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Abstract. We analyse macroscopic fluctuations of an infinite quantum system
and introduce the CCR-C*-algebra of normal fluctuations. A non-commutative
central limit theorem for mixing quantum systems is proved.

1. Introduction

A macroscopic quantum system is essentially described by two types of observables.
The first type being the so-called extensive observables or observables at infinity.
From the point of view of probability theory they are obtained as the limit points
in the law of large numbers. These limit-observables form a commutative *-algebra.
The theory of observables at infinity is by now well understood [1].

The second type of observables are the so-called fluctuation observables or
macroscopic fluctuations. Consider the system (£$,ω), where J* is a quasi-local
C*-algebra and ω a state of Jf. Let A be an observable of the system, then the
mathematical problem is to give a rigorous meaning to the limit

Aω= lim AΛ= lim - ^ J dx(τx(A) - ω(τx{A))),
Λ-* oo Λ-* oo /*• Λ

where τx(A) denotes the translation of A by xeUv.
In [2,3,4] there were attempts to describe these limits. The notion of a system

having normal fluctuations was introduced and it was proved that some mean
field models satisfy this definition. For these particular models one could compute
all higher moments of fluctuations. Recently [5,6] we generalized these results to
obtain a model independent theory of fluctuations, i.e. a theory applicable for all
mean field models.

In Sect. 3 of this paper we present a theory for more general interacting systems.
We redefine the notion of a system (β, ω) having normal fluctuations. Instead of
requiring the existence of all moments [2,3,4], our definition is based on the notion
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of characteristic function in probability theory; i.e. the function lim ω(eltA ) has

to be gaussian. For such systems we give a full characterisation of the limit operators
Aω. In fact, we prove that the set of all limit operators generates a well defined
representation of the CCR-C*-algebra determined by a quasi-free state. The
resulting CCR-algebra is called the CCR-algebra of normal fluctuations. The theory
contains the earlier results obtained for mean field models.

In Sect. 4 we are looking for a class of systems having normal fluctuations. In
probabilistic terms the technical problem we solve is the formulation of a
non-commutative central limit theorem (CLT) for mixing systems. There are
essentially two methods extending the CLT to the non-commutative case. The first
one deals with the momenta [7,8], on which the definition of normal fluctuations
given by [2,3,4] is inspired. The second method deals directly with the characteristic
function [5,9]. The proof of the classical CLT is based on an idea of Bernstein
introduced in 1926 [10]. The main condition consists in the L1-property of the
clusterfunction (or mixing coefficient) α(ί), defined on the σ-algebras Jί\\ induced
by the random process (Xί)^=1. Finite (m) dependent sequences, i.e. Xt and Xj are
independent for | i — j | > m, are examples satisfying this condition. For more details
about conditions and results concerning the classical case we refer to [11]. The
non-commutative CLT we present in Sect. 4 is also based on the method of
Bernstein. However, new techniques are necessary to deal with problems due to
the quantum nature of the system (β,ώ). Remark that for example the set of
random variables (τx(A))xeUv consists in general of non-commuting observables
[τx(A),τy(A)~\φ0 for xφy. The main conditions we impose are clustering
conditions on the state ω. We require the L1-space clustering of ω for a norm dense
subalgebra ^ 0 of &. This implies the existence of the second moment, i.e.
lim ω((AΛ)2) < oo. We also need a space cluster function cc^(d), which measures

Λ-*OD

the space-factorization of the state ω. In general this function depends not only
on the separation d between two volumes, but also on the size N. The condition
we impose is a scaling law between N and d. If the factorization is supposed to
be independent of the size [e.g. 12], then this condition reduces to the classical
L1-property of the cluster function aω(d).

In illustration we give in Sect. 5 a class of states for which the function ocω(d)
has compact support. This example can be seen as a quantum analogue version
of the finite dependent sequences in the classical case.

In this paper we restrict ourselves to the case of quantum lattice systems, i.e.
the translation group is discrete. The extension to continuous systems should cause
no serious difficulties.

2. Preliminaries about CCR-Algebra and Quasi-Free States

An essential ingredient in describing the algebra of normal fluctuations of a
quantum system (J,ω) is the notion of CCR-C*-algebra and its quasi-free states.
In this section we give the necessary definitions and results. The details about the
CCR-algebra can be found in [13], the details about quasi-free states can be found
in [14].
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Suppose a real symplectic space (H, σ) is given, i.e. H is a real vector space with
a (possibly degenerated) symplectic form σ defined on it:

σ:H x H-+M, (x,y)->σ(x,y\

such that σ is bilinear and anti-symmetric.
Denote by W(H, σ) the complex vector space generated by the functions W(x),

where W(x)9xeH, is defined by

W(x):H-+C:y-+W(x)y = \. ^
(1 if x =

/, σ) becomes an algebra with unit W(0) for the product:

W(x)W(y) = W(* + y)e-(i/2)σ(x,y). χ y e H (2.1)

, σ) is a *-algebra for the involution:

W(x)->W(x)* = W(-x).

Finally W(H, σ) is a normed *-algebra for the minimal regular norm [15] and we will

work with the C*-algebra W(H, σ), which is the completion of W(H, σ) for the

norm topology. W(H, σ) is called the CCR-algebra.
A symplectic operator S on the symplectic space (H, σ) is a linear operator of

H satisfying

σ(Sx, Sy) = σ(x9 y) Vx, yeH. (2.2)

It is well known [15] that any symplectic operator S defines α*-automorphism αs

of W{H, σ) by

otsW(x)=W(Sx). (2.3)

This type of automorphisms are called quasi-free automorphisms.

A state of W(H, σ) is a positive linear normalized functional of it. The state ω
is called regular if for all x.yeH the map

is continuous. Let ω be a regular state and let (Jf, π, Ω) be the GNS-triplet induced
by ω. Then the regularity of ω implies [15] that there exists a linear map

B:H-+^(je) (linear operators on Jf)

x->B(x)

such that \/xeH:B(x) = B(x)* and π(W(x)) = expiB(x). The map B is called the
Bose field, satisfying the Bose field commutation relations:

iσ(x,y)i; x,yeH. (2.4)

A quasi-free state of W(H, σ) is a state ω s, with s a real symmetric positive bilinear
form of H satisfying

i\σ(x,y)\2^s(x,x)'S{y,y) (2.5)
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and

ωs(W(x)) = e~(lί2)s(x'x\ (2.6)

Remark that a quasi-free state ωs is regular.
If (J^s,πs,Ωs) is the GNS-triplet of ωs and Bs the associated Bose-field, then

one easily calculates

(ΩS9Bs(x)Ωa) = 0, xeH, (2.7)

(β s, Bs (x)Bs(y)Ωs) = s(x, y) + ̂  σ(x, y), x, y e H. (2.8)

3. The Algebra of Normal Fluctuations

First we introduce the notion of quasi-local algebras build on a v-dimensional
lattice Zv. For the general definition of quasi-local algebras, see [16]. Let ̂ (Z v )
be the directed set of finite subsets of Zv, where the direction is the inclusion. With
each point xeZ v, we associate the algebra six, which are all copies of a C*-algebra
si. For all Λe3)(Γ\ the tensor product ( X ) ^ defines a C*-algebra siΛ. If si is

nuclear, then there exists a unique C*-norm on siA [17], but this restriction is
not necessary for our purposes.

The family {srfΛ}ΛE&(JV) n a s t n e usual relations of locality and isotony:

Denote by siL all local observables, i.e.

siL= [j^Λ. (3.1)

Finally the norm closure of si A is a quasi-local C*-algebra, denoted by

<;& \u A<yι A . W'^J

Typical examples of such systems are spin-systems, i.e. where si is a matrix-algebra.
The group Zv of space translations is a subgroup of the automorphism group

of $y whose action we denote by

Aesi Λ-+τx(A)e£/ Λ+x; xeZ v . (3.3)

In the following we consider the system (β, ω), with ω a translation invariant state
on 3$. It is well known [16] that this system satisfies the cluster properties:

(i) asymptotic abelian with respect to space translations: i.e.

lim \\lA,τxB^\\=0 for A,BE^, (3.4)
|x|-oo

(ii) if ω is a factor state then

lim \ω(AτxB)-ω(A)ω(B)\ = O for A,BE^, (3.5)
|x|->oo
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(iii) if ω is a locally normal factor state on &, then for all ε > 0, for all / ίe^(Z v ),
there exists a Λ'e@{Zv) such that:

s u p I ω(AB) - ω(Λ)ω{B) \ ^ ε (3.6)

for all Λe@(Zv) with Λn/V = 0 ,
(iv) ^ is L1(,β/L) asymptotic abelian for space-translations:

X Λ £ ] || < oo for A , £ e ^ L . (3.7)
xeZv

At this point we are able to introduce fluctuations of the system (β^ ω). Denote
by Λn the cube centered around the origin with edges of length 2π -j- 1. Define the
partial sums

An = rAϊj2 Σ τx{A-ω(A)); Ae®. (3.8)
K*«| xeΛn

The whole problem is to give a rigorous meaning to the limits lim An = Άω. These
ft—> 00

limits are called macroscopic fluctuations of the system {β^ ω). In [2,3] Hepp and
Lieb suggested that the fluctuations of one point observables (Ae<$/0) form some
abstract Lie-algebra such that their commutator is a onumber:

where the limit has to be specified. In the next proposition we make this statement
mathematically clear. Denote by ( J f ω , π ω , ί 2 J the GNS-triplet of (β,ω). Let Z ω

denote the center of the von Neumann algebra πω{β)'. Then we have:

Proposition 3.1. Let ω be a translation invariant state on 0&. Consider a norm dense
subalgebra ̂ 0 of $ such that 31 is L x (^ 0 ) asymptotic abelian for space translations.
Then

w(eak)~ lim [/Γ,F J]eZ ( 0 for all A,BE^0.
n -> oo

Hence if ω is a factor state,

w - lim [Xw,J5w] = cω(>45B)1lω

with

cω{A9B)= lim ω(lAn,BnΊi). (3.9)
H—• 00

Proof. As ^ is L ι ( ^ 0 ) asymptotic abelian, it follows that

for all /

Hence

IΛ.I xiA, \yeZ

v



254 D. Goderis and P. Vets

An easy computation yields:

ω-liin|\4",J3"] = ω - l i m - [ - Σ [τ*(Λ),

j ( Σ

= ω-lim--- Σ
«-»• oo K * n xeΛn

where in the last step we used again the asymptotic abelian condition. This proves
the proposition. •

Proposition 3.1 states that the commutator of two fluctuations behave like
bosons. This phenomenon has been remarked several times [2,3,7]. However,
Proposition 3.1 does not give a rigorous meaning to the limits lim An = Άω

n—> oo

themselves. Recently we solved the problem for mean-field systems, i.e. ω is a
product state [5,6]. We showed that the set of all limit operators Aω with A a
self-adjoint one point observable, generates a well defined representation of the
CCR-C* algebra, determined by a quasi-free state. A generalization of these
methods suggests the following definition.

Definition 3.2. Define sn(A,B) = RQω(AnBn) for all self adjoint elements A,BE<%.
Let ^ 0 be a *-subalgebra of &. The system {β,3$0,ω) has normal fluctuations if

1. VA,Be<%0: £ \ω(AτxB)-ω(A)ω(B)\ < oo. (3.10)
xsZv

2. MA = A*e@0: lim ω(eιtAn) = e'(l/2)t2^{AA) (3.11)

with

sω(A,B)= lim sn{A,B)\ i , β s . a . elements of ^ 0 . (3.12)
n-> oo

Remark that lim sn(A9B) exists by condition 1. Now we can define the algebra of
n~*• oo

normal fluctuations of a system (&,3$0,ω) satisfying Definition 3.2. For each such

system we construct in a canonical way a CCR-C*-algebra W(H, σ). Therefore we

have to fix the symplectic space (H, σ).

Denote by &OtSa the real vectorspace of self-adjoint elements of J*o. Define for

all A,Bs@OtSa

σn(A,B)=-iω(lA\Bn]). (3.13)

Take now

σω(A,B):H xH->U

:{A, B) ->σω{A9 B) = lim σn(A, B).
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Again lim σn(A, B) exists by condition 1 of Definition 3.2. and clearly σω(.,.) defines

a symplectic form on ^0,sa The CCR-C*-algebra W(^0^sa, σω) is called the algebra
of normal fluctuations of the system (<%,3$0,ω).

Theorem 3.3. // (@,&0,ω) has normal fluctuations then the limits limω(eiAn) =
n—• oo

e-{i/2)S(0(A,A)^ Ae&OtSΛ define a quasi-free state ωs of the CCR-C*-algebra of normal

fluctuations W(έ%0^sa,σω) by

Λ>A). (3.14)

Moreover ifot is α*-automorphism of $ such that ^Q is ^-invariant, ω(α(/l)) = ω(A)
for all A E ^ and [α, τ x ] = Ofor all XGZV then ά(W(A)) = W(a(^4)) defines a quasi-free

*-automorphism of W(&OySSL,σω)

Proof As sω(A, B) = l im R e ω(An, Bn) it is o b v i o u s t h a t sω defines a real, s y m m e t r i c

positive bilinear form on W(βOtSdi,σω). Thus (3.14) defines a quasi-free state if the
relation (2.5), i.e. \\σω{A,B)\2 ^sω{A,A)sω(B,B\ holds. For each neN0 it follows
from Schwartz-inequality:

^ ω{{An)2)ω{{Bn)2) = sn(A> Λ)sn{B9 B\

and (2.5) follows by taking the limit. This proves the first statement. To prove the
second statement we have to show that α defines a symplectic operator (2.2) on
(J*0 ; S a,σω). But for all neN0:

M ) n = ΓT7Ϊ72 Σ τx(ccA~ω(aA))
Kl«| xeΛn

1/1 l 1 / 2 H 'l-'A/jl xeΛn

Hence

= - ico{(x[An, B"]) = σn(A, B).

The theorem follows by taking the limit. •

Remarks.
1. In [5,6] we considered mean-field models. As the equilibrium states of such

models are product states [18], it is sufficient to consider one point
fluctuations, i.e. J*o = jrf0. For such systems we showed that Definition (3.2)
is satisfied [5,6].

2. In [2,3,4] the authors give another definition of a system (J*, ω) having
normal fluctuations. The condition on the characteristic functions (3.11) is
replaced by the existence of all higher moments: lim ω((An)m) < oo for all

«-> OO

meN. It can be shown that if all moments exist and have a gaussian (or
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normal) behaviour, then condition (3.11) is satisfied. Furthermore as they
are dealing with mean field models, they only consider one point fluctuations.
However, for mixing quantum systems $0 should contain the norm dense
subalgebra j / L .

3. Consider the GNS-triplet (jTs,πs,Ωs) of wjβ^σj induced by the
quasi-free state ωs defined in Theorem 3.3. By the regularity of OJS one can
define the Bose field Bs. Theorem 3.3 states that the macroscopic fluctuations
Aω can indeed by regarded as boson fields, satisfying the CCR-relations

This is in agreement with Proposition 3.1.
4. The last part of Theorem 3.3 gives an interesting method for studying the

original system (J1, ω) by means of the properties of the fluctuation algebra.
For example if one has a time evolution (αf)fe(R generated by a translation
invariant hamίltonian, if the state ω is a af-invariant state and ^ 0 is large
enough, i.e. at$0^$0, then (α,)ίεR satisfies the conditions of Theorem 3.3.
Hence, at induces a quasi-free time evolution dt on W(&OtSa9σω), which
describes the evolution of the fluctuations by dt(Aω) = (atA)ω. The quasi-free
evolution is already studied for mean-field models [5,6]. At another occasion
we return to the physical applications in other models.

4. Central Limit Theorem for Mixing Quantum Systems

In the foregoing section we introduced the system (β, ^ 0 ? ω ) a n d defined under
which conditions this system has normal fluctuations. These conditions (3.11) state
that the characteristic function ω(eιtAn) has to converge pointwise to a gaussian
functional on ^ 0 , s a I*1 probability theory this means that the central limit theorem
holds for all random variables Ae£$Osa.

The aim of this section is to construct reasonable cluster conditions such that
(3.11) is satisfied. As we adapt the method of Bernstein used in the classical central
limit theorem, our conditions are partially inspired by the classical case [10,11,19].
On the other hand conditions with a typical quantum nature arise, such as the
^-asymptotic abelianness (CL 1) and the condition (CL 5) on the cluster functions
α$(.), which we will introduce now.

Let (β9 ω) be the system introduced in Sect. 3. Property (3.6) of quasi-local
algebra states that

sup \ω{AB) - ω{A)ω{B)\
Aes/Λ,; 4 . = 1

tends to zero as the distance d(Λ,A) between A and A tends to infinity. In general
this quantity is not only dependent on the separation between A and A, but also
on their shape. Therefore, we introduce, for all NeN0,deU+ the cluster function.

S U P \ω(AB)-ω(A)ω(B)\
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such that d(Λ, A)^d andmax(|/l |, |Λ|) ^ N}. (4.1)

From the definition it is obvious that

o$(d) g o#(rf') for NeN0 and d^d' (4.2)

and

αJJ(rf) ύ α/J'(d) for de(R0 and ΛΓ ̂  ΛΓ. (4.3)

Moreover property (3.6) implies also

lim αJJ(d) = 0 for all N e N 0 . (4.4)

Now let (J1, JΌ,ω) be a system as defined in Sect. 3. The cluster conditions can
be formulated as follows:

CL\:0β is l}{β0) asymptotic abelian,
CL2:for all Ae&0, there exists an ε1 > 0 and a sequence (ΓN,AN)NeN s u cft that

lim \ΓN\ί+ει\\A-AN\\ < o o ,

where ANestf ΓN and / ^ is a cube with edges of length N,
C L 3 : ( ^ , ^ 0 , ω ) satisfies condition (3.10), i.e. ω is a ^-clustering state, of ^ 0

CL4:for all Ae&OtSa there exists an ε2 > 0 such that

l i ( ( T ) 4 )

CL 5: there exists a <5 > 0 such that:

lim N1/2ot™(Niί/2v)-δ) = O.
N->cc

Theorem 4.1. If the system {β, <%Oi ω) satisfies the cluster conditions (CL1 -> 5), then
it has normal fluctuations, i.e.

lim ω(eitAn) = e- 0 ^
n-> oo

where An and sω(.,.) are respectively defined in (3.8) and (3.12).

Before proving this theorem, let us first make some comments on the cluster
conditions.

Clearly (CL1,2) are conditions on the subalgebra J*o, expressing that the
elements of &0 have to be "local enough." For example if MQ = stfL, then (CL 1,2)
are trivially fulfilled.

Condition (CL 3) is essential because it guarantees the existence of the second
moment, i.e. lim ω(An)2 < oo for all Ae^0. This condition occurs also in the

iV->oo

classical central limit theorem for mixing random variables.
(CL4) indicates that the existence of the fourth moment (ε2 = 1) is not necessary

to prove the theorem. In fact (CL 4) is a very weak condition, because by (CL 3)
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Γ ω(μ«yh r (MΊI 2 ) ((Λnλ2,

g limω((/Γ)2)iv4| | < oo for all /1 = , 4 * E ^ 0 .

It is useful to compare (CL 5) with the classical case. In classical probability theory,
given a sequence of random variables (xf)ieZ(v = 1), one has the disposal of a uniform
clusterfunction. In our notations this should mean that a$(.) is independent of N,
or the clustering depends only on the separation between the volumes. This
assumption was also made in [12], where αω(.) is called the modulus of decoupling.
In this situation (CL 5) is equivalent to

*ω(d) = θ(J+Λ δ>0, (4.5)

implying that α ^ e L 1 ^ 4 " , dx)\ v - 1,2,3,....
This corresponds to the uniform mixing condition in the classical central limit

theorem [11, Theorem 18.5.4]. In general however one cannot expect uniform
clustering. Therefore condition (4.5) is replaced by a scaling law.

Proof of Theorem 4.1. For notational convenience we write out the proof in full
detail in one dimension, i.e. v — 1. Afterwards we discuss the general case, i.e. veN 0 .
Also without loss of generality we suppose Ae^M0 such that ω(Λ) — 0. Define for
all nεNΌ,

p(n) = [(2n+l) 1 / 2 log (2w+l)],

m-\ 2" + l

_p(n) + q(n)J

where [x] denotes the integer part of xeR + . We consider the following quantities:

q)-l

S'n(A) = kΣ ξ'ί(A),
i = 0
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Remark that An = S'n{A) + S'ή(A). We usually denote ξn

Q,... instead of ξn

0{A\....
The theorem is proved by the following sequence of observations.

Observation 1:

lim \ω(eίtAn)-ω{eίtS'«iA))\ = 0.

Using a well known integral formula:

Hence

As A = A* we obtain by Schwarz inequality

\ω(eιtAn) - ω(eίts»)\ ^ \ \\ \_jsS\ Ώ || ds + \ds\ω({S'tf)\112

0 0

^yl lK,ΏII+ί(ω(^ 2 ) ) 1 / 2

? (4.6)

where we used the bound ϊoτ A = A*:\\ \_eiA,B] \\ ̂  \\ \_A,J5] ||(*). The proof of this
bound is postponed until the end.

By (CL1) we have lim || [S^S' j || - 0: (4.7)

Indeed

llϋs .s i i i ^ Σ Σ IIK"̂ "J!I
ί=0j-0

s "Σ ϊ II c α τα-o((,+, )'/o] II + *Σ II Cζ'.' »/*] II
ί - 0 j = 0 i = 0

g fc * Σ II K"o>
ί k + 1

- 1 - n + p - 1 - n + ( / ? f ή ) - l

Σ Σ Σ
k

l -f- 1J i = -

I k-1-n+p-1 n

^-T "nΣ Σ Σ l
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as

and

2 n + 1
= 0 - =0,

P {(login+\)2

Equation (4.7) follows. Analogously (CL3) implies

limω(S;/2) = 0: (4.8)

By using the translation invariance of ω, the same method as above gives:

yielding (4.8). Together with (4.6) and (4.7) this proves Observation 1.
Observation 2:

lim \ω{eitS»{A)) - - 0.

The basic idea consists of approximating A by local observables AN. This enables
us to use the properties of the cluster function αJJ(.), which are in fact the essential
ingredients in the proof of this observation.

By (CL 2) we may choose a sequence (ΛN)NeN such that

lim N1+εi\\A-AN\\ < oo for an ε ^ O .

Define the subsequence (̂ Λ/(n))neM
= \-iin)β\ then

< || e
itS'n(A)

tkp

= ίO((log In + l)q(n) || A - Al(m/3)]

ίtθ((^Y+'ll\A-A M(Φ)/3)]I



Central Limit Theorem for Mixing Quantum Systems

Hence by (CL2) we obtain

lim I ω{eitS'ΛA)) - ω(e

ίtS'niAN^) \ = 0.
n~* oo

Analogously

261

(4.9)

\[ω{e<{Λ))f{n) -
k

S k-

Therefore

lim

Finally if we show that

lim

^ tk \\ ζn

0(Λ) - ζn

0(ΛN(n)) ||.

= 0.

(n)\ = 0 ,

(4.10)

(4.1

then together with (4.9) and (4.10) Observation 2 is proved. But as
[ξΊ(AN{n)\ ζ'j(AN(n))~] = 0 for all ίj one easily calculates

j = o

k- 1

1= 1

- [ω(eιtξ°{A»(»)))']m\

^

31og(2n + 1)

SΛ2n+l)1/\2n + 1)((2n+\)1'2-δ)

and (4.11) follows by (CL5).
Observation 3:

(Property 4.3)

(Property 4.4),

lim

Define

By Taylors asymptotic expansion, there exists a cn(ί)G[0,ί] such that
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Λt

Furthermore, by (CL3):

ωί(ξ"o)2) = ^ ~ - r - Σ ω(τx(/l)

and by (CL4):

(2π+l),̂  i Σ

Also, by Schwarz inequality:

and

\ω(e ̂ (ξ"of)\ = |ω((^)2e'c f S(ίo)2)l

^\oj((ξl)4)\=θ(-j-^λ for all cεR.

Hence we have shown that

Therefore

lim [ω(
n-> oo

proving Observation 3.
For v ^ 2 one proceeds along the same lines. In Λn = [ — n, ή]v we consider the

small cube Γ p = [ — n, — n + p ~ 1]v Define

«μ) = rAτ2 Σ ^ )
and

with i = (ί 1 , . . . ,/ v )eZ ϊ such that 0<^ij<Lk-l.
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Analogously as for v = 1 one proves:

Observation 1: lim \ω(eitA>) - ω(eιt^ξ"(A))\ = 0,

Observation 2: lim \ω{eιt^"{Λ)) - \_ω(eιtξ^A)yf \ = 0,

Observation 3: lim [_ω(enί "a(A))f = e~{l:ΐ)'h->{A A).

Obviously the theorem follows from these observations. Finally we prove the
bound (*)

for all A — A* and B elements of a C*-algebra. It is a direct consequence of the
more general formula:

[eiA>E] = i)dteitΛ[_A,BY{1~t)A, (**)
o

which is easily seen to hold as follows:

eisBeiAe~isB _ eis[B,.]ίeiA\ = eί(expis[B,.](A)) __ £i{A + is[B.A] + 0(s2))

It follows that

~(eisBeiAe~isB)\s = 0as

= f dteit{Λ + is[B>A] + 0 ( 5 ) 2 ) ( - [B, A~\ + 0(5))e

= $dteίtAlA9B']eiiί-t)A.
0

On the other hand

d
^-{eisBeiAe~isB)\s = 0 = iBeiA - ieίAB - - i[eiA, J3],
as

and (**) follows immediately.

5o Example

Interesting examples which should be studied are the equilibrium states of quantum
spin systems. One should expect that for sufficiently short-ranged interactions the
spin system has normal fluctuations. However, a rigorous approach to this problem
requires a detailed analysis of the cluster properties of the equilibrium states, which
lies beyond the purpose of this paper.

In this section we give a class of systems ( ^ , ^ 0 , ω ) for which the conditions
(CL1-CL5) are readily verified. These systems can be seen as a quantum analogue
example of the finite dependent sequences in the classical theory, i.e. the cluster-
function aω(d) has compact support.
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We fix the triplet (&,&θ9ω) as follows: 2$ and &Λ are respectively defined as

the CCR-C*-algebras (Sect. 2) W{ϊ^σ) and ~W(HΛ,σ) with

HΛ=L2(Λ) with A a finite subset of Z,

σ(φ, φ) = Im (φ, φ) with

(φ,ψ)= +f φ(n)φ(n);φ,φeL2(Z).
n = — oo

&0 is the subalgebra of local observables defined by ^0 = u ^ . The representa-
tion (τ x) x e Z of the translation group Z is defined by

τxW(φ)=W(Uxφ) with (l/x0)(3^) = ^ - x ) ; φeL2(Z).

Although & is not a quasi-local algebra in the strict sense [20], the theory developed
in Sects. 3 and 4 can be formulated analogously. The Fourier-transform J^: L2(Z) ->
L2([0,2π])is defined by

For any function feL2(Z) such that / ^ 0 we can define the positive operator Af

and the associated translation invariant quasi-free state ωf by:

Af:L
2(Z)-+L2(Z):φ->Afφ=f*φ

with

W*Φ)U)= Σ f(J-n)φ{n)

and

o)f{WW)) = e-lM*[2'e-M*'Af+K

Now we show that if the function / has compact support, e.g. supp/= / l / 5 then
the system (<%,&0,ωf) defined above satisfies the conditions (CL1 ->5).

Obviously the conditions (CL1,2) on the subalgebra ^ 0 are satisfied. To verify
the conditions (CL3,4,5) on the state ωf, observe that (φ,Afφ) = 0 for φeL2(Λ),
φeL2{Λ) with a{Λ,Λ)>\Λf\/2. Hence

ώf(W(φ)W(φ)) = ωf(W(φ + φ)) = ωf(W(φ))ωf(W(φ)\

implying for example that aωf(d) = 0 for d> (\Λf\/2). Obviously this example can
be generalized to higher dimensions.
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