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Abstract. Families of unimodal maps satisfying
(1) T,:[—1,1]—[—1,1] with T(+1)=—1 and |T;(1)|> 1,
(2) Ty(x)is C? in x* and 4, and symmetric in x,

(3) Ty(0)=0, T;(0)=1 with gd; T,(0)>0

are considered. The results of Guckenheimer (1982) are extended to show that
there is a positive measure of / for which T, has a finite absolutely continuous
invariant measure.

The appendix contains general theorems for the existence of such measures
for some markov maps of the interval.

(A) Introduction

Jakobson published a theorem in 1978 that states that for the family of unimodal
maps T;:[0, 17— [0, 1] defined by T,(x)= Ax(1 —x), there exists a set of parameters
/. of positive lebesque measure for which T, possesses a finite absolutely continuous
invariant measurc.

Since that time there have been several attempts to present a more compre-
hendable proof. Rychlik (1986) has produced a cleaner proof than Jakobson
using similar techniques. Benedicks and Carleson (1983) use statistical methods
and a widey different approach to achieve a similar result. Rees (1985) has pre-
sented a proof in the complex case.

In 1982 Guckenheimer proved that for reasonable families of unimodal maps,
there is a positive measure set of parameter values for which the corresponding
map has sensitivity to initial conditions (a map T has sensitivity to initial
conditions if 36>0Yx, 0>03y, |x~y| <9, dn, |T"(x) — T*(y)| > ¢). Specifically, he
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considered the class of one parameter families of maps ¥ ={f,} which satisfy
(1) T;:[—1,1]—>[—1,1] with T(+1)=—1 and |T;(1)|>1,
(2) Ty(x)is C? in x? and A, and symmetric in x,

(3) Ty(0)=0, T,(0)=1 with % T,(0)> 0.

The idea of the proof is a simplification of Jakobson’s approach, and relies on a
recursive geometric construction. Since detailed estimates need only be carried out
for one typical recursive step, such a construction provides a geometric skeleton
for the calculations involved. This presents a conceptually simpler proof.

In this paper I demonstrate that for the same parameter values for which T, was
shown to have sensitivity to initial conditions, there is actually an absolutely
continuous invariant measure for T,.

I am indebted to the guidence of John Guckenheimer and to many constructive
discussions with Don Ornstein and Yitzak Katznelson.

This proof differs from other proofs of Jakobson’s theorem in two ways. Firstly,
relying on the geometric construction to organize and simplify allows the reader to
have a more clear picture of what is involved in the proof before (or without) going
into the details. Secondly, the appendix contains several theorems for the existence
of a finite absolutely continuous invariant measure for certain markov maps of the
interval. These theorems are tailored to be more easily reached through the
technique for inducing, thus the inducing steps can be simpler without losing the
conclusion of the existence of an absolutely continuous invariant measure.

A brief description of Guckenheimer’s method is as follows. First, the original
unimodal map T, for A near 1 is induced on an interval J, around 0, producing a
symmetric map T; , with monotone branches and a folded piece over an interval
J, (see Fig. A1).

This is best understood by letting h=T,|,;_,, and considering the preimages
h™"(Jo). fT,(0)e I'e h™"(J ), then as 4 is varied so that T,(0) moves from one end of
I" to the other, the tip T} ,(0) of the induced map will move from the bottom to the
top of the induced picture, and the number of monotone branches will remain the
same although they will go through a continuous deformation. If 1 is chosen
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sufficiently close to 1, T; ; will have a finite number of monotone branches with a
uniform bound on their linearity and |T{ ,/> L>1, and the central folded branch
can be made arbitrarily sharp.

The variables can be renormalized so that the interval J, can be considered as
[—1,1] and the tip T; ;(0) moves from bottom to top as /. moves from 0 to 1.
Excluding from consideration those A’s for which T; ,(0)eJ, this map is then
induced on the interval J, producing a map T, ,(x) with countably infinite
monotone branches and a folded piece over a central interval J, (see Fig. A.2).

Again, this map can be understood by letting h; , =T, ,|;,-,, and considering
the preimages hy j(J,). As A varies so that the tip T; ,(0) moves from one end of a
component I" e hy "(J,) to the other, the tip T, ,(0) of the induced map will move
from the bottom of its graph to the top, and the entire graph will go through a
continuous deformation. The central folded piece of T, ; is a result of the central
folded piece of T, ; being composed with the monotone branches of T; , n; times.
Thus if n; is very large the fold becomes quite sharp, since T, ,(0) increases
exponentially in n,. In this way the relative length of J, is controlled by the
duration of return time. The slope and distortion of the linear branches of T, , can
be controlled by insisting thatif T, ,(0)¢ I'e hy j(J,) then T; ,(0) lies sufficiently far
away from I so as not to distort the linearity of the corresponding branch.

Thus by making some careful parameter exclusions, the map T, , will have
sufficiently linear and steep monotone branches, and a smoothly folded and
sufficiently sharp central folded branch.

This map is renormalized, parameter values for which T, ,(0)e J, are excluded,
and the map is induced on J, producing a map T;_, and the recursion continues in
this manner.

In order to arrive at a good final picture for this recursion process without
excluding too many parameter values certain estimates must be carried through-
out the process. This is done by establishing bounds which control the linearity
and slope of the monotone pieces, the distortion and sharpness of the quadratic
piece, the speed at which the tip moves, and the way the picture deforms with
respect to changes in the parameter. Given a map which satisfies those bounds,
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new bounds are calculated for the next induced map. By excluding certain
parameter values at each step Guckenheimer shows that the bounds remain finite
or go to infinity at a controlled rate. By showing that proportionately fewer
parameters can be excluded at each step, he concludes that the entire recursion can
be done for a positive measure of parameter values.

One thing that must be shown in order to exclude proportionately fewer
parameters at each step is that the central intervals are proportionately smaller,

IJ
that is e+ 1) < o)
I(Jy)  ~ UKy-y)
the above mentioned bounds for which I(J,) < CS, /2. Since S, behaves exponen-
tially with respect to the duration of return time, parameters can be excluded so as to
make return times sufficiently long to conclude that S, , ; > S¢. Thus the S, grow at
a fast double exponential rate and central intervals are proportionately smaller.
The final picture is a sequence of nested intervals J,CJ, C... withthemap T,, ;

onJ,—J,, , consisting of branches mapping over J, with slopes | T, ;|>L>1 and

7

Letting S, =T;”,(0), there is a constant C depending on

distortion |—2* <2%D.
(TPl - N
From this picture it can be concluded that the original map has sensitivity to
initial conditions.

For a more detailed exposition of these ideas, see Guckenheimer (1969, 1982).

(B) Assumptions, Definitions and Bounds

Definition. For a transformation T € C* the distortion of T at a point x is defined as

. 1 T"(%)
dlS(T) (X)— W .
Then dis has the composition formulae:
. . 1 .
dis(T} o T5) (x) = dis(T) (To(x)) + T dis(T3) (x),
dis(T") (x) = nil B S dis(T)(T" > Y(x)).

=0 (T (T"%(x))

What is demonstrated by this last formula is that under repeated application of
a map to a point, the distortion that is caused under any one application can be
reduced through subsequent stretching. In the appendix of this paper it is shown
that certain expanding markov maps with bounded distortion and arbitrarily
short branches mapping onto neighborhoods of a central point ¢ may possess an
absolutely continuous invariant measure by virture of having a good ratio of
longer branches near c.

It will be assumed that a parameter value 1 is given for which Guckenheimer’s
construction can be carried out indefinitely. It is assumed that at the i step of the
recursion there is a map T;: J,;—J; consisting of monotone branches mapping onto
J;, and a central folded piece over a central interval J;,; (see Fig. B.1).



Continuous Measures in One Dimension 297
ﬂz X

Definitions. Let H;=J,—J,, ,, and define h;= T}y and f,=T], , so that h, is the
monotone branch part of T; and f;is the central folded piece (see Fig. B.1). Let s, 4

= f(0) (where 0 is the critical point of f;). To exploit the quadratic nature of f; let
q(x)=x? and define p; such that fi(x)=p;cq(x) for xeJ,, ,.

I

Fig. B.1 Hoo | Jir

It will be assumed that there exist positive bounds D, L>2, K,, K,, K3, K,
and K such that for all i:

Bound 1. s;,,> s},
Bound 2. dis(h))<2'D,,
Bound 3. |hi|> L,
Bound 4. dis(p;)<K,,

1
B . —
ound 5 K <

2

2p;

Si+1

<K,,

Bound 6. I(J;, )< Kss; %,
Bound 7. I(J,.)>K,s; .Y,

I(J;
Bound 8. =~ < Kgsi it

Bounds 1-4 are directly from Guckenheimer (1982), bounds 5 and 6 follow
from bound 4, bound 7 is a consequence of a parameter exclusion in Gucken-
heimer (1982), and bound 8 follows from bounds 6 and 7.

(C) An QOutline of the Proof

Guckenheimer’s recursive step can be viewed in terms of a stopping time n(x). The
preimages of J;,; in J;, under H; form a set of intervals NCJ; such that

1 - lonto

ht:N -———J,,, for some n=1,2,3,.... These intervals fill up all of J,, so it
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possible to define an integer valued function n{x) almost everywhere on J,, ; by
nx)=niff fix)eh"(J ;).

This makes it possible to write T, ; explicitly in terms of T; as T;, ; = h?'®f(x)
for xeJ;, ;. If I' is the preimage of J, , , under h, that contains f;(0) and =, is defined
as m;=n,0), then f; . (x)=h"f(x) for xe f;”}(I'), hence f;”*(I') will be the new
central interval J;,, of T,+1. Also, h;, (x)=h"Yf(x) for xeJ, ., — f;" 1.

1

Since dis(f;) (x) behaves like —— e 5 for x near 0, the parameter exclusions in
1+ 1

Guckenheimer (1982) must be chosen so that 7; is sufficiently large as to ensure

bounds 1 and 4, and ny(x) is sufficiently large at all x to ensure bounds 2 and 3.

The idea in this paper is to leave 7; and the definition of f;,, as is, but to
redefine n,(x) slightly smaller so as to allow sufficient longer branches to satisfy the
hypothesis of Theorem 4 in the appendix. The conclusion will be that a finite
absolutely continuous invariant measure will exist for T;. By restricting A
sufficiently close to 1, T;, will have a finite number of branches, thus producing a
finite absolutely continuous invariant measure for F,;. The proof is outlined as
follows.

Consider T, on J,, where J, is assumed to be a symmetric interval around 0 of
length less than 1. Let # be the minimal partition of H, with respect to which A is
continuous and monotone. Let 2, be the partition of J, consisting of #Z and J,. Let
P, =hgy (P,) v J,, so that for any M € 2, either M =J,, ho(M)=J, or ho(M)e A.
In general, let Z,=hy Y(#,_,) v J, so that for any M e 2, either h§(M)=J, for
some k=0,1,...,n—1 or h%,” (M) e . The partitions #, form a refining sequence,
and since 2, contains the sets hy ¥(J,) for k=0,1,...,n—1, these partitions are
increasingly dominated by preimages of J,. It is these partitions that will be used to
define a new stopping time rather than the partition consisting entirely of
preimages of J;.

Define z, sucht that (—z,z,)=J, and consider f, on J,. The distortion dis( f,)

behaves like Sl? for x near 0. For n=0,1,2,... define x, such that dis(f,)(x)
1

<[ 'D, for xe(—z,, —x,)u(x, z,). It will be shown that x,—0 like

(s;I'"'Dy)"** (If f, were quadratic with fy=s, then x, would equal

(s;,'"'Dy)"*2) Let B,=(—x,_, —X,)U(x,, X, ). These sets B, will give a lower

bound on how small the stopping time may be taken and still preserve a reasonable

distortion.

As before, let I' be the preimage of J, which contains f,(0), and let J, = f,~ }(I')
with z, taken to be such that (—z,, z,) = J,. Since n,, is such that hg°(I') = J , then f;
can be defined as f,(x)=hg’fy(x) for xeJ,.

Since f, will have some amount of distortion at z,, let b, be the minimal n such
that x, <z,; that is, such that dis( fo) )<L 'D,. Let ¢, be the minimal n such
that x, > z,; that is, such that dis(f;) (z,) <L" 'Dy. Redefine B, =(—zy, X;,)U(Xp,,

zy) and B, =(—x,, - 1, —2,)U(z,, X,-1)- Now H,;=J,—J, is partitioned into
dlSjOIIlt sets By, ..., B,,, such that dis( o)z, <L~ 'D,.

On H, a stoppmg time #n(x) will be defined creating a new function g,(x)

= h®fy(x)for x € H,. This will be done in such a way as to satisfy three conditions:

Markov Condition. The map g, must consist of monotone branches mapping onto J
or J | with a high proportion of them mapping onto J .
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Linearity Condition. The stopping time n must be large enough to ensure that g, has
reasonable distortion and good slope.

Return Condition. The stopping time n must be small enough to allow a finite
measure to be pulled back through it via a Rohklin argument to another finite
measure.

In order to satisfy the markov condition, the sets B, will be moved slightly so
that fy(B,)fits into the partition 2, ; that is, new sets B, will be defined such that the
endpoints of the intervals fy(B,) will be division points in the partition 2, for
n=by, ...,e,. This can be done in such a way that B, will still provide a lower bound
for how large n must be in order to satisfy the linearity condition, as well as

=n+1
allows n to be taken as small as is reasonably possible to satisfy the return
condition.
The stopping time # will be defined as follows: For x € B,, consider the position
of x in 2,. Either fy(x)ehy*(J,) for k=0,1,....n—1 or fo(x)ehp™ (M), where

1 - 1onto

Me# is some interval for which hy:M ——J,. If fy(x)ehy (J,) for
k=0,1,...,n—1 let n(x)=k. Otherwise let y(x)=n.

Then g,(x)=hl"f,(x) is defined on H, and consists of monotone branches
mapping onto J, or J, (see Fig. C.1) and compare with Fig. A.2). A branch of g,
that maps onto J, will be identical with some branch of 4. Indeed for any x such
that g,(x) e J, it will be the case that g, = h, for some neighborhood of x since both
functions represent the first return of fy(x) to J, under h,. Consequently the
distortion on the branches of g, that map onto J, is bounded by 2D, and their
slope is greater than L by bounds 2 and 3 on h,,.

On the other hand, if x lies under a branch of g, that maps onto J, let n be such
that x € B, then dis( f,) (x) < [’ ~'D, and by the way B, will be defined it will follow
that (x) = n. Hence dis(hf,~ ' f,) (x) will be of the order D,, by the composition rule
for distortion and the fact that |hy| > L. Furthermore, if x € B, and #(x) = n, then x

eo -
preserving the property that [ (  BwJ 2) is of the order (s, 1" " 'D,)~ '/* which
k

Fig. C.1
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will be of the order (s,L7~'D,) " */* and gi(x)=(h{™/,(x)) (x) will be of the order
L[ 2s, (s~ 'Dy)~ Y2 >s}/* assuming s, is large compared with L and D,

For convenience, let go(x) = hy(x) for xe Hy=J,—J. Then the estimates for g,
on J,—J, are compatible with the hypothesis of Theorem 4 in the appendix.

At the i step of this process it will be assumed that there is a map g; defined on
Jo—J; 4 consisting of monotone branches each mapping onto one of the intervals
Jo»J 1 ..., J ;. Let Z' be the minimal partition with respect to which g; is continuous
and monotone and for j=0,1,...,i let Z} be the collection of intervals in #' over
which g; has a branch mapping onto J;. It will be assumed that #;CJ;, and that
every branch of g; in #;nH; is identical with some branch of h;. The following
bounds will be assumed for g;:

Bound a. For k<j<i dis(g;)l;,,<2"D; and dis(g)|,i.s, <2'Do,

1/4

Bound b. For k<j<i |gi|lspns,>s;"* and [g]]]s:,,> L.

A claim will be made that the D; remain bounded in the recursion.

A new map g;, , will be defined for x€ H,, ; by using a stopping rule #,(x) and
defining g;, ; =g f{(x). This will be done in such a way that, firstly, g; . ; consists
of monotone branches each mapping onto one of the intervals J,...,J;,; with a
large proportion of them mapping onto one of J, ..., J;, secondly, #; must be large
enough to ensure that g, , satisfies bounds a and b; and finally #; must be small
enough to allow a finite Rohklin pullback of a finite measure.

This process will utilize the following partitions; let i = \/ %;v {J;,} and
k=0

define Zi=g7 (#L_)v{J;y,} for n=2,3,.... Then for any M € #} either g{(M)
=J;+, for some k=0,1,...,n—1 or g/~ '(M)e & for some j=0,1,...,i. These
partitions form a refining sequence and since #. contains the sets g *(J;, ,) for
k=0,1,...,n—1, they are increasingly dominated by preimages of J;, ;.

The set J; . ; —J,,, is then divided up into pairs of intervals B. for n=b,, ..., ¢

such that dis(g)lg <L'~'2'Dy and l< U Bf,uJ,-H) is of the order
k=n+1
(s;4 "~ 12'Dy) " V2. These sets will give a lower bound for #,.

The sets B, will be moved slightly into sets Bi such that f{(B) fits into the
partition 2. This will be done in such a way that B! will still provide a lower bound
for u; and l( U B;;uJ,H) is still of the order (s;, L'~ '2'D,) /2.

k=n+1

Then #, will be defined as follows: For x € B! consider the position of f(x)in 2.,
Either fi(x)e g, ®(J,, ) forsome k=0,1,....n—1or f(x)eg; "~ (M), where M isa
component of Z} for some j=0,1,....i. If f(x)eg;  J;;,) for k=0,1,...,n—1 let
ndx)=k, otherwise let n,(x)=n.

Then g;, (x)=g"f{(x) is defined on H,,, and will consist of monotone
branches mapping onto the intervals J, J4, ..., J;; . Any branch of g; , , that maps
onto J;, ; will be identical with some branch of &, ;, hence will have distortion
bounded by 2:*'D, and slope greater than L by bounds 2 and 3.

On the other hand, if x lies under a branch of g;, ; that maps onto J, for some
k<i+1(thatis, xe 2" "), let n be such that x € B, Then #,(x) will be greater than n
and x will be of the order (s, , " "*2'D,)~ V2, hence g/, ,(x)=(g""™f) (x) will be of
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the order L - 2s;, ;- (s; L'~ '2'Do) ™ /2 >s!/% using bound 1 and assuming that s,
is large compared with L and D,. The dlstortlon will be shown to be bounded by
something of the order 2D,. This is done by analyzing the distortion formula

n(x) 1

dis(g; 4 ) ()= a;] (g2 1 (g1 * " 1f(x)

1
@y (i) B

This formula demonstrates that under repeated application of the map g, the
distortion that is caused by f, or any application of g; is reduced through
subsequent stretching.

The first term of the sum, o =1, contains the distortion of g; at g/~ ! fi(x) and is
already bounded by something of the order 2“D, since g/*®~1f(x)e .. The last

dis(g) (g™~ *fi(x))

term dis(f;) (x), is controlled by analyzing the slope of g; along the

1
(g (fix))
trajectory fix), g;fi(x), ..., g~ 1f(x). In controlling the remaining terms, poten-
tially large distortions of the order 27D, with j > k are balanced against the amount
of stretching that must occur on the type of trajectors that f(x) must have in order
to pick up such large distortions and then land on an #;. A final bound of the order
2%D,, is established. This is the manner in which it is shown that g;, , satisfies
bounds a and b.

As mentioned before, the partitions 2! are increasingly dominated by
preimages of J;, ; as n grows large. It is precisely these preimages that give rise to
branches of g;, , that map into J;, ;. It will be shown that J, , is sufficiently small
so as to make the domination occur so slowly that such branches have relatively
small measure, something of the order s?, , times thc measure of H,, ,, which is
sufficient for the hypothesis of Theorem 4 in the appendix.

Since points x € B are of the order (s, ;1" '2'D,)~ /2, bound 7 can be used to
cstablish that e, is bounded above by something of the order logs; . ,. For xe H,, |,
nx) s un1formly bounded by e;. With 7; such that f Yeg; ™(J;4 ) the details of
the construction will yield that m;<e. If m;,,(x) is defined such that g;,,(x)

=Ty *™x) for xe H,,; then m; ((x)< ] (e;+1).
k=0

The limit of the recursive process will be a map g, : Jo+—J, which, satisfying
the hypothesis of Theorem 4 in the appendix, posesses a finite absolutely
continuous invariant measure u. Using a Rohklin argument this measure can be
pulled back to an absolutely continuous invariant measure for Tj, iff the integral
[ m(x)du is finite (where m . (x) is such that g (x)= TJ"~™(x)). It will be shown that

this integral is finite if the sum Z ﬂ (ex+1)- u(H,) is finite. This sum converges

since e, is bounded by somethmg of the order logs,, ;, and the results of
Theorem 4 imply that u(H,) is bounded by something of the order s, ;.
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(D) Detailed Proof
1. The i*™ Recursive Step

1.a. Assumptions on g;. To begin the recursion, let g, = h, on H,. At the i" step of the
recursion it will be assumed that there is a function g; defined on J,—J;
consisting of branches %} mapping onto the intervals J, for k=0, 1, ..., i. It will be
assumed that . e J, for k=0,1,...,i. The function g; will be assumed to satisfy
bounds a and b. The functions h; on H; and f;= p,(q(x)) [where g(x)=x*] on J;,,
will be assumed to satisfy bounds 1 through 8. It will be assumed that the branches
RinJ, of g; are identical with some branch of h,.

1.b. Distortion of f,. Let z;,, be such that J,, ,=(—z;,, Zit ) Define x
=inf{xeJ;, |, x>0; dis(f) (x) S L'~ 2Dy}, and let b;=min{n; x; <z;,,}. Let Bj,
=(—z;41, —Xp)U(x}, z;4 1) and for n>b;, let Bi=(—x!_,, —x})u(xi, xi_,). For
convenience, redefine x;, =z, ;.

Thus J,,, is partitioned into sets B. such that dis(f;) over B is at most
L'~12'D,,.

Lemma 1. 3C, independent of i such that

1

(T(SHan_lziDo)_l/z <X, <Cy(s;4 L7 12'Dg) " 12
1

Proof.
()2 =dis(q) (x;) = (dis(g;) (x;,) — dis(p;) (q(x;)pig(x;,)

. 1 .
2|7 12Dy~ K |5, > o (s, L 12'Dg)
1

i+1 2K2
for some C'| independent of i. Similarly,

30) 2 S (L2 Do+ K )i 1 2K, S C(sie 1 L1 12Dg)

C 1/2 A
for some C7 independent of i. Let C; =max << 21> , (2C’1’)”2). 0
Let 4,= f(B;) and y,= fi(x).

Lemma 2. 3C, independent of i such that
o 2D < O < G 2Dy
2

Proof.

|[fiGe) — flO) = | fi(Ddi) = Si+1 I q'(t)dt

'I piq(t)q'(t)dt| <

K . K i
= —,%s,»ﬂ<x;)2< TZ(CI)Z(U 12iDg) L.
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Similarly,

D01 > 5 s> (D). O

1
2K,(C,)

1.c. The Partition. Define the partition 2} = v Ry, v {J,;,} and recursively define

Pl=g (P _)v s, Then {5/’; _,isa reflnlng sequence of partitions, and 2
contains g; ¥(J,;, ) for k=0,1,...,n—1, hence these partitions increasingly appro-
ximate the set of preimages of Ji+1 under g
Define 7; to be the return time of f(0) to J;, , under g;; that is, g!f(0) ¢ J, . ; for
n<m; and gFf(0)eJ;. . Let N, be the component of g; "(J,, ,) containing f;(0).
In order to ensure that g, , ; is markov, the sets A} will be redefined so that they

n—1
fit into the partitions #.. For n>b,, if yie |) g “(J; ), then let Ji; be such that
k=0

n—1 n—1
(v, 7 C U g ¥(J,4 1) and |§ — £,0)| is minimized. If y ¢ U g "(J;. ), thenlet M
be the component of !, | containing )% and let j be such that (y, 7)e M and
|vi— £(0)] is maximized (see Fig. D.1). It is quite p0531ble for many of the ji to be
identical.

Let ) be the endpoint of N; covered by f(J; ) and let a’, be the remaining
endpoint. With 7, as defined, He such thdt Jw=aj for nze; and Ji¢[a,ay] for
n<e. Let Jj ;=i ;, and redefine j so that j, =d}. Only the points
Vb, —15 - Ve, Will be considered in the following arguments.

Forn b, ...,e;let AL =(§_, 7). The endpoints of A¢ lie in the division points
of the partition J},, and 4! is divided up by that partition into intervals each of

~.

Ya
y"" 1 ylll J yé\+1
| L !
T AN 1 7 T
g5 () SN
fi (0)
.
y'l" 1 y:: y:wl
1 Il AY 1
al AN T 7 T
M ——>

Fig. D.1 £, (0)
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which is either a component of f7%J,.;) for k=0,1,...,n—1 or of

()

Lemma 3. 3C; independent of i such that for b;<n<e,

70— flO) < CsL™ "3, — f(O)].

Proof
[Vp, —1 = SO} =1/i(z; + 1) — fiO)| > C,H(L L7712'Dg) !

by Lemma 2. By bound 6, I(J,, )< K;s;2'/% hence the maximum length of a
1/2

component in Ais less than L™ 'K 35, /? and the maximum length of a component
in #.nJ, is less than s, '/* for n <i. With the assumption that L™ 'K s;, +11’2 <s; 14
an upper bound of s; '/# can be used for the lengths of components in \/ . Then
either |3, — f(O)| < |y, — f{0)] or |5, —y,[<L™"" Vs /% Hence
17— JHO)] < Co(Lr ™ 127Dg) ™' 4 L™ Vs A< L7 Co (L 12'D)
+ L0 Vs U < L7 0TPIC | fiz,4 1) — fO)]

for some C; independent of i, assuming s/ '/*

C,2'D)" " O
Let 5= f;'(50)n[0, 1] and B = f;"(4}).
Lemma 4. 3C, independent of i, such that for n=»b,, ...,e;,

is small compared to

n*bl
%, |<C4L *lzial-
Proof ‘ )
%)~ ) = ‘ [ fioe] = "f PaON O] > 5 iy ()?
0 0

n—b;

Hence by Lemma 3, 3C, independent of i such that |%i|<C,L 2 |z;,,. O

The following will allow the measure to be pulled back in a finite fashion at the
final section of the proof.

Lemma 5. 3C; independent of i such that b;<Cslogs;,, and e;<Cslogs;, .
Proof. |x, _1|>]z;, ,| implies by Lemma 1 and bound 7 that
C1(5i+1Le"22iDo)_1/2>|x >z > 3K s

hence
2C 20,

[A72<s?, -
' !+12D0K

!
C Sit2

for some C’ independent of i, thus ¢; < C’logs; ., for some C5 independent of i.
Similarly, b, being the minimum such that [x} [<|z;,| yields

Cils;4 1722 Do)~ 2> |z 4| >3 Kasih
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hence 2¢, 2,

Lb'_1<Si2+1 § =54, =
S;i+12'DoK 2'D,K,

<C"s;1+4
for some C” independent of i, thus b, < C% logs; . , for some C% independent of i. Let
Cs=max(C5, C3). [

1.d. Definition of g;,. H;, is divided into sets B! for n=b, ...,e; and each Bl is
further divided by f;"'(#)) into intervals. Take any M e Binf,” }(#}) for any
n=b, ...,e; Then either f(M)is a component of g; ¥(J,, ;) for some k<nor f(M)is

a component of g~ " < \/ %3) For x e M define y(x)=k if f(M)is a component of
ji=0

g7 %(J,. ) for k<n and n(x)=n otherwise.

For x¢J.. let g, (x)=g(x) and for xe H; let g, (x)=gI"*f(x). For
xelJ; , let fi,,(x)=glf(x), where 7; is the return time of f}(0) to J,,, under g,

For xeJ,—J;,, then, g;,, consists of monotone branches mapping onto J,
Jisoondioq. For k=0,1,...,i+1, let 2.7 > %} be the collection of intervals that
map onto J, under an entire branch of g, , . Note that g; had no branches that map
onto J,,, but g,, , might, hence Z:11cJ,,,.

In the definition of A!, either A’ contained y'_, or else y._, was in a
component M of g; “(J,, ) for k<n—1 in which case A} and M are disjoint and
share a common endpoint (see Fig. D.2). Thus is established the essential fact that

N I
A A I
r N
Vi Ve
—t
;__w____
Al
—
f. (0)
AL
Vi
[ |
1 1
\—_ﬂ—---
Al
—_—

Fig. D.2 £, (0)
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for x € B, either n,(x)=n or y,(x) is the first return of fi(x) to J,, , under g,. If (x) is
the first return, then g;, (x)=h;, (x), and hence the distortion and slope is
controlled by bounds 2 and 3. Otherwise the distortion and slope is the subject of
the following calculations.

1.e. Verification of Recursive Bounds. Recall the recursive bounds a and b stated
earlier

Bound a. For k< j<i dis(g;)|4.s,<2"D; and dis(g))|:.s, <2'D.
Bound b. For k< j<i|gl|ai,,>s;"* and |g}l|z:.,,> L.

Proposition. Under the recursive definition of g;., bound a and bound b are
satisfied in such a way that the D; remain bounded.

Proof. Bound b is satisfied by

lgi+ 1) = (gl /) () =gV (p:g(x))pi{q(x))q'(x)|

1 2
(Lﬂ)<2K2 z+1> <C1 (Sis 1L 22D) 1/2>>511441a

assuming that s;/%>C,K, 22D”2.
Bound a is more 1nvolved Recall the distortion formula:

n(x)

dis(g; 1) (x) = 2

1 . :
(g Y (@9 T () dis(g,) (g7 ~*fix))

1
+ @ (10 dis(f;) (x).
@y )
First it is possible that g?f(x) all lie in Z:nH, for «=0,1,...,n—1. Then
- L+1
dis(g; 1) (x)< Z N 2Dy + L"L 12iD, < ﬁ2D0

In particular this starts the recursion for i=0.
Otherwise one of gif(x) for «=0,1,...,n—1 lies in #,NH,; for some k<i,
making g?’j’i(x)>s?/4, and so for the last term in the distortion formula,

dis(f}) (x)<s; VAL 12D < s, 42D, .

g,f,( )

With j taken to be such that g/~ ' e % (that is, x € ;" ), consideration of the
sum from a=1 to a=#n divides into two cases; elther 4 1f(x)e,@?'r\H or
gl fix)e #:nJ ;. (note that if j=i then the latter possibility is vacuous).

Suppose that g/~ 'f(x)e #:nH;. Then for a=1, dis(g;)(g! 'fi(x))<2'D, and
gi(g! ' f(x))> L. For any a=2,3,...,5 consider the term

1
(g ) (gl fiux)
and let k be such that g’ *f{(x)e Z..

dis(g;) (g7 ~*fix),
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If k< then

1 1 .
—a 2k 2D..
@ (@ ) e (8! i) < Dis p=r 2P

La 1 I 1 i
If k> jthen one of g/ ~** fi(x), ..., g ~ *fi(x) must land in #,,nJ, for some m <k,
because g/ *e #j implies g/ *"'fi(x)eJ, and since g/~ 'f(x)e H; with k> j the
trajectoryof g ~** ! f(x) must bounce out of J, sometime. Then (g~ ') (g7 ~** *fi(x))
> [#7 2s}/* making
1
(gF 1) (gr " Hfilx
assuming that 2s, /% <2/,
Under these circumstances then,

. 1 .
dis(g) (¢! *fi(x)) < —y=5 =175 2'D; < L™~ V2D,
)) Lr==s,

-1

dis(g; 4 1) (x)<2/Dy+ Z T

1 .
YDits; 42 Do < VDot 1 YDit s 42Dy

Suppose now that g/~ ' fi(x) e #;nJ; .., and let w> j be such that g}~ ' fi(x) e %!
NH,,. Then for a=1, dis(g;) (g7 1f(x))<2’D and gi(g!” 'fix))>sY* For any
o<=2,3, ...,#—1, consider the term

1
(g1 (gl fix))
and let k be such that g7~ *f{(x)e Z..
If k<) then
1
(@) (gl " fix))

If k>wthen one of g7 ~* " 'f(x), ..., g" 2f{x) must land in #! ~J, for some m >k
making

dis(g) (g *fi(x)),

. 1 .
dls(gi) (g?_afi(x)) < W 2kDi <L e~ ZJS; 1/421Di .

1
(g1 (gl fix))

1 . e
< S Vs 2D < L0 s 4D,

dis(g;) (g7~ *f(x))

assuming that Ls, '/*2F<2/.
If j<k<w then
1

(g7 ") (g Hfilx))

dis(g;) (g7~ “fix))
KD, < L~ Vg A, < LT g 182D,

Loz 2 1/4

assuming that s, /82" <24,
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Under these circumstances then,

dis(g; 1) (x)<2'D,, +

a

1=

—(@=2)—1/89)] ~1/ani
2L =25 182D, + 57 V421D,

. L . .
<UD+ g s 2D s V2D,

Thus for xe B, and g/~ 'f(x)e %! it is shown that:
. L+1
2D, ;1

dis(g; , ;) (x) <maxq 2D, +

[ PDits V42D,

L i s, /827D, +s;7 122'D,,

2D
max wt I

w<i

Thus for recursive bound a, define

L+1
D, —
L1
1 -1/4
D;,,=maxqy Do+ —— D;+s; '/*D,
L—1
L —1/8 —1/4
max D, + L‘_—lsw D;+s; "D,

This is sufficient to claim that the D,;’s are bounded by the following lemma.

Lemma 6. For P,>0 and 0<y<1, define {P;}{*, by the recursion
P, = max {P,+y""'P}.
Then " .
Pii=Py [1 (1+77*Y).
Proof. Assume that

m—1
P,=Po I] (1+y""1)
n=0

for m<i, and check that

P,+y" PPy T (149"

n=

for m<i. By assumption,

m—1 i—1
Pm+ym+1Pi=P0 l—I (1+yn+l)+,ym+1P0 I—[ (1+,yn+1)
n=0 n=0

i—1
=P0 H (1+yn+1)<1+,ym+1 l:l (1+"/"+1)>-

n=0
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Hence it suffices to show that

or
i—-1
1§(1—7m+1+))i+1) H (1+yn+1).
Let v= [log2 +J, and r=2""!(m+1) so that 31<j<r. Let
m
i—1 . F
r=1l @) and F=— .
[T (1470 0)
r=0

Note that ['>1. Then

i-1
A=y 49t [_—[ (8i+1)
:(1_ym+1)r+,yi+1r:(1_,ym+1)(1+ym+1)(1+y2(m+1))
><(1+y4("'+“)...(1+y2"(’"+1))f+yi+lf
:(1 +v‘)f+yi+11"=f~y’f+yi+‘Fgfg1 0O
This concludes the proof of the proposition.

1.f. Density of Long Branches. In the definition of g, , ,, points x € B were assigned a

stopping time of 1,(x)=n unless g¥f}(x)e J,, , for some k=0,1,...,n—1. Thus the
n—1

subset of B where n,(x)=n s given by B — | f.” ‘g7 %J,4 ). Since points x € B,
k=0

where #,(x)=n are exactly the points of %1, this will be used to estimate the

proportion of Zi*! branches in J,, ; with k<i+1.

Lemma 7. 3C,, 6> 0 independent of i such that
I(Hl +17 ;1 {

(T >1-Cqs0 .

Proof. Let r be maximal such that l< U I§,’;>>23,-111/81(Ji+1). Then ||

n=r+1
> 5.3z, 1| (see Fig. D.3). Lemmas 4 and 5 then imply

2
r< Togl (§logs;; +1logC,)+b;
2
< ———(glogs;y; +10gCy)+ Cslogs;, y <Clogs;
logL

for some C independent of i.
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© L IIN—J,;
Let M= () B, and N=f(J,.,—M)= [J 4,. Note that IN=Jivs)
n=r+1 n=b, I(N)

r—1

>1-2K5s7 % Let U= {J g *(J;1). Then Hyy — 210 fi (N =)
k=0

Using the composition rule for distortion it follows that dis(g¥) (v) <2'D; -1

whenever gf is defined at y. Thus if g”(x) and g?(y) lie under the same branches of g;

for n=0,1,...,k—1 then i‘ Ey; <s!% by assuming that

L

2Dy —r

1/8 ‘L—1
l+1>e N

r—1
To estimate (N — U), first remove J;,, from N, then remove () g “(J;,)
k=1

from whats left. This yields

-0y < iyt 2K 15t )

<HNY(1—2K 357 {2) (1 — 18 K 571 4)C lossi
< l(N) (1 - C’S;rll/‘*)clt)gsl +1+1

I(U)

for some C’ independent of i. This implies that N < C"(logs; 1)si4'{* for some C”
independent of i.
For xeJ;,; —M it follows that
|
LS (o)l =1pilg(x))g’ (X)l> Sier 2658z D= sI Bzl

l+l
K,

and similarly

K,
Lfi()l < 5 Si+1212i01| = Kosiv 1 12i44]
hence

fi(x)
£

max
x,yeJi+1—M

‘ <(K,)*si%
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or equivalently,

Jffl: 1/?13' <(K,)%sits

The sets H,,, and J;,, — M are reasonably comparable:

max
u,veN

;41 —M) l(Ji+1)_2Si‘+1l/Sl(Ji+1) -

X > 12575
I(Hi+l) l(‘]l+1) o

Therefore,

(Hiy —Ri21) Wi —M) WHp — Ri10) I(fi '(N=U))

>(1-2s3%)

(Hi.y)  UHi) (i (V) I(fi {(N)
., I (V) o e as MO
3(1—2Si+1/8)(1 - l(ﬁ—m> >(1—2Si+11/8)<1 (K,)?si % l(N))

>(1 =255 (1 = (K2)2s{8% C'logs;y )si %) > (1= Cqs)
for some C,, 6 >0 independent of i. [

(2) The Invariant Measure

2.a. The Measure for g . The limit of this recursive process is a map g, :Jo—J,
consisting of monotone branches Z;° mapping onto intervals J ;. This map satisfies
the bounds:

Bound a.. dis(g..)|z, <2°D .
Bound b,. For k<, |g’ool|g,;onh>S}/4 and |g,[| gy, > L.

This, along with Lemma 7, bounds 1 and 8, and the markov properties of g, , is
sufficient to conclude the existence of a finite absolutely continuous invariant
measure u for g by Theorem 4 in the appendix. This also yields the property that
wJ)<Gys; © for some Gy, £>0.

2.b. Pulling p Back to Ty,. The argument here is the typical Rohklin type reasoning
with special care being taken to account for the map being many to one and for the
use of a stopping rule rather than a return time.

Let 2 be the minimal partition with respect to which g is continuous and
monotone, and for a component M € 2 define 1, (M) so that g_ (x) = Tg=™)(x) for
xe M. Thus #,, is an integer valued function on 2.

With p as the absolutely continuous invariant measure for g, then i is defined
for any measurable set E by

Nao(M)— 1

D= Y Y WTy (EATHM)AM)

Me2 n=0
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is an absolutely continuous invariant measure for T; as the following calculation
indicates:

Nao(M) — 1
Ty Y(E)= MZGQ 2z WT5 (T (E)N T (M) M)
Neo(M)— 1

W(To " NENTG (M)A M)

Il

Me2 n=0
No(M)—1
Yy MIGENTF(M)NM)

Me2 n=0

+ 3 [Ty *MENTM)NM) — (EnM)]

Me2

= [(E) + u(g, (EnJ o) — w(E) = i(E).

Proposition. [ is finite.

Proof. By definition,

Noo(M)— 1

iJo)= > X uM)= ¥ n (MuM).
M Me2

€2 n=0

Consider the sets { B} }¢-, and the stopping time #; defined on the i*" step of the
recursion. It follows from the construction that max #,(x)=e; Thus if M e B!,

xeH,+

then i—1
No(M) < 'l;lo (e;+1)-(n+1).

Hence,
iJo)= MZEQ Neo(M) - (M) <u(H,)

TR B K] RS

i=0| j=

From Theorem 5 in the appendix and the definition of p it follows thatif Ue H,, |,

then
,U(U) ﬂ(Ji+1) .u(‘]H-l)
) ~% 1,y ° W<y 1O
Hence,
S (n Du(BE) = by H ) + ’z nu(B )

n=b,

e, —b,
=bu(H;, )+ Z /J< U §5>

j=b,+n

<bptti )+ 3 G ) )

)
W) emich ot

i C L 2
Wiy & &

<bju(H;;1)+G, IJiv1)
1/2
<bu(H; )+ G,Cop(J; 4 1) i1

<CbulJ;+ 1)
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for some constant C. Therefore,

f(J o) <u(Ho)+ § ihl (ej+1)J : [ ]Z n.u(B;x);l

i=1] j=0 n=b,

<ulHo+ ¥ | 11 e+ 1) |- [CoutU )]
o [[i-1 N
<u(Ho)+ g,l 'I:_lo (e;+1) |- [ChGasii1]-

3 3¢
This sum converges since by bound 1, s;% <s;.% *s; *-s;_%...s; 4, hence

i—1 3¢ 3e —

bisi ‘Ho (ej+1)<(bisi_+?)(si_+1 e, 1t+1) H j+2e +1))
j=

3e 3¢ i-2 3e

<(Cslogs;s-5i45) (545 (Cslogs;y  +1)) I $;+5(Cslogs; ,+1),

and this product approaches O faster than an exponential rate. []

Appendix

In this appendix I give some background material on sufficient conditions for the
existence of finite absolutely continuous invariant measures for some Markov
maps on an interval.

Continuous Invariant Measures and the Folklore Theorem. The simplest non-trivial
example of a continuous invariant measure is for a linear map consisting of
branches that map onto an interval. Let the unit interval I be divided into a
countable union of disjoint intervals, I = | ) H;, and T: I+—1 maps each H, linearly
onto I. Then for any measurable set ECI,

I(H)=UE),

(T E)= ST (B)nH)= l((E)

(1)

hence lebesgue measure is invariant.
T(x)
(y)
bounded on branches of T", then a continuous invariant measure is given by any
Banach limit u=LIM [-T™": By the properties of the Banach limit, u is finite,
positive, finitely additive, and invariant under 7. It remains to be shown that u is
countably additive and continuous. Let 2 be the partition formed by {H,} and 2"
T™(x)
T(y)

1 onto

set in any J € 2" and E=T"(F), then T": F—»E and so

If such a transformation is distorted in such a way that is uniformly

=T""2). Suppose that

<BforVnand Vx,yeJe2" If F is a measurable

E)= [ |T"|dI.
F
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1= 1onto T"(x) <R 1 I " ) .
But 7":J ——1and T'“(y)| \BlmplyB l(J)<lT (x )|<Bl(J)forxe.,.Hence
1 I
or
1 UE) UF) L NE
B~ P

Thus for any measurable set E and any Je 2",

1 (E) KT ™E)nJ) _IE)

By S )
Summing over all J e 2" yields
(T ™E)= Y (T MENJ)< Z B@ I(J)=BIE).

Jegn Je2

Combining this with a similar argument yields

BIE)> (T "E)> ]-;- IE).

1 . .
Thus B-(E)z W(E)= B I(E) implying that u is countably additive and continuous

with respect to lebesgue measure.
Weiss, Flatto and Adler (see Adler’s afterword to Bowen’s paper [1979] for a
discussion of the somewhat nebulous origins of these ideas) used the notion of the

"

o .o.d . .
logarithmic derivative — log|T"|= | = to establish a bound on the quantity

dx
T"'(x) B n—1 , . B , . _ n—1 [Tk(y) T"(u)
08 || = |2, gl T (T log T(T* 0= . | 1 o i

"

for x,yeJe 2" Thus if ljj:,

is bounded by B and T is expanding, T'>L>1, it can
be concluded that

Tn/(x) n—1|Tk@y) T//(u) ’
8 [ | = o du
T"(y) k=0 |Tk(x) T'(u)
<n—1BTk<y)d < - B<1>"—k B 1
< u —_—
- kgo Tk{x) kZO L L—-1"

This approach does not involve checking conditions for arbitrarily large iterates

(T')?
weaker bound to establish and is independent of scale changes in the domain,

of T A similar conclusion can be reached if the quantity is bounded. Thisis a
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. . . . T"
hence is a more desirable notion of distortion to work with. If ’372 <B, then a
change of variables w= T(u) in the integration yields (T)
Tnl n—1 Tk(y) T//
gl = dul
"(y) k=0 | i T'(1)
n—1 Tk*l(y) T// T~1 1 L
_ (CAN(L I W P
k=0 Tk+1<x) T(T (W)) T(T (W)) L_1

[where if we(T** Y(u), T** '(u)) then T~ (w) is taken to be in (T*(x), T*)).]
These results plus a result on bernoullicity was finally stated by Adler [1975],
and due to its nebulous origins was called the Folklore theorem:

Folklore Theorem. Suppose T': I+ 1 where I is a union of disjoint intervals [ = | ) H;

>1.If 3B, L>1 such that

1—1 onto

such that T is C* over each interval H, and T: H,
|T'|> L and

(T')?
measure with respect to which T is bernoulli.

< B, then there exists a finite absolutely continuous invariant

Generalization to Markov Maps. These results are readily generalized to certain
Markov maps. Let T: I+—I be a piecewise monotone C? transformation with base
partition 2 formed by the intervals over which T is monotone, and image partition
2 formed by T(2). Then T is Markov if 2 refines %, and is said to have a finite
image partition if Z is finite.

If T'is linear over each interval in 2 then the set of measures that have constant
densities over the intervals of # is a finite simplex mapped into itself under
composition with T~ ! and thus contains a fixed point, i.e. an invariant measure
with constant densities over each element in 2. ™

- L . .. (x)

Let 2"=T7"(2), then T is said to be of bounded distortion if ‘ ()

Vx,yeJ e 2" Themap T is said to be uniformly expanding if | T'| > L > 1. As before,

14

< B for

(1)
The following theorem is a generalization of the folklore theorem and the proofis
left for the reader.

T will be of bounded distortion if T is uniformly expanding and is bounded.

Theorem 1. If T is a uniformly expanding C* Markov map with finite image
partition and bounded distortion then T has a finite absolutely continuous invariant
measure.

Proof. Let u=LIM l- T™" then p is positive, shift invariant, and finitely additive.
Let E be any measurable set. With {R;} =2 let E;=ENR,.
Fix i and let J be any component of 2" such that T"(J)=R,. As in the proof of
the Folklore Theorem,
1UE) UT"E)nJ) . U(E)
— — = <B .
BIR) S ) IR
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Summing over such J’s yields

1 IE) NTYE) . IE)
BIR) ~ TR ~ IRy

Hence

1 (T ""(Ry)

I(T"(Ry)
5 [E) IR)

<UT ™(E))<BI(E,) IR)

There are only a finite number of R;’s and the Banach limit is finitely additive.
Hence (T ~*(I))=[(I) implies that there is some nonempty collection .# of i’s such

that LIM KT "R))>0 for ies. Let K;= min LIM &TI(R(;%)) and K,
ied i
= max LIM w Then for ie.#,
ics (R;)

K, g E) < p(E) < K1 BI(E),

hence p is a finite absolutely continuous invariant measure. []

Markov Maps with Infinite Image Partition. If # is allowed to be infinite the
difficulty arises that points may become absorbed into arbitrarily small portions of
I. For example, take 0 <a <1 and let T be the transformation on I=[0, 1] that
consists of linear branches mapping each interval [1—o", 1 —o"*!) linearly onto
[1—o*" !, 1)forn=1,2,... and mapping [0, 1 — ) linearly onto [0, 1) (see Fig. A1).
This transformation has a finite absolutely continuous invariant measure iff
o <1/2. If o> 1/2 then high iterates of the map become increasingly dominated by
arbitrarily short branches.

It is possible to take « < 1/2 and very close to 1/2 and perturb T in such a way
that it is expanding, has bounded distortion, and yet will not have a finite
continuous invariant measure. [ The proof of Theorem 1 breaks down in this case
in that it is possible for LIM I(T ~"(H;))=0 for all i.] Thus expanding maps of this
type with bounded distortion can behave quite differently from their linear
counterparts and the need for additional criteria is clear.

The remainder of this appendix is concerned with establishing sufficient
conditions for the existence of a finite absolutely continuous invariant measure
for some expanding markov maps of bounded distortion for which £ is infinite.
These criteria will be used in the main paper and are based on establishing an
asymptotic bound on the ratio of longer to shorter branches.

Let T be a uniformly expanding Markov map with base partition 2 and image
partition #. Let . be the collection of intervals that are images of intervals in 2. It

will be assumed that .¥’={S;} is countable, with l<U S,~> —0 as k—oo. Let
i=k

2"=T""(2)and let 2} be the collection of intervals in 2" which map onto S, under
a single branch of T". If 3¢ >0 such that [(2}) > ¢ for arbitrarily large n and k and T
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is transitive, then T will not have an absolutely continuous invariant measure. It is
thus necessary that [ <© Q;‘) —0 uniformly in n as k— oo for the existence of an
absolutely continuousli_nkvariant measure. This turns out to be sufficient.
Theorem 2. If T is a uniformly expanding C* Markov map with bounded distortion
and | <© ;@5’) —0 uniformly in n as k— oo, then T has a finite absolutely continuous
invarialn_tkmeasure.

Proof. Let pu=LIM - T™". Then p is finite, shift invariant, and finitely additive.

o

Y I(2;) converges uniformly in n, so for measurable sets E,
k=0

(ENS))
[(S)

uniformly in n. Hence p is countably additive and absolutely continuous. []

(T "(E)< Y BI2) 50 as [(E)—0
K=o

The property that [ < U Q?) —0 uniformly in n as k— oo involves arbitrarily
i=k

high iterates of T. If there are sufficiently good estimates on the ratios of longer to
shorter branches for 7, this property can be established by analyzing how short
branches become longer and long branches become shorter under iterates of T.
Pick an arbitrary integer k and call branches that map onto S, S, ...,S,_;
long branches and branches that map onto S,, S, y, ... short branches. Then

k—1
l( U ﬂ}mS,)
=0
I(S)

is the ratio of points in S, that lie under long branches of T. Since T™(2"")=S,,and T
is of bounded distortion, this is an estimate of the ratio of points in 27" that lic under
long branches of 7",

It will be hypothesised that there is a good ratio of points in S, that lie under
branches of T mapping onto S, S, ..., S, _ . The ratio of long branches for T™*!
will be estimated in terms of the ratio for 7" and an asymptotic bound will be
cstablished.

Theorem 3. Suppose T is a uniformly expanding C* Markov map with bounded

distortion and It with Y t,<oo such that

k=1
o0
l< U 32}08,-)
C\j=k+1 <1
Sy '
Jor i=0,1,...k+1. Then there exists a finite absolutely continuous invariant

measure.
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Proof.

i () 2'ns,
<U JM+1>> § I(am) 1~BM
i=0 io IS,

k+1

> %l - By

k+1
>l< U :2:."> (1—Bry).
i=0

Hence by repeated application,

I(L_kj Q;"“) (kaJ >kﬁ" (1-Br),

and this quantity approaches 1 uniformly in m as k— co, hence a finite absolutely
continuous invariant measure exists for T by Theorem 2. []

The case where the S; are nested, S, 05, D...,and 2/ CS;so that the branches in
S;—S;,; map onto S; or larger arises naturally in repeated induction of certain
unimodal maps. The following result holds.

Theorem 4. Suppose T is a uniformly expanding C* Markov map with bounded
distortion and image partition ¥ ={S;}, where Sy 05D ... and 2} CS;. If 3t <1 such

that
i 20as )
I(Sk+1)<_[k and <l—y+1 o
ISy (Sk+1)

then there exists a finite absolutely continuous invariant measure p for T with
WSy i 1)< G,T* for some G, independent of k.

<*,

Proof. The measure exists by Theorem 3, and is a Banach limit of [ T™",

TS, 4 1)) < ‘z BI(S(’”)‘) (2 +l< U Q"‘)

i=k+1

l(Sk+]) k Hm * gm
B l(sk>"<z~90’2i>“<i=9+l >

hence

lim sup (T ~™(S, + 1)) < Bt* +1(S,) —I(S,) ﬁ (1— Bt

m— o

8

<Bt*+[( 0)( H 1—Brj)>

<Gt
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8

(1 —Brj)> is dominated by § il

for some G, independent of k, since (1 —
i=k

j=k
which in turn is dominated by t*. [

T
(T

to vary according to the length of the branch and still preserve bounded distortion.

If the sum of [(S,,) is finite, then it is possible to allow |-— | on any branch of T

"

Theorem 5. If 3{0,,}, L>1 such that |T'|> L, T,

<0m, and Z 0,08, < o0,

then 3G, such that

™(x)

~ WG,
™| ?

x,yeMedn
Proof. Fix any n and x,ye M € 2". Then for k=0,1,...,n—1, T is continuous and
monotone on [T4x), T¥y)]. Let ¥,,={k<n:T*x)e 2}} and k,,=max{ke¥,}.
Then

T"(x)
108 [y

n=1 . - o =0 T"(t)

= Y log|T(T*x)|=log|T(T")I= ¥ > | | T dt
£ m=0 ke, TR T (t)

S e T(T (w) k+ 1 k+1

- =0 k&P, Tkjl‘x)(T/(T—l(u)))z l < mZO kezm‘f l([T (X) T (y)])
< mio M Jm<Ts1z>km'kl(S )< z o TsL IS,)<o. [
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