z ί + 1 | yields
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h e Π C e 1C 2C

for some C" independent of/, thus bt < C"5 logsί + 1 for some C"5 independent of/. Let
C5=max(C/

5,C
/5). D

id. Definition of g ί + 1 . H / + 1 i s divided into sets5^ for n = bi,...,ei and each Sj, is
further divided by / Γ 1 ^ ) into intervals. Take any M e ^ n / ^ 1 ^ ) for any
n = bb...,ei. Then either /f(M) is a component of g^k(Ji+1) for some k<n or /f(M) is

a component of g " V ^ . For x e M define ηί(x) = k if /f(M) is a component of

g^ f c(J / + 1) for fc<n and?7(x) = ft otherwise.
For x^ J ί + 1 let gί+ι(χ) = gi(χ) and for xeHi+ι let g ί +i(x) = g?ι(x)/ί(x). For

xeJi + 2 let / i + 2W==g?I/iWj where πf is the return time of/^O) to J ί + 1 under gf.
For xeJ0 — Ji + 2 then, g i + 1 consists of monotone branches mapping onto J o ,

J 1 ? . . . , J ί + 1 . For fc = 0,1,...,/ + !, let ^ + 1 3 ^ 1 be the collection of intervals that
map onto Jk under an entire branch of gi+ v Note that gt had no branches that map
onto J ί + 1 but g i + 1 might, hence &\X\cJi+i.

In the definition of Άι

m either ^ contained yι

n_1 or else y|2_1 was in a
component M of g[k(Ji + 1) for k<n — 1 in which case J?j, and M are disjoint and
share a common endpoint (see Fig. D.2). Thus is established the essential fact that

N
 A ;

A!

n

Fig. D.2 f, (0)
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for x e Bι

n, either ηt(x) ^ n or ηt(x) is the first return of fix) to Ji+ x under gf. If ̂ (x) is
the first return, then gί+ί(x) = hi+ί(x), and hence the distortion and slope is
controlled by bounds 2 and 3. Otherwise the distortion and slope is the subject of
the following calculations.
i.e. Verification of Recursive Bounds. Recall the recursive bounds a and b stated
earlier

Bound a. For k<j^i dis(g ι-)|^n J i<2 f ei) j and dis(g i)Uj n J ;<2 yD 0 .

Bound b. For k<j^i | g ; i U n J / > s ) / 4 and |g}IL*;nJj>L.

Proposition. Under the recursive definition of gi+u bound a and hound b are
satisfied in such a way that the D{ remain bounded.

Proof. Bound b is satisfied by

Igί+iWI = Mftϊ Ml = \a'ip
1 \( 2

assuming that s1

s

/

+

4

i>CίK22
ϊD1

0'
2.

Bound a is more involved. Recall the distortion formula:

First it is possible that g"/;(x) all lie in f jnίf j for α = 0,1, ...,f?-1. Then

dis(gί + 1)(x)< 1 ^ 2 % + ^L"-ιTD0< —^D,.

In particular this starts the recursion for i = 0.

Otherwise one of g£/J(x) for α = 0,1, ...,r\ — 1 lies in ^i

knHί for some fe<i,
making gfflx)>slIA', and so for the last term in the distortion formula,

With j taken to be such that gη

t ~
ι e ̂  (that is, x e ̂ } + ^j consideration of the

sum from α = l to α = ?7 divides into two cases; either gη

i~
1fi(x)e@&)nHj or

gl~1fi(x)£&ljnJj+i (note that if j = / then the latter possibility is vacuous).
Suppose that g^xfi{x)e@)nHy Then for α = l , dis(g i)(gΓ1/i W ) < 2 J D 0 and

g (gj;~1/j(x))>L. For any α = 2,3,...,// consider the term

-dis( g ί )(gΓ7Xχ)),

and let k be such that g Γ 7 | ( x ) e ^ i .
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If k^j then

If k > j then one ofgη

i~
a+1fi(x),..., gηi~2fi(x) must land in Mι

mc\Jk for some m< fc,
because gη

i~
aedi[ implies g?~β + 1 / ί W e Λ a n d s i n c e gl~xfJix)^Hj w i t h fc>J t r i e

trajectory of gη

i~
a+ ιf£x) must bounce out of Jfe sometime. Then (g?~x)' ( g Γ α + Y/W)

> L α " \ 1 / 4 making

( g ^ ( g Γ - ^ d l s ( g i ) ( g Γ ^
assuming that 2fcsfc~

1/4<2 /.
Under these circumstances then,

dis(g; + ι)(x)<2Φ0 + V J^J 2Φi + sf ιι*2ιD0 <2>D0 + - i - 2 Φ ; + sf 1 / 4 2 ; D 0 .

Suppose now that gΊ~ιfi{x) e ffl)c\Ji+1 and let w>;' be such that g?~ ^(x) e0ί\
nHw. Then for α = l, dis(g;) ( g p 1/ i(x))<2 iDw and gfeΓ VX*»>4 / 4 For any
α = 2,3,..., η — 1, consider the term

and let fc be such that g?"α/;(
If k-gj then

7"pτy( ? - a + 1 / . ( χ ) ) d i s ( g ί ) ( g ? " a f i {

If fc > w then one of g] ~α + ιfι{x\ ..., g? ~ 2/i(x) must land in 0tmr\Jk for some m > fc
making

1

O-1/2 - l/4Λkr) ^ Γ-(α-2) -1/49J

assuming that Lsfc

 1/42k<2j.
If j < fc < w then

assuming that sw

 1 / 8 2 W <2 J .
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Under these circumstances then,

dis(g i+1)(x)<2JDw+ £
2

Thus for xeBι

n and

dis(g; + 1)(x)<max

• it is shown that:

L + l

L - l

1

/ - I

L
lax 2'DW + — — s; 1 ' 8 2 »'D, + sf 1 / 2 2'D 0
μ < ί L, 1

Thus for recursive bound a, define

=max<

' L - l

υ L - l '

L
m a x D w + - — - i
w < i J-J -I

This is sufficient to claim that the Df's are bounded by the following lemma.

Lemma 6. For Po>0 and 0 < y < l , define {P^^LQ by the recursion

Then

Proof. Assume that

+ ^ ^ o Π ( i + y " + 1 )
0

for m ̂  f, and check that

for m ̂  i. By assumption,

ιPi=P0 Π
« = 0

ί - 1

π
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Hence it suffices to show that

-i \

fym + 1 Π ( i + y " + 1 ) ) ύ Π <
\ n=m J n=m

or

Let v= log2 —-— , and r = 2 v + ι (m+l) so that \τ^j^τ. Let

Γ= ' π (g, +i) and f = .

Note that f § 1 . Then

This concludes the proof of the proposition.

l.f. Density of Long Branches. In the definition of gi+ u points x e Bι

n were assigned a
stopping time of ηi(χ) = n unless g£/j(x)e Ji+ί for some fe = 0, ί,...,n — 1. Thus the

n - l _

subset of 5^ where ^t (x) = n is given by Bι

n — (J fi~
1g^k(Ji+1). Since points x e 2%,

fc = 0

where ηix) = n are exactly the points of ?̂ ί } , this will be used to estimate the
proportion oi0tγγ branches in Ji + 1 with k<ί+l.

Lemma 7. 3CΊ, δ>0 independent of i such that

^i + i-^ί+i) 1 _ r -^

/ Let r be maximal such that / (J 5 Π >25ίV/8/(Λ+i) T n e n l̂ ίl

>s[+ίl8\zi+1\ (see Fig. D.3). Lemmas 4 and 5 then imply

2
r < ^ y (| l o g s ί + 1 + l o g C 4

^ +1 +logC 4 ) + C 5logs ί + ! < C l o g s i + !

for some C independent of i.
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B;

Fig. D.3

B r+l

l

oo r /(

Let M = U Bn and N = fμi + 1-M)= \J A\. Note that

~2K3sΓΛ/2. Let [/= rU1gΓV, + i) ThenH i + 1~^:!D/Γ 1(iV-t/).
fc = O

Using the composition rule for distortion it follows that dis(gf) (y) < 2ιDi
1

whenever g\ is defined at y. Thus if g"(x) and g"(y) lie under the same branches of gt

for n = 0,1, ...,/c-l then s^l8! by assuming that

2 l D
1/8

siΛι

To estimate l(N—U), first remove Ji + 1 from N, then remove (J g
k = 1

from whats left. This yields

-kt

,1/8- 2 K 3 s r + ψ ) ίl-s}

</(N)(l-C'sΓΛ / 4)C l 0 g s > + 1 + 1

for some C independent off. This implies that — - < C"(logsi + ])s;V/4 for some C"

independent of i.
For x e J; + j — M it follows that

, 2(sf+78 h+! I) =

and similarly

hence

max
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or equivalently,

u, veN

Ji W

fΓ»
<κ2)

2slί\ .

The sets Hi+1 and Ji+i — M are reasonably comparable:

Therefore,

l(Ht+ι-a\X\)
{ i

" ( ί + l

>(1 -2sΓ+V8)(l - ( X ^ ^ ί ^ C α o g S π 1)sΓ+V4)>(l -C 7 sΓΛ)

for some C 7 ? ^ > 0 independent of f. •

(2) The Invariant Measure

2.a. The Measure for g^. The limit of this recursive process is a map g^ : Joι-> J o

consisting of monotone branches Mf mapping onto intervals Jy This map satisfies
the bounds:

Bound a^. dis(g J | ^ < 2 / c D o 0 .

Bound b^ For k<j, WJl^nj^Sj14 and

This, along with Lemma 7, bounds 1 and 8, and the markov properties of g^, is
sufficient to conclude the existence of a finite absolutely continuous invariant
measure μ for g^ by Theorem 4 in the appendix. This also yields the property that
μ(Jj)<Gίsyε for some G l 5 ε>0.

2.b. Pulling μ Back to To. The argument here is the typical Rohklin type reasoning
with special care being taken to account for the map being many to one and for the
use of a stopping rule rather than a return time.

Let Ά be the minimal partition with respect to which g^ is continuous and
monotone, and for a component Mel define ηJJS/ί) so that gςβ{x)=TSco{M\x) for
XEM. Thus η^ is an integer valued function on Ά.

With μ as the absolutely continuous invariant measure for g^, then μ is defined
for any measurable set E by

»/oo(M)-l

= Σ Σ μ(To-
n(EnTo

n(M))nM)
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is an absolutely continuous invariant measure for To as the following calculation
indicates:

»7oo(M)- 1

fKTQ-1{E))= Σ Σ μ{T0-
n{T»\E)nT${M))^M)

MeΆ « = 0

?/oo(M)-l

= Σ Σ μ(To-
in+1\EnTo

n+1(M))nM)
MeΆ n=0

ηoo(M)-l

= Σ Σ μ(7?(En7?(M))nM)
MeΆ n=0

+ Σ [μ(T o " ζ ( M ) (£nT o

ζ ( M ) (M))nM)~μ(£nM)]
MeΆ

= j5(JE) + μig-^EnJo)) - μ(E) = μ(E).

Proposition, μ is finite.

Proof. By definition,

ηao(M)- 1

μ(^0)= Σ Σ KM)= Σ ηJM)μ(M).
MeΆ n = 0 MeΆ

Consider the sets {Bι

n}
e

k

ι

=bι and the stopping time ηt defined on the ith step of the

recursion. It follows from the construction that max ηi(χ) = ei. Thus if MeBι

n,
xeHι + 1

then i-ί

Hence,
β(Jo)= Σ ηJM)-μ(M)<μ(H0)

MΆ
Σ

MeΆ

+ Σ

From Theorem 5 in the appendix and the definition of μ it follows that if U e Hi +15

Hence,

V ( U 5}
« = 0 \j = bι+n

C4L
i + l ) π = l

L l / 2

(J )
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for some constant C. Therefore,

313

oo Γ -i p

μ(J0)<μ(H0)+ Σ Π (^ + l ) N Σ nμiB^
ί ί U 0 J i b

<μ(H0)+ Σ

0 )+ Σ Γlff (^
i = l U = 0

This sum converges since by bound 1, s[+\<si + f - st

 4 sf_f ...S! 4 , hence

*>A7I
 lΠ (̂  +i)<(^Γ+f)(^+fte-i + i)) lΠ (vl(^ +1))
i=o j=o

3ε

π v
0

and this product approaches 0 faster than an exponential rate. •

Appendix

In this appendix I give some background material on sufficient conditions for the
existence of finite absolutely continuous invariant measures for some Markov
maps on an interval.

Continuous Invariant Measures and the Folklore Theorem. The simplest non-trivial
example of a continuous invariant measure is for a linear map consisting of
branches that map onto an interval Let the unit interval / be divided into a
countable union of disjoint intervals, I=\J Hb and T:I\—>I maps eachH^ linearly
onto /. Then for any measurable set E C /,

hence lebesgue measure is invariant.

If such a transformation is distorted in such a way that
Tn\x)

τn\y)
is uniformly

bounded on branches of T", then a continuous invariant measure is given by any
Banach limit μ = LIM U T~n: By the properties of the Banach limit, μ is finite,
positive, finitely additive, and invariant under T. It remains to be shown that μ is
countably additive and continuous. Let 1 be the partition formed by {iϊj and ln

= T'n{I). Suppose that Tn'(x)
<B for Vn and \/x,yeJe J". If F is a measurable

set in any J e J" and E - Tn(F), then Tn: F -1 1 °nt°> E, and so

/ ( £ ) = $\Tnf\dl.
F
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But T":J >/ and
Γ"(x)

i m p l y B~ W)<' T"'WI < B W)for x e J H e n c e

or

1 w An B
B 1(1) l(J) 1(1)

Thus for any measurable set E and any J e <£",

1W KT~"(E)nJ)
<

β /(/) l(J)

Summing over all J e Ά" yields

)= Σ KT-"(E)nJ)^ Σ

<

JE)

Combining this with a similar argument yields

D

Thus B - l(E) ̂  μ(E) ̂  — l(E) implying that μ is countably additive and continuous
B

with respect to lebesgue measure.
Weiss, Flatto and Adler (see Adler's afterword to Bowen's paper [1979] for a

discussion of the somewhat nebulous origins of these ideas) used the notion of the

logarithmic derivative -— log|T"| =

log
Tn/(x)

τn\y)

dx

n - 1

to establish a bound on the quantity

log\T'(T\x))\-log\V(T(T\y))\=
Tk(x

r(tή

) T'(M)
du

is bounded by B and T is expanding, T > L > 1, it can

be concluded that

Tnf{x)
log

Tn'{y)

n- 1
v^

fc = O

^ Σ

Tk(jc)

(y)

J
Tk(x)

<
L-ί

This approach does not involve checking conditions for arbitrarily large iterates

of 77 A similar conclusion can be reached if the quantity
Ί"

(T'f
is bounded. This is a

weaker bound to establish and is independent of scale changes in the domain,



Continuous Measures in One Dimension 315

hence is a more desirable notion of distortion to work with. If
change of variables w = T(u) in the integration yields

T"
< B, then a

log
Tn'(x)

Tn\y)

» - 1

= Σ
n - 1

= Σ

Tk(x) Γ(u)

L - l

[where if w e ( T f e + 1 ( 4 T f e + \u)) then Γ ^ w ) is taken to be in {T\x\ T\y)).~]
These results plus a result on bernoullicity was finally stated by Adler [1975],

and due to its nebulous origins was called the Folklore theorem:

Folklore Theorem. Suppose T: /h->/ where I is a union of disjoint intervals 1= [JHi

such that T is C2 over each interval Hi and T:Hi >/. //3JB, L>\ such that

\T'\>Land
T"

<B, then there exists a finite absolutely continuous invariant

measure with respect to which T is bernoulli.

Generalization to Markov Maps. These results are readily generalized to certain
Markov maps. Let T: Jh-> J be a piecewise monotone C 2 transformation with base
partition 1 formed by the intervals over which T is monotone, and image partition
0t formed by T{Ά). Then T is Markov if Ά refines 01, and is said to have a finite
image partition if 01 is finite.

If T is linear over each interval in Ά then the set of measures that have constant
densities over the intervals of 0t is a finite simplex mapped into itself under
composition with T " 1 and thus contains a fixed point, i.e. an invariant measure
with constant densities over each element in Ά.

Let Άn=T~n(Ά\ then T is said to be of bounded distortion if
T\x)

Tn\y)
<βfor

Vx, y e J G Άn. The map T is said to be uniformly expanding if | V \ > L > 1. As before,
rrift

T will be of bounded distortion if T is uniformly expanding and is bounded.

The following theorem is a generalization of the folklore theorem and the proof is
left for the reader.

Theorem 1. // T is a uniformly expanding C2 Markov map with finite image
partition and bounded distortion then T has a finite absolutely continuous invariant
measure.

Proof Let μ = LIMh T~w, then μ is positive, shift invariant, and finitely additive.
Let E be any measurable set. With {JR f}=^ let E~EnRim

Fix i and let J be any component of l n such that Tn(J) = Rt. As in the proof of
the Folklore Theorem,

< Ό

l(Ei)
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Summing over such J's yields

1 /(EJ l(T-"(Ed) m
Bl(Rt) l(T-»(R$ KRiY

Hence

There are only a finite number of R^s and the Banach limit is finitely additive.
Hence l(T ~ n(I)) = 1(1) implies that there is some nonempty collection J of is such

that LIMl(T~n(Ri))>0 for ief. Let K,= min L/M—T,. ^ and K2

- max L/M / ( Γ " ( i ^ . Then for i
i^ l(Rd

hence μ is a finite absolutely continuous invariant measure. •

Markov Maps with Infinite Image Partition. If 01 is allowed to be infinite the
difficulty arises that points may become absorbed into arbitrarily small portions of
/. For example, take 0<α< 1 and let T be the transformation on / = [0,1] that
consists of linear branches mapping each interval [1 — αw, 1 — αn + 1) linearly onto
[1—α""1,l)forn = l,2,... and mapping [0,1 - α) linearly onto [0,1) (see Fig. Al).
This transformation has a finite absolutely continuous invariant measure iff
α < 1/2. If α > 1/2 then high iterates of the map become increasingly dominated by
arbitrarily short branches.

It is possible to take a < 1/2 and very close to 1/2 and perturb T in such a way
that it is expanding, has bounded distortion, and yet will not have a finite
continuous invariant measure. [The proof of Theorem 1 breaks down in this case
in that it is possible for LIM l(T~n(Hi)) = 0ϊoτ all i.] Thus expanding maps of this
type with bounded distortion can behave quite differently from their linear
counterparts and the need for additional criteria is clear.

The remainder of this appendix is concerned with establishing sufficient
conditions for the existence of a finite absolutely continuous invariant measure
for some expanding markov maps of bounded distortion for which 0ί is infinite.
These criteria will be used in the main paper and are based on establishing an
asymptotic bound on the ratio of longer to shorter branches.

Let T be a uniformly expanding Markov map with base partition Ά and image
partition 01. Let 9* be the collection of intervals that are images of intervals in Ά. It

will be assumed that ^ = {5^ is countable, with Z (J St ->0 as fe-^oo. Let
\i=k J

T = T~\Ά) and let Άn

k be the collection of intervals in ln which map onto Sk under
a single branch of Tn. If 3ε > 0 such that l(£l) > ε for arbitrarily large n and k and T
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is transitive, then T will not have an absolutely continuous invariant measure. It is

( °° \thus necessary that I ( (J J " ) —>0 uniformly in rc as fc-*oo for the existence of an
\i=k J

absolutely continuous invariant measure. This turns out to be sufficient.

Theorem 2. // T is a uniformly expanding C2 Markov map with bounded distortion
/ 00 \

and 11 (J Άn

t J ->0 uniformly innask-^oo, then T has a finite absolutely continuous
\ί = k J

invariant measure.

Proof Let μ = LIMl° T~n. Then μ is finite, shift invariant, and finitely additive.
00

Σ Z(J£) converges uniformly in n, so for measurable sets E,

as

uniformly in n. Hence μ is countably additive and absolutely continuous.

The property that /1 (J J " I -*0 uniformly in n as k^-oo involves arbitrarily

high iterates of T. If there are sufficiently good estimates on the ratios of longer to
shorter branches for T, this property can be established by analyzing how short
branches become longer and long branches become shorter under iterates of T.

Pick an arbitrary integer k and call branches that map onto So, Su ...,Sk^1

long branches and branches that map onto Sk, Sk+U... short branches. Then

is the ratio of points in St that lie under long branches of T. Since Tm{lψ) = Si9 and T
is of bounded distortion, this is an estimate of the ratio of points in 1™ that lie under
long branches of T m + 1 .

It will be hypothesised that there is a good ratio of points in St that lie under
branches of T mapping onto So, S γ,..., Sk _ x. The ratio of long branches for Tm + ^
will be estimated in terms of the ratio for Tm and an asymptotic bound will be
established.

Theorem 3. Suppose T is a uniformly expanding C2 Markov map with bounded
00

distortion and 3τk with £ τ fc<oo such that
k= 1

if U

for i = 0,1, ...,fc-M. Then there exists a finite absolutely continuous invariant
measure.
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Proof

( k

\i = 0

0 0

fc+1

PΓ)

S. D. Johnson

fc+1

Hence by repeated application,

k + m k + m

il U ^r+1 >/ U ^ Π (i-B^),
\i = 0 / \i = 0 / j = Λ

and this quantity approaches 1 uniformly in m as /c->oo, hence a finite absolutely
continuous invariant measure exists for T by Theorem 2. •

The case where the St are nested, So 3 Sί 3 ..., and J/ C Sf so that the branches in
Si — Si+1 map onto S, or larger arises naturally in repeated induction of certain
unimodal maps. The following result holds.

Theorem 4. Suppose T is a uniformly expanding C2 Markov map with bounded
distortion and image partition ϊf = {S J , where SODSXD... and Ά\ C St. If 3τ < 1 swc/z
ί/iαί

then there exists a finite absolutely continuous invariant measure μ for T with
μ(Sk+ 1 )<G 1 τ / c for some Gt independent of k.

Proof The measure exists by Theorem 3, and is a Banach limit of h T~" 5

k US )
U ®l

= k + l

( ΰ r̂

i = 0

t ϊ ) Π
i=0 ) j=k

hence

<G 1 τ ί l

_Π
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for some G1 independent of fc, since I 1 — Π (1 ~Bτj)J is dominated by £ τ'3

\ J=k ) j=k

which in turn is dominated by τA •
T"

If the sum of l(Sm) is finite, then it is possible to allow on any branch of T

to vary according to the length of the branch and still preserve bounded distortion.

Theorem 5. // 3{σm}, L>\ such that \T'\>L,

then 3G2 such that

rriff

<σm,and

sup w(y)

Proof. Fix any n and x,yeMeΆ". Then for fe = 0,1,...,« — 1, Tis continuous and

monotone on [Tk(x), T*(j;)]. Let Ψm = {k<n: T\x)eΆι

m) and /cm = max{fce Ψm}.

Then

log
"'(x)

Σ \og\r(τk(x))\-\og\r(τk(y))\= Σ Σ
k=ί m = 0 ke'Fn Tk(x) T'(t)

dt

= Σ Σ
m = 0 ke τJHx)(T\T-\u)))2

Σ Σ σnΣ Σ
= 0 keΨm

L-i L—t rn

m=O keΨm

/(SJ<cx). D
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