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Abstract. A new proof of I. SigaΓs and A. Soffer's propagation theorem is given.
This theorem describes a large class of operators which are Kato-smooth with
respect to an N-body Schrodinger operator.

1. Introduction

One can learn a lot about the Schrodinger operator H by studying the asymptotic
behavior of certain observables in the Heisenberg picture as the time goes to
infinity. There exists a number of various results on this subject, which say roughly
that for large times many observables behave to some extent in a semiclassical
way. For example, various estimates that are used in the proofs of the asymptotic
completeness by the Enss method (see e.g. [El, 2,3,Pe]) belong to this category.

Another class of estimates that describe propagation of observables is related
to the concept of the Kato-smoothness. We say that an operator B is locally
if-smooth on the interval A if and only if the estimate

J \\BeiHtφ\\2dt<oo
— oo

is satisfied for any vector φ that belongs to the range of the spectral projection of
H onto A. (In the sequel we will just say "//-smooth" instead of "locally //-smooth".)
This concept has been introduced by Kato in [Kal,2]. It has been used to prove
various properties of Schrodinger operators such as the asymptotic completeness
and the absence of the singular continuous spectrum. Let us name for instance the
following references which used the //-smoothness (sometimes in a disguised form)
[Pu, Lai,2,3,4, Ar, RS4, IoOC, Ha, HaPe, MS, Sig, SigSofl, Del].

The problem of finding //-smooth operators is especially interesting and
nontrivial in the case of N-body Schrodinger operators. First of all, it can be shown
that in this case, under quite mild conditions on the potentials, the operator
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(1 -h |x|)~^~ e is locally //-smooth outside thresholds and bound states (see Ml,2,
PSS, CFKS, Ya]). This result can be used to prove the absence of the singular
continuous spectrum.

Another result on this subject is contained in [SigSofl], where I. Sigal and A.
Soffer have been able to describe a very rich nontrivial family of //-smooth
operators. This result, which they called the propagation theorem, was a crucial
step in the proof of the asymptotic completeness of the short range N-body
scattering contained in [SigSof 1].

The fact that I. Sigal and A. Soffer proved says roughly that if Q is a function
on the configuration space homogeneous of degree — \,g is a bounded function
on the momentum space and Q(')g{') is supported outside of a certain subset of
the phase space, then g(D)Q(x) is //-smooth on a certain energy interval. The
original proof of this theorem by I. Sigal and A. Soffer is based on very intuitive
and beautiful ideas, although some of its technical details may seem quite
complicated. In this paper we present a somewhat different proof. Our proof
essentially uses ideas and techniques very similar to those employed in the original
proof. Nevertheless, we think it is more transparent. We avoid for instance the
so-called channel expansion, which is one of the technical steps used in [SigSof 1].
We also formulate our theorem is a somewhat different way, which seems to be
more convenient.

2. //-Smooth Operators

In this section we introduce the notion of the //-smooth operators and present its
basic properties (see [Kal,2, RS4]).

Let Jf7 be a Hubert space, H—a self adjoint operator on Jf and B—a bounded
operator on Jf. We say that B is //-smooth (or Kato smooth with respect to //)
if and only if for every φeJ^,

J \\BeιHtψ\\2dt<oo.
- oo

Let A be a measurable subset of U. Let EΔ(H) denote the spectral projection of H
onto A. We say that B is //-smooth on A if and only if BEΔ(H) is //-smooth.

Let us state the most obvious properties of the //-smooth operators.

Lemma 2.1. a) Let Bx and B2 be H-smooth on A. Then Bγ + B2 is H-smooth on A.
b) Let B be H-smooth on A and C be bounded. Then CB is H-smooth on A.
c) Let Bγ be H-smooth on A and B%Bλ ^ B%B2. Then B2 is H-smooth on A.

Proof, b) and c) are obvious. To show a) it is enough to note that

J \\(B1+B2)eiHtψ\\2dt^ J | | / V ί H W ί + ϊ \\B2e
iHtψ\\2dt

— 00

00 \i/ 00 \i

f | | JV i H tyl l 2 ^ ί \\B2e
iHtφ\\2dt) . QED.

- 00 / \ — 00 /

The following criterion for the //-smoothness of an operator is a minor
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modification of the so-called Putman-Kato theorem (see [Kal, Pu, RS4, SigSof 1]).

Lemma 2.2. Let B and EΔ(H)CEΔ(H) be bounded. Lei Bt and B- be H-smooth on A
on A for i= 1,..., fc. Suppose also that

i = 1

Then B is H-smooth on A.

3. Basic Definitions

Throughout the paper X will denote a fixed vector space isomorphic to IR" endowed
with a scalar product. |x| will denote the Euclidian norm of a vector x.

Let XOEX and R > 0. Then B(xo,R) = {xeX\\x - x o | <L R} and

I
x
x\ \xo\

B(R) will denote B(0, R) and S will denote the unit sphere in X.
An important role in our paper will be played by a certain fixed family

[Xa\ a^s^} of subspaces of X. To be consistent with the notation in the literature
devoted to iV-body Schrodinger operators (e.g. [Hag, PSS, Sig, SigSofl, RS3, A,
FH1]) we will write aίcza2 whenever I f l l D l f l 2 and a1ua2 = a3 whenever
XaίnXa2 = Xa3. Xamin will denote X and Xamάx = {0}. We will assume the following
properties of stf\

2. if aί,a2estf then ax u
The orthogonal complement of Xa in X will be denoted Xa. Dual spaces to

X, Xa and Xa will be denoted by K, Ka and Ka respectively. πa will stand for the
projection of K onto Ka and πa—the projection of X onto Xa.

It will also be useful to introduce the following symbols:

a = xa\[jxb,
bφa

and

bφa L VW

We fix a certain positive C°° function X3χy-*(x}eU such that for |x| > 1, we
have <x> = |x|. (Similarly, we will use functions <(k>, <xα>, etc.).

The Greek latter a will denote a multiindex; |α| will denote the length of this
multiindex.

We define

Sm(Un) = {QeC^{Un): \Q(x)\ £ c<x>m and |«9αQ(x)| g xα<x>m~ x for |α| ^ 1}.

Typical examples of functions from Sm((R") are C00 functions that are homogeneous
of degree m outside B(l).
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We will say that a subset Ω of X x K is conical if and only if for any t > 0
(x,k)eΩ implies (xt, k)sΩ.

Let Ω be a conical subset of X x K and ε, β > 0. Then

/ 2 ε ' ^ - U Cone(x,ε) xB(k9β).
x,keΩ
xfO

D and Da will denote the operators (l/ι)V and (l/0Vfl. 4,4 f l and Ziα will stand
for the Laplacians on X, Xa and Xa respectively.

An important role will be played by the generator of dilations A = \(D x + x-D\
and the operator γ = j(D (x/(x)) + (x/<x>) D), whose importance was first realized
in [SigSof 1]. Tt is easy to show that both γ and A are essentially self adjoint on
ff{X) (the space of Schwartz test functions on X).

If B is an operator then B + he will mean 5 + 5*. The spectrum of B is denoted
by σ(B). If 5 is an unbounded operator then @(B) denotes its domain.

4. Hamiltonian

iV-body Schrδdinger operators arise naturally in the many particle nonrelativistic
quantum mechanics. The reader will find their basic properties e.g. in [RS3,4]. In
our paper we consider operators which are slightly more general than the regular
jV-body Schrδdinger operators, similar to those considered in [A, FH1,2].

We begin this section with stating the assumptions on the TV-body Schrδdinger
operators that we will use in our paper. Those assumptions are essentially the
same as in [SigSof 1].

We assume that μ is a real number such that 0 < μ < 1 and for every αe-j/ we
are given a real function va on Xa such that

a) va{xa)(-Δa + I ) " 1 is compact on L\Xa\ (4.1)

b) (xa)μva(xa)(-Δa + 1 ) " 1 is bounded, (4.2)

c) (xa}1 "μWva(xa)(-Δa+ 1 Γ 1 is bounded, (4.3)

and
d) {xa-V)2va{xa){-Aa+ ly1 is bounded. (4.4)

Note that t;α(πflx)'s are relatively bounded perturbations of —Δ with an
infinitesimal bound.

Set V= Σ ^α(παx). We define H to be the self adjoint operator on L2(X) such

that 9{H) =Έ\ -Δ)zndH=-Δ+V. Define also Va(x) = £ vb(πbx) and Ia =V-Va.
baa

The so-called "cluster Hamiltonians" Ha are defined as the self-adjoint operators
such that @(Ha) = @( - Δ) and Ha = - A + Va. Note that Hamm = - A and Hamax = H.
— Δ will be also denoted by Ho. We will often write EΔ instead of EΔ(H). Note
also that f/α's and H are bounded from below.

In the sequel λ will denote a fixed real number that lies below the spectrum of
H. (Consequently, by the HVZ-theorem λ lies below the spectrum of Ha for all
αecζ/—see [RS4] and references therein.)
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If we identify L2(X) with L2{Xa)®L2(Xa\ then the cluster Hamiltonians can
be decomposed as

where Ha = — Δa + Va is a self adjoint operator on L2(Xa).

Let 3~ a denote the set of eigenvalues of Ha if aφ αm i n and 3Γamin = {0}. We

define also 9~a = \J 3Γh. If EEU, then we set

and

We will often drop amax from # β m a χ 5 ^ a m a x , ^«m a x(£) and Xα m a x(£). Note that the

elements of [j 3Γ α are usually called the thresholds of H. Thus F is the set of
ίiίίimax

all thresholds=and bound states of H. Clearly the sets βΓα are bounded from below
and consequently the sets Σα(E) are bounded.

Now we are going to introduce a definition of a certain family of subsets of
the phase space X x K which will play the central role in our paper. This notion
is a variation of the concept of the propagation set which was invented and studied
in [SigSof 1].

Let EeU and let Ω be a conical subset of X x K. We say that there is no
propagation in Ω at the energy E, and we write ΩeJf0*E if and only if there exists
an interval A containing E such that iϊQeS~*(X\ geU°(K) and supp Q( )g( ) c= Ω,
then g{D)Q{X) is //-smooth on A.

Let us now state the main result of our paper.

Theorem 4.1. Let Eφ3Γ. Define

PS£=UU U {(*>*)•'
αs^xeXαMeΣα(E) I

Then for any ε, β >0,

, παk = M~
I X I

X x K\(PSE)ε'βejr^E.

The above theorem, in a somewhat different form, was stated and proved in
[SigSof 1]. We are going to present a proof that, we think, is simpler and more
transparent.

Next let us present a number of facts about iV-body Schrόdinger operators that
we will use in this paper without proofs. The proofs of these facts can be found
in the literature.

We start with two variants of the so-called Mourre inequality. For any aestf
define ΓQ{E) = 0 if Eφ,Ta and Γa(E) = {0} if Ee<Ta. Let Θa and pa be the real
functions on U such that

Σb(E)12

b c a, h φ a
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and

Ί 2

bcza,bφa J

(We set inf 0 = oo and sup 0 = — oo, moreover we assume that O oo = 0).

Proposition 4.2. Suppose that instead of the conditions (4.1)-(4.4) the potentials va

satisfy the following hypotheses:

a) va(xa)(- Aa + I ) " 1 is compact on L2(Xa), (4.5)

b) ( - 4 β + l ) ~ V Vt ; f l (x α ) (-4 β +l)- is compact on L2(Xa). (4.6)

Then for any aestf', EeU and δ > 0 there exists an open interval A containing E such
that

(pa(E) + δ)EΔ(Ha) ^ EΔ(Ha)i[Ha, A]EΔ(Ha) ^ (θa(E) - δ)EΔ(Ha). (4.7)

Moreover, the sets ZΓ a are countable and closed.
The original Mourre inequality is the part of (4.7) which estimates the

commutator from below. It was proved by E. Mourre in [ M l ] in the 3-body case
and by P. Perry, I. Sigal and B. Simon in [PSS] in the JV-body case. Another
proof of the Mourre inequality was given by R. Froese and I. Herbst in [FHl] .
The part of (4.7) which estimates the commutator from above is due to I. Sigal
and A. Soffer (see [SigSof 1]). See also [CFKS] and [De2].

We would like to rephrase Proposition 4.2 in a form that contains H a instead
of Ha. To this end, if K > 0 and kaeKa, we define

θκ

a(E, ka) = 2\ka\
2 + inf {0 β (F - k2): \E - E'\ g *},

and

pκ

a(E, ka) = 2 | U 2 + sup {pa(E - k2

a):\E- E'\ g K}.

The following corollary is an easy consequence of Proposition 4.2 (see [ F H l ] and
[Del] for similar statements).

Corollary 4.3. Suppose that the same conditions hold as in Proposition 4.2. Then for
any EeU and δ,κ>0 there exists an open interval A containing E such that

(pκ

a(E, Da) + δ)EΔ(Ha) ^ EΔ(Ha)i[Hβ, A-]EΔ(Ha) ^ (θ«(E, Da) - δ)EΔ(Ha).

Another important property of N-body Schrodinger operators that will find
an extensive application in our paper is the local //-smoothness of <x> ~ ί ~ε outside
the thresholds and bound states. This fact is a consequence of the Mourre estimate;
its proof is due to E. Mourre [Ml], see also [PSS, CFKS]. There also exists
another interesting proof due to I. Sigal and A. Soffer ([SigSof2]).

A precise formulation of this result is the following:

Proposition 4.4. Assume that in addition to (4.5) and (4.6) the following conditions
are true:

a) ( - 4 f l + l ) - V Vuβ(x f l)(-4β+l)~1 is bounded,
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b) (-Aa+ I ) " V V) 2 tφ; α )(-Δ* + i)- i is bounded.

Suppose that A is a compact subset ofU such that 3~' nΔ = 0. Then for any β > 0 the
operator <.x>~*~ε is H-smooth on Δ.

It is easy to see that the hypotheses (4.1)-(4.4) imply the conditions on the
potentials that are imposed in Proposition 4.2, Corollary 4.3 and Proposition 4.4.
From now on we will always assume that the hypotheses (4.1)-(4.4) hold.

5, Approximately Commuting Operators

In this section we study the properties of certain operators that we will extensively
use in our paper. One may look at these operators as noncommutative versions
of functions on phase space. It turns out that in many situations these operators
commute modulo higher order terms (in a sense which will be clear in a moment).
The proof of this fact will be the main subject of this section. The results and
techniques applied here are based on those of [SigSof 1].

First let us define what we mean by "the order" of an operator. Let B be
a densely defined operator on L2(X) and let meU. We will write jB = 0(<x)m) if
and only if for any keU the set ®{B)nΘ{ <x>*) is dense in L2{X) and <x> ~ m+kB(x}~k

extends to a bounded operator. We will also write

if and only if Bί - B2 = 0(<x>m) and

if there exists C = 0«x>m) such that Bί ^ B2 + C.
Next let us introduce a certain number of classes of functions that we will use

in this section:

BC«(Un) = {geC"(Mn): \Sa

xg\ ^ cα for any α}5

B^iUη = {geBC^iU"): g(k)k(k)m is a finite measure on Un for any m ^ 0},
B2C

co(Un) = {geBC^iw): fc V0(fc)e5C°°([r)}5

B3C"(Mn) = {heBC*(U): h(t) = X {λt - ή~n> + hx(t) such that λiφσ(H),

nteN and hλs5^(U)}.

Let us state the proposition that describes the commutation properties of
various operators of interest to us.

Proposition 5.1.

/. The following operators are 0(<x>°):

a) g(D)forgeBC«>(K\
b) (H-λΓ^Ho + l),
c) (H - λy'γ, y(H - λy'y and (i + γ)'\
d) (H-λΓιlH9Al
e) h(H)forheB3C«>(M)9

f) f(y)forfeBλC™(U).
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//. Let QeSm{X). The following operators are 0«x>"'^ 1):

a)
b)
c)
d)
e)
f)

///. L e ί / e B j C 0 0 ^ ) . The following operators are Q{(x)>~1):

a)
a') (i + yί^C/ω.gφJl/or geB2C

a>{K),
b)
c)
d)
e)

The proof of the above proposition is rather standard and lengthy. Therefore
we indicate only its main steps and omit some of the details, which are easy to fill in.

The starting point for the proof is the following easy lemma.

Lemma 5.2. Suppose that BeB(L2(X)) and for k= 1,..., j = 1,..., k, and ij = l,...,n
we have

Then 5 = 0(<x>°). Moreover, if\k'\^k, then

-•••+ Σ IIK,[-[^β] ]]lΣ
\ 11 iϊc = 1

We omit an easy proof of the above lemma and proceed directly to the proof
of Proposition 5.1.

Proof of Proposition 5.1. I a) follows easily from Lemma 5.2. II a) follows from the
calculus of the pseudodifferential operators (see [Hδ,Ta and De2]). The proofs of
I b), c), d) and II b), c), d) are straightforward applications of Lemma 5.2 and the
identity

To deal with the remaining statements of the proposition we have to develop a
certain technique which was extensively used in [SigSof 1]. First we present this
technique in an abstract form. We begin with the following identity.

Lemma 5.3. Let B and C be self adjoint operators on a Hilbert space Jf.
a) Suppose that <3γ a@(B)n@(C), Q)ι is a core for B,B maps Θι into @ί and
[JB, C] extends from a quadratic form on Q)(B) n Θ(C) to a bounded operator. Then
[5, eιC~\ extends from a quadratic form on Q)(B) to a bounded operator, and the

following identity is true:

[J5,βίc] =]dτei{i-τ)Ci[BχyτC. (5.1)
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b) If Si 2 c=^(5)n^(C) and eiτC maps S)2 into itself for all τ, then {5.1) is true in
the sense of quadratic forms on 22.

Proof. The proof of b) is straightforward. We shall show only a).
Let Tm z Φ 0. Let us prove first that [C,(B + z)~x] defined as a quadratic form

on <2)(C) extends to a bounded operator equal

(B + z)-ylB9C]{B + z)-\ (5.2)

To this end note first that both (B + z)Q>γ and (B + z)@1 are dense in Jf because
2ι is a core for B. Take φe(θ + z)®ι and ι/re(5 + z)^λ. Clearly φ,ψe@{C). Thus
by definition

(5.3)

But (β + z T ' ^ ^ + ̂ V ^ i C ^ n ^ C ) . So (5.3) equals

z)(B + z)-1(/>, C(B + z)" V) - ( c ( ^ + z)~ιΦAB + z)(B + z)~ V)

This is clearly equal to the matrix element of (5.2).
Now let φ,ψE^{B)n$(C). Then clearly

By the Stone Theorem we can write

= \(φ, eί{l 'τ)Cι\^~~, c\hc

ΐ [BC]

This tends to the right-hand side of the matrix element of (5.1) as ε -•(). QED.
It will be convenient to introduce the following definition. We will write

C = <5(O>°) if and only if C is a self adjoint operator on L\X\ ^{X) c 9{C) and
for k = 1,2,... j = 1,2,..., k; and ̂  = 1,..., n,

(Note that C itself need not be bounded).
The following lemma follows from Lemma 5.2 by a repeated application of

Lemma 5.3 a) with Q)γ = y

Lemma 5.4. Let C = o(<x>°), then for any keZ,

The following lemma is the basis for the proof of most of the statements of
Proposition 5.1.
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Lemma 5.5. a) Let C = o(<x>° and geB^φ). Then g(C) = 0(<x>°).
b) Assume in addition that 9){X)^9{B)r\9{C) and [C,£] = 0(<x>m). Then

c) Assume moreover that B = δ((x)°) and / e J ^ C 0 0 ^ ) . Then [g(Q9 f(B)~\ =

0«x>m).

Proof. To show a) we use the representation

g(C) = (2n)-^dtg(t)eiC\ (5.4)

Lemma 5.2 and the fact that

(the above estimate is a by-product of the proof of Lemma 5.4).
To prove b) we also use the representation (5.4). We apply Lemma 5.3. b) to

it with @2 = <^(X) Thus we can write

in the sense of quadratic forms on £f(X). Now b) follows easily from Lemma 5.4.
The proof of c) is similar. A double application of (5.1) yields

I J J dτ1dτ2e
ι(<tl τ^cgι(ΐ2 τ 2 ) J 5[C, ϋΓ|βίτ2iVτi<:

o o

in the sense of quadratic forms on £f(X). Then we use Lemma 5.4. QED.

Note that in Lemma 5.5 instead of a single operator C we can take k operators
C1,...,Ck, assume that they are δ{(x}°) and that g e l ^ C 0 0 ^ ) . The proof remains
essentially the same.

Now we can return to the proof of Proposition 5.1.

Proof of Proposition 5 A continued. Note that if ΛG53C°°(IR) then we can find h^C^iU)
such that hx{t) = h(ί/t + λ) for ίe[0,(inf σ(H))" 1]. Clearly h^H - λ)'1) = h(H).

We easily see that y and (H — λ)"1 are δ(<x>°). Thus Ie), f) follow from
Lemma 5.5a). Similarly, He), f) and Ilia), b), c), d) follow from 5.5b). To show
III e) we use Lemma 5.5 c).

It remains to prove III a'). To this end we need the following fact.

Lemma 5.6. Let geB2C
ζβ(K). Then there exist Bx - 0 ( < x > - 1 ) and B2 = 0(<x>~1)

such that [y,g(D)~] = yB1

JrB2.

Proof Clearly y = Λ(l/<x» + Q(x), where QeS'^X). Thus

Clearly we can write



New Proof of Propagation Theorem for iV-Body Quantum Systems 213

where Bx = <x> [ ( I / O ) , g{D)~\. By Proposition 5.1 II a) Br = 0((x) ~1). It is obvious
that D V^(D)(l/<x»-0(<x>- 1). QED.

Proof of Proposition 5.1 Ilia'). Let us write:

(i + yYKfiyXgiD)-] = (2ny^dtf(t)\dTe^~^(i + yy H[y,g(D)-]eh\ (5.5)
o

By Lemma 5.6 we can write

(i + yr1ly>g(D)~] = ϋ + yΓ'y^i + (* + y)'ιB2. (5.6)

It is easy to see that (5.6) is 0(<x>~1). This implies Ilia'). QED.

Our next proposition is an example of the so-called geometric method, which
proved quite successful in the study of the iV-body Schrodinger operators (see
[CFKS], Chap. 4 and the references therein).

Proposition 5.7. Let aed, ε > 0, QeS°(X) and supp Q c Yε

a. Then

a) Q(x)(h(H)-h(Ha)) = 0((x}^)for hεB3C*>(U)9

b) β
c) Q

ΛH ~ λΓ'iH^ l)^=0((x}-1^) for

The proof of the above proposition is based on the following lemma.

Lemma 5.8. Suppose that the assumptions of Proposition 5.7 hold. Then

a) β(x)/β(Ho + lΓ 1 =O(<x>- '0 ,
b) β(x)V/ β ( i/ o +lΓ 1 =0(<Jc>- 1 - ' ' ) .

Proof Let b φ a. Then hypotheses (4.2) and (4.3) imply that (πbx}μvb(πbx)(H0 + 1)" 1

and (πbx}1+μVvb{πhx)(H0 4- I ) ' 1 are 0(<x>°). Moreover it is easy to see that for
any v ,

This implies immediately the statement of the lemma. QED.

Proof of Proposition 5.7. First let us show that

Q(X)((H - xy1 - (Ha - xy1) = o((χyη. (5.η

In fact, the left-hand side of (5.7) equals

~λ)~\ Q(x)Va(Ha -λy'-iH- λyxQ(x)Ia(Ha -λy\ (5.8)

Clearly, the first term of (5.8) is 0(<x>~ ι); the second is 0(<x>~μ) by Lemma 5.8. a).
Next introduce the function h1 exactly as in the proof of Proposition 5.1. We

can write

Q(x)(h(H) - h(Ha)) = (In)'1 \dt
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ί τi

— (Ha — λ) 1)e ι ( //α λ) lτ + (2π) x \dτx j (iτ2^
11

o o

•[_Q{x\{H-λyιy{H-λr\τι-τ2)({H-λy

Now the first term of the above expression is 0(<x>~") by (5.7) and the second is

OK*)"1).
The proof of b) is similar to that of (5.7). c) follows easily from Lemma 5.8. b).
In the proof of d) we proceed as follows. We write

Q(x)[g(Da), (H - ΛΓ ! ] = (2πΓ* f g(y)dyQ{x)\ dτei{1^)D"»[Da-y, (H - λ)~ 1]ettD«-v.
Xa 0

(5.9)

We commute Q(x) through e^-w^y using (5.1). Thus we get a term containing
[Da y,Q(x)'], which is of the order 0(<x>~1). This is still unsatisfactory, so we
commute \_Da y,Q(x)~] further to the right. In effect we obtain

+ }dτ, J dτ2e^ -^D^i[Da-y,β(x)]\Da y,{H
0 0

- } dτ, ) dτ2 Jf dτ3e^ '^D^[Da-y, [Da-y, β(x)
0 0 0
} ) Jf
0 0 0

Now we easily see that the first term of the above expression is 0(<x)~1~ / l), the
second is 0((x)'2"μ) and the third is 0(<x>~2). Thus (5.9) is 0(<x>~1"^) QED.

By Proposition 5.1 and 5.7, if we are given a product of various operators
studied in this section we can very often change the order of factors producing an
error of a smaller order. It will be convenient to systematize various possibilities
of changing this order.

Proposition 5.9. Let aerf and ε > 0. Let Q^S^X) for i = 0,l,...,N,
m = mo + m1 + -h mN and supp Qo a Yε

a.
a) Let Bx be the product of the operators Q0(x\ β i (x),..., (H — λ)~1 and a certain

number of operators belonging to the following classes:

1) f(y) where
2) g(Da) where geB2C^(Ka),
3) G(D) where GeS°(K),
4) h(H) where
5) (H-λΓ^H
6) (H-λy'l
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(The order of the factors in this product is arbitrary). Moreover, suppose that B2 is
a product of the same operators as in B1 except that H is replaced by Ha in the classes
4), 5) and 6) and the order of the factors may be permuted without changing the order
of the operators of the classes 3), 4), 5) and 6). Then

B1=0«x>"), (5.10)
and

Bl=B2-h0((x}m~"). (5.11)

b) Let C{ be a product of the operators βo(x), Qλ (x),..., QN{x),(H — λ) ~ι and a
certain number of operators of the following classes:

1) f{y) where
2) g(Da) where geB1C'"(Ka)nB2C«>(Ka),
3) G(D) where GeS°{K),
4) (H-λ)-\

5) (H - / Γ ' t t f o + 1 )

(The order is arbitrary.) Suppose also that C2 is a product of the same operators as
in Cι except that the order of the factors is permuted without changing the order of
the operators of the classes 3), 4) and 5). Then

C 1 = 0 « x > m ) , (5.12)
and

C1 = C 2 + 0«x>m-' ί). (5.13)

Proof. Clearly all the factors oΐB1 and Cx are 0(<x>°) except that Qt(x) = 0(<x>mι).
This implies (5.10) and (5.12). Proposition 5.1.II. shows that commuting Qi(X) in
Bί and Cx produces errors of the order 0(<x>m~ ι). Let us show now how one can
commute g(Da) with the operators containing H. This is done in a different way
in a) and in b). Consider first a). First we move Q0(X) to a position adjacent to
any of the operators of the class 4), 5) or 6) and replace H with Ha. By Proposition
5.7 a), b), c) this produces an error of the order 0(<x>m~μ). Now g(Da) commutes
with thus modified operators of the class 4), 5) or 6). In the case b) we move Q0(x)
to a position adjacent to any of the operators of the class 4) or 5). Now by
Proposition 5.7 d) or e) if we commute g{Da) with them we get an 0(<x>m~1~μ)
error. Now if we take into account Proposition 5.1.Ill we know how to move
freely g(Da) and f(y) in Bx and Cx producing errors of a small enough order except
that we do not know how to commute g(Da) with f(γ). To do this we move those
operators in such a way that one of them becomes adjacent to (Ha — λ)~ι (in the
case a)) or to (H — AΓ1 (in the case b)). Now we can commute g(Da) with f(γ)
producing an 0(<x) m - 1 ) error because by Proposition 5.1.1c) and Ilia') we have:

(tf.-λΓ1!^),/^)]^^

QED.

6. Proof of the Propogatίon Theorem

In this section we fix Eφ<Γ and prove Theorem 4.1 for the energy E. The proof is
broken into a number of steps. In each step we consider a different class of operators
and prove that they are //-smooth on a certain vicinity of E.
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The general strategy of the proof is to show that the commutator of a certain
observable with H is positive around the energy E modulo some "higher order
terms" and then to use Lemma 2.2. An additional technical device that turns out
to be helpful is using observables that are equal to g(D)Q(x) times a function of y.

The commutator of H and of a function of y has an especially nice from which
is the subject of our first lemma in this section.

Lemma 6.1. Suppose that F,/eC°°([R), feC^(U) and F = f2. Then

The proof of this lemma is contained in Sect. 7. Now, following [SigSof 1] let
us study the propagation for large \y\.

Proposition 6.2. Let w>supΣ(E), /GC°°(IR), ΓECQ(M), / ; > 0 and s u p p / c

(—oo, — w]u[w, oo). Then there exists an open interval A containing E such that

(l/s/{x})f(y) is H-smooth on A.

Proof. Define

F(t)=-]f2(s)ds.
0

Set w0 = sup Σ(E). Choose a positive number δ such that 0 < 2vv2 — 2WQ — δ. Clearly
p f l m a x(£) = 2WQ. Thus by Proposition 4.2 we can find an open interval Δί containing
E such that

EΔιilH,A]EΔι£(2w2

0 + δ)EΔί. (6.2)

Let A be an open interval containing E such that A a Δ1 and A c\?Γ = 0. Now
Proposition 6.2 will follow easily from the boundedness ofF(y)EΔ9 the H-smoothness
of {x}~xEΔ, Lemma 2.2 and the next lemma. QED.

Lemma 6.3. These exists cx and c > 0 such that

i ̂  cEΔf(i)——f(y)EΔ - cxEA-——^EΔ. (6.3)

Proof. Let heCo(U) such that h=ί on A and supphc=Δι. By (6.1) multiplied
from both sides with h(H)(H — A), we can write

h{H)HH,F(y)MH)
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L2h(H)(H - λ)—L=(H - λ)~ xf\y)y2{H - λ)
<>

+ 0 « x > - 2 ) .

By (6.2) the first term of (6.4) is greater than or equal to

f(y)h2(H)f(y)-

Thus (6.4) is greater than or equal to

(2w2 - 2w2 - δ)h{H)f{y)~τ=f{y)h{H) -

This implies immediately (6.3). QED.

The above proposition is the only place in our paper where we use the reverse
Mourre inequality. Our next propositions are based on the regular Mourre
inequality. More exactly, we will need the following consequence of it.

Proposition 6.4. Let aestf and β,κ;,v,<5>0. Let FeC°°([R), feCgW such that
F = f2. Suppose that gEB2C

co{Ka) and QeS°{X) is a function homogeneous of
degree zero outside the unit ball such that supp Q a Yε

a. Define θκ to be the function
onUx (X\{0}) x K such that if xeZb and keK, then θκ(E,x,k) = θκ

b{E,πbk). Let

θk(E, x , k): x G S u p p β , π f l / c G S u p p # α n d d i s t ί — ~ k, s u p p / l ^ v

and

Then there exists an open interval A containing E and a number cx such that

\EA{H - λ)ilF(y\(H - λ)~ 1-]Q(x)g2(Da)(H -λ)EΔ + he

The proof of the above proposition is given in Sect. 8.
To facilitate our study of the propagation of observables it will be convenient

to introduce the following definition. Suppose that M,EeU and Γ is a conical
subset of X x K. We will say that ΓeJf£PEM if and only if there exists an open
interval A containing E and an open interval A containing M such that if/eC^((R),

/ ^ 0, supp/ c Δ9 QeS~HX), ^L°°(K) and supp Q( )g( ) cz Γ, then g(D)Q(x)f(γ) is
//-smooth on A.

The rest of this section is devoted to finding a sufficiently rich family of sets
from <sV&EyM for various values of M. We start with the easiest case (equivalent
to Theorem 7.1 of [SigSof 1]).

Proposition 6.5. Let MφΣ(E). Then X x KG.sV0>EtM.

Proof. Let wo,ζoeΣ(E) such that (wo,ζo)nΣ(E) = 0 and Mε(wo,ζo). Note that
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since EφZΓ, both w0 and ζ0 are nonzero. Choose w, ζ such that wo<w <M <ζ <ζ0.

Let feC$(U)J ^ 0 and supp/ c [w, ζ]. Set F(ί) - j /2(s)ds. Proposition 6.5 will
— GO

be proven if we show that there exists an open interval A containing E such that

(l/ v/<x>)/(y) is locally H-smooth on A. This will follow from the following

lemma. QED.

Lemma 6.6. There exists an open interval A containing E, cx and c > 0 such that

EΔiίH,F(y)lEΔZcEΔf(γ)-}-f(γ)EΔ-c1EΔ<x>-1-'ΈΔ. (6.5)
\X /

Proof. The lemma will follow from Proposition 6.4 with Q = g = 1 and a — α m a x .
First assume that w0 and £0 are of the same sign, e.g. 0 < w o < ζ o . Choose

positive numbers v, K and δ such that WQ -f K < (w — v)2 and 0 < 2ζl — 2κ — δ — 2ζ2.
Then

Γ x
θκ(E, x, k): (x, k) eX x K, w - v ^ —- k g ζ + v

|χ|

^(£,πδ/c): b ε ^ , fcεX, {w-v)2 ^\πbk\2}

kbeKb, w2 + κ^\kb\
2}

If w0 and Co are of a different sign, then w0 = — Co and we can assume that w = — ζ.
Moreover:

6 ) ^ inf {0K(£,x,k): (X,/C)G(X\0) X K} ^ 2ςg - 2/c.

In any case, Proposition 6.4 implies that (6.5) holds with c = 2£Q — 2κ — δ — 2ζ2.
QED.

Next we are going to study the propagation for yeΣ(E). [SigSogl] also contains
results about this that are sufficient to prove the asymptotic completeness (see
Theorem 8.1 of [SigSof 1]). Our analysis is somewhat different and leads, we think,
to a better understanding of the propagation for JV-body Schrόdinger operators.

It turns out that even if yeΣ(E\ then in some directions of the configuration
space there is no propagation. This fact is described in the following proposition.

Proposition 6.7. Let aesrf, MφΣa(E) and yeZa n S. Then there exists ε > 0 such that
Cone(y,ε) x K^JίΘ>

EM.
To prove the above proposition we will analyze separately the propagation in

two regions of phase space. This analysis is the subject of the following proposition,
which immediately implies Proposition 6.7.

Proposition 6.8. Let α, M and y satisfy the hypotheses of Proposition 6.7. Set
σ = sup{(x/|x|) };:x^0, x£Yfl

0}.
a) Let 1 > σ~ > σ and λ~ <Mσ~. Then

Cone( j ; ,^2(1- σ~)) x {keK: k y < λ~}eJf0>E
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b) Let 1 > σ+ > σ and λ+ > Mσ + . Then

Proof. Let wo,ζoeΣa(E) such that (wOiζo)nΣa(E) = φ and Me(wo,ίo) Note, that
we may assume that both w 0 and ζ0 are positive. Using the fact that Σa(E) is closed
and countable we can choose w l 5 w 2, ζl9 ζ2, λ^ and σf such that:

wo<w1<w2<M <ζ2<ζ1< Co,

1 > σ112 > σ f > σ,

a n d λ + > λ ^ > ζ1σ
 +.

Let /_,/o and /+ be nonnegative C (̂(R) functions such that

supp/_ c[w l 5 ίv 2 ] 3

supp/ 0c:[w 2,ζ 2],

oo oo oo

and J /2_(5)ώ= J /i(s)ώ= J fl(s)ds.
— oo — oo — oo

Define F±(t)= f / 2

± ( # a n d F o ( ί ) = } f&s)ds.}
- oo

We fix also #±eC°°([R) such that 1 ̂ g± ^ 0, g^ = \ on ( - O O , A ~ ] , supp^_ c
(— OO,ΛJ~], ^+ = 1 on [/ί + , oo) and supp^ + cz [A^, OO). We set g±(ka) = ^ + ( α̂ y).

Finally we choose <?±eCJ)([R) such that q± ^ 0 and supp<J+ c: [ σ f j σ ^ . We

set β + (ί) = J q%(s)ds, q±(x) = ^±((x/<x>) _y) and β + (x) = β±((x/<x» y) Note
- oo

that f±,f0,F±,F0, J±(F±~F~)eB1C™(M), i ± eB1C
0 0(*:e)nB2C»(/<:e) and

v

Define also

and

Lemma 6.9 that we state and prove below implies that there exists an open
interval A containing E such that Ψ+ are //-smooth on Δ. Proposition 6.8 follows
easily from this fact by an application of Lemma 2.1 c). QED.

Lemma 6.9. There exist an open interval A containing E, c> 0 and operators Bh

B': that are H-smooth on Δ such that

ί = l

Proo/. Clearly



220 J Dereziήski

(H - λyHlH,Φ±^(H - λΓ1 =ϊilF0(γl(H - λy^Q±(x)g2

±(Da) + he

(6.6)

Lemma 5.7 d) implies that the fourth term on the right-hand side of (6.6) is
O K x ) " 1 " " ) .

By methods employed in the proof of Proposition 6.4 we easily show that the
second term is greater than or equal to

where

and c1, c2 and c3 are some numbers. Clearly, by Proposition 6.5 the operators Bλ

and B2 are iί-smooth on some neighborhood of E. To deal with the first term we
use Proposition 6.4. We choose some positive numbers v, K and δ such that
wl + κ<{w2- v)2 and 0 < 2ζ2

Q - 2κ- δ - 2ζ2. We note also that suppQ± c Yε

a for
some ε > 0. Thus both in the + and — cases we have

~ I - - | * l "
^inί{θi{E,πbk):bcza, keK, (\v2 - v)2 ̂  \πbk\2}

= mϊ{θb

c{E,kb):baa, kbeKb, w2

0 + K ̂  |feft|
2} ^ 2Co - 2κ.

Now Proposition 6.4 guarantees that we can find an open interval A containing
E and a number c1 such that

jEΔ(H - λ)ί[F±(yl(H - λyι~]Q±(x)g2

±(Da)(H - λ)EΔ + he

It remains to handle the third term of (6.6). This is the subject of our next lemma,
which completes the proof of Lemma 6.9. QED.

Lemma 6.10.

UF0(y)~F±(y))iίQ±(x),(H -λy^gl(Da) + hc^0((xy-2). (6.7)

Proof. We easily compute that

0«x>-2).
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First consider the " —" case. By the methods of Proposition 5.9 b)

equals

/ χ'y _ _ 1 / x ' l

g^(Da)q^(x) i j(H~λ) y(F_(y) — F0(y))(H — λ)

plus 0(<x>~2). This is greater than or equal to

/ — /I) ^F.^y) — F0(y))(H — λ)

Now the above term equals

plus 0(<x>~2). This is greater than or equal to

(6.8)

Next consider the expression

2A)D(HλΓ1g2_(Da) + hc. (6.9)

Instead of Day(H — λ)"1 we can write

and apply Proposition 5.9 b). Thus (6.9) equals

v<x> <>
plus 0(<x>~2). This is greater than or equal to

By another application of Proposition 5.9 b) the above expression equals

(6.10)

plus 0 ( 0 > ~ 2 ) .
Thus, the left-hand side of (6.7) in the " — " case is greater than or equal to the
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sum of (6.8) and (6.10) plus 0(<x> 2). But wισι — λι > 0. Consequently, the
left-hand side of (6.7) in the " —" case is greater or equal than 0(<x>~2).

To prove the " + " case we proceed in a very similar way. We show that in this
case the left hand side of (6.7) is greater than or equal to

plus 0(<x> 2), which immediately implies the desired statement. QED.

Classical intuition suggests that a particle moving with velocity k after a long
enough time will travel within an arbitrarily small cone around the direction of k.
This intuition motivates our next proposition which describes the propagation for
threshold values of y.

Proposition 6.11. Let MeU, aestf, yeZanS and β>0. Then there exists ε > 0 such
that Conφ9ε)x {keK: \πak-yM\^β}eJΓ&EtM.

The following elementary lemma is an important step of the proof of the above
proposition

Lemma 6.12. Suppose that the assumptions of Proposition 6.11 hold. Let β0 > 0.
Then there exist v0 > 0 and ε0 > 0 such that ifbasrf, xeCone(y,εo)r\Xb, keK,
(x/|x|) fc > M — vθJ and \πak — yM\ ̂ β 0 , then baa and \πbk\ ̂  M -f v0.

Proof. To simplify the notation we drop the subscript from βo,vo and ε0. Clearly
if we assume that ε is small enough then x<ECone(y, ε)nXb implies baa. Then we
can write

πhk-M

πbk- My\2 -

πbk\2 - 2—'kM + M2 ^ \πbk\2 - M2

x

πhk-M- •y

2k-My\2S\πhk-My\2.

We add up (6.11), (6.12) and (6.13) and get

β2 ^ \πbk\2 - M2 + 2Mv + 2Mε\πbk\.

Thus

•2Mv, (6.11)

M (6.12)

(6.13)

^ - Mε M 2ε 2 . (6.14)

If ε->0 and v^O, then the right-hand side of (6.14) goes to JM2 + β2. Thus we
will find ε, v > 0 such that the right-hand side of (6.14) is greater than M + v. QED.

Let us fix β0 such that 0 < β0 < β (recall that β is the number that appears in
Proposition 6.11). Assume also that v0 and ε0 are determined by Lemma 6.12.

As in the proof of Proposition 6.7, to show Proposition 6.11 we will analyze
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separately two regions of the phase space. Our next proposition describes the two
regions that we have in mind, it implies immediately Proposition 6.11.

Proposition 6.13. Let M, a and y be as in Proposition 6.11. Let ε0 be as described
above.

a) Let 1 > σ~ > 1 - (SQ/2) and λ~ < Mσ~. Then

Cone(j;, j2{\-σ~)) x {keK: k-y < λ~\ \πak - My\ ^

b) Let 1 > σ+ > 1 - (εg/2) and λ+ > Mσ + . Then

Cone(j;,v

/2(l-σ+)) x {keK: k y>λ + , \πak-My

Proof. Choose wuw2,ζί,ζ2,λι and σf such that:

M - v0 < wx < w2 < M < ζ2 < ζx < M + v0,
lXT^σ^l-^),

/l~ < Af < w^j",

and λ+ > λ^ > ζγθ +.
Choose / o , / ± , F0,F±,q±,Q + ,q±,Q±,g± and g± in the same way as in the

proof of Proposition 6.8. Also fix a function ^1eCG0([R) such that 1 ̂  gγ ^ 0, i
for t> β and supp^x c [β0, oo). Set G + (ka) = g±(ka)g1(\ka — My\). Define

Φ±=ΪFQ{

and

Now our proposition will follow from Lemma 6.14 that we present below by
an argument similar to the one used in the proof of Proposition 6.8. QED.

Lemma 6.14. There exists an open interval A containing E,c>0 and operators Bh B\
that are H-smooth on A such that

Proof. The proof is most of the time similar to that of Lemma 6.9. We start with
an analog of equality (6.6) with G+ replacing g±. We deal with the second, third
and fourth terms of this equality exactly as in the proof of Lemma 6.9. To handle
the first term we use Proposition 6.4 in the following way.

We choose positive numbers v, K and δ such that (M — v0)
2 < (w2 — v)2 and

0 < 2(M + v0)
2 -δ- 2ζ2

2. Now:

Θ^inϊlθκ(E,x,k): (x,/c)GCone(y,v

/2(l - σ ^ ) x K,

\πak — My\ > β 0 , w 2 - v ^ — - k^ζ2 +
x
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^ inf j θκ(E,x, k): (x,k)eCone(y,ε0) x K, \πak - My\ > β0, M - v0 g ~

^ inf {0J(£, πbk): baa, keK, \πbk\2 ^ (M + v0)
2} ^ 2(M + v0)

2.

Thus by Proposition 6.4 there exists an open interval A containing E and a number
cί such that

EΔ(H-λ)ίlF0(y),(H-λy1lQ±(x)G2

±(Da)(H~λ)EΔ

This implies the statement of our lemma which c = 2(M •+ v0)
2 — δ — 2( 2 > 0.

QED.

Propositions 6.5, 6.7 and 6.11 provide us with a lot of information on ^λr0>

ΈM.
We can put this information together and formulate the following proposition.

Proposition 6.15. Let MeR. Define

PSE,M= U U
aes>/ xeXa

Let ε,β>0. Then

X x K\(PSEtMγ *eJr<?EtM.

Proof Let ^GL°°(K) and QeS'^{X) such that supp Q{')g(') <= X x K\{PSEtM)ε-β. For
any ae.otf and yeZanS let εy, Δy and Δy be determined in the obvious way by
Proposition 6.7 in the case MφΣJJE) and by Proposition 6.11 in the case MeΣa(E).
We may assume that 0 < εy < ε. The sets Cone(y,εy)nS for yeS form an open
cover of S. We can choose a finite subcover labelled by yϊ,...,yN. We can

JV

also choose a partition of unity j 1,... JN such that jieS°(x), Orgjjrg 1, J] jj = 1
ί — 1

and suppjj cz B(l)uConε(yh εy). (See a similar construction in Lemma 8.2). We set
N N

Δ = P| Δyι and Δ = f] Δyι. Now let feC${U), f ^ 0 and supp/ cz 4. The pro-
ί = l

position will be proved if we show that g(D)Q(x)f(y) is //-smooth on Δ.
To this end we write

g(D)Q(x)f(y)= t g(D)Q(x)jyι(x)f(y)- (6-15)
i = l

Let us fix our attention on a certain yΓ . Let yteZa for some αej^. If MφΣa(E) then

suppβίOΛX MO^Cone^^ε^ . ) x K,

and if MeXα(£) then

suppQ( );yi(")^( ) c C o n e ^ , ε>,) x {keK: \πak-My\> β}.

Thus all the terms of the sum on the right-hand side of (6.15) are //-smooth either
by Proposition 6.7 or by Proposition 6.11. QED.
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Now we are ready for the proof of the propagation theorem

Proof of Theorem 4.1. Let geL^iK) and QeS~-(X) such that supp Q(-)g( ) a
X x K\(PSE)ε'β. For any MeU let ΔM and ΔE be open intervals containing M and
E respectively determined by Proposition 6.15. Let w0 = supΣa(E) and w > w0.

The sets ΔM for Me(R form an open cover of [ —w, w]. We can choose a finite
subcover labelled by M t , . . . , MN. Let f0, /\, . . . , fN, fN + x be a partition of unity

N

such that /,€Ca'(lR), / ; ^ 0 , £ / , = l, supp f0 <= ( - oo, w], supp/ c r ^ , for

i = 1,..., N and supp fN + ί^ [w, oo).
By Proposition 6.2 if i = 0, N + 1 then ^(D)β(x)/i(7) are //-smooth on a certain

open interval A containing E.
Clearly PSEM a PSE. Consequently X x K\{PSEMf'β => X x K\(PSE)ε>β. Thus

the operators #(D)g(:x;)/;(y) are //-smooth on zlM i for i = l,...,iV by Proposition

6.15. Hence

>=Σo

is //-smooth on An f] AMι. QED.
i= 1

7o Proof of Lemma 6.1

In this setion we are going to show Lemma 6.1 that describes the commutator of
a function of y with //. A very similar fact is also proved in [SigSof 1]. Our proof
follows that of [SigSof 1] and we have included it for the convenience of the reader.

Let us start with the following lemma.

Lemma 7βl

b)
c)

Proof. Note that y = A(\/(x)) + Q{x), where QeS~\X). Thus

λ)~ι

ί - ; r 1 + 0 « x > ^ 2 ) . (7.1)

Clearly the first term of the right-hand side of (7.1) equals

plus 0(<x>"2). Next note that A = (x)y + 0(<x>°) and [//0,(l/<x>)] =
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2y<x>~2 + 0(<x>~3). Thus the second term of (7.1) equals

2(x)y(H - λ)- 1 y<x>- 2 (H - λ)'1 (7.2)

plus 0<x>~ 2. This implies immediately b). Next we note that (7.2) equals

2(x)y(H-λΓ'y(H-λy\x}-2 (7.3)

plus 0(<x>~2). Using b) to commute y and (H — λ)'1 we obtain that (7.3) equals

This ends the proof of a).
The proof of c) is left to the reader. Let us remark only that in the proof of c)

we use the boundedness of [ [H, A], A] (H - λ)" *. QED.

Next we will need the following lemma (which is also taken from [SigSof 1].)

Lemma 7.2. Let B and C be self adjoint operators. Suppose that B, [C, 2?] and
[C,[C,£]] are bounded. Suppose also that FeC°°([R) and F'eB^iU). Then
[£,F(Q] is bounded and

IF(C\ B~] = F\C) [C, 5 ] + R9 (7.4)

where R = (2π) ~' JF(t)tdt j dseίC(ΐ ~s) [C, [C, B^eiCs.
o

Proo/ If FG5^([R) then we easily compute (7.4) in the sense of quadratic forms on
). Next we apply the density argument. QED.

Now we proceed directly to the proof of Lemma 6.1. We apply formula (7.4)
to B = {H~λy1 and C = γ. By Lemma 7.1 c) R = 0((x}'2). Thus

(7.5)

We insert the formula of Lemma 7.1 a) into (7.5). Now clearly

= f{y){H-λ)-HlH,A-]{H-

and

(The square parentheses suggest the way we commute the factors). QED.
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8. Proof of Proposition 6.4

The proof of Proposition 6.4 is based on a careful analysis of the commutator
[H,A]. It is closely related to the proof of Theorem 7.1 of [SigSof 1], nevertheless
we think that our approach is simpler and more transparent.

By Lemma 6.1

equals

i—L=/(y)(JJ - λΓHlH, A](H - λ)-1f(y)^=Q(x)g2(Da) + he
2 V < : > C > v<x>

L Q(x)g2(Da) + he (8.1)iH -λ)

plusθ(<x>~2).
Tt is easy to handle the second term. First note that the second term of (8.1)

plus its hermitian conjugate equals

- (H - (tf - λ)~ι

plus 0(<^c>~2). This is greater than or equal to

- sup {It2: tesupp/} (H - λ)~' θix)g(Da)f2(y)g(Da)

(8.2)

Finally, (8.2) equals

- sup {2t2: ίGSupp/}(H- λ)~1Ψ*Ψ(H-λ)'1

p l u s θ « x > " 2 ) .
Now it remains to deal with the first term of (8.1), which is much more difficult.

To this end we need a lemma saying that functions of y can be approximated by
differential operators if we localize them in a sufficiently small cone in the
configuration space.

Lemma 8.1. Let yeS and ε > 0 . Let jeΠ°(X),suppj c Cone(y,ε) and
Then there exists a number c that depends only on f and there also exists a bounded
operator B such that

(8.3)

and ^ εc.

Proof. Let / be the characteristic function of Cone (j;, ε). Clearly/commutes with
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y. Thus the left-hand side of (8.3) equals

j(x) ( 2 π ) " ι J dtf{t) {eiyt - eίrDt) < D > " : - j{x)(2π)"x j dί/(ί) j dse/ys(y - y - D)eiyD(t ~s)

o
Γ x ~ ( X

= j(x)\ (2π)~ * $dtf(t)$dseiγf(x)l —
o \\x

Now the integral in the square bracket defines a bounded operator with norm less
than

ε\dt\f{t)t\\\D(Dyιl QED.

The next lemma contains a construction of a partition of unity that we will
need in our proof.

L e m m a 8.2 Let ε > 0. Then there exist ε1 > 0, a finite collection {yi:i=l,...,N}of
points of S n s u p p β and a family of functions {jt: ί= 1,...,A/"} such that j ieS°(X),

N

0 ^jι ^ 1, £ ? = 1 on supp g, supp Ί c Cone(>'1 , ε)vB(\) and if yteZb then
i= 1

z Yε

b\

Proof For every bestf and every yeSnsuppQr\Zh we can fix εy > 0 such that
εy < ε and Cone {y, εy) a Y£y. The family of sets SnCone (j;, (εy/2)), where yeSnsupp Q
is an open cover of the compact set S n s u p p g . We can choose a finite subcover
labelled by yl9... ,yN. Let {χ^.i = 1,... ,N} be a family of functions on S such that
XieC^iS), O^Xi^l, s u p p χ i : c: C o n e ( ^ ί , ε V ι ) n S a n d χ t = 1 o n Cone(yh(εyJ2))nS.
L e t ^ e C ^ ί ί R ) s u c h t h a t η(t) = t f o r ί > 1 a n d f/(ί) > m a x ( ί , ^ ) f o r ί < l . S e t

^ 9 \
X Xif(y) }• Now choose j ^ e C 0 0 ^ ) such that ji{x)=ji(x/\x\) for

| x | > l . QED.

Now we proceed directly to estimating the first term of (8.1). First we fix an
open interval Δγ containing E such that for any b cz a we have

Δι(Hb). (8.4)

Let A be an open interval containing E such that ΔczΔ1. Choose /zeC^([R) such
that supph CL Δx, O^h^i and h=\ on Δ. Fix also feB1 C°°(IR) such that
s u p p / c (t: dist(ί5suρp/) g v} and / = 1 on supp/. Let {jt: i= 1?...,A/"} be a
partition of unity described in Lemma 8.2 where ε will be fixed later on. For

shortness we will denote y/Q(x)Ji(x) by Ji(x).
We begin our calculations with multiplying the first term of (8.1) from both

sides with h(H)(H — λ). The expression that we get is the sum of the following terms:

h(H)(H - λ)-4= f(y)(H -λy1 i[H, A](H - λ)" ιf{y)
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1
--Jf(x)g2(Da)(H-λ)h{H), (8.5)

where / = 1?,..,iV.
Let us fix our attention on a certain i such that yteZb. Now we can apply

Proposition 5.9a) to the above expression with Jt(x) playing the role of Q0(x).
Thus (8.5) equals

f ( ) ί

plus 0(<x>"1^"). By Lemma 8.1 this is equal to

-^=f(y)g(Da)Ji(x)J{yi-D)h(Hb)ilHb,Λ]h(Hb)ΐb'i D)Ji{x)g(Da)f(y)

7 = (8-6)

plus 0(<x>~2), where |f J5e || ^cίε and cx is independent of ε. The second term of
(8.6) is greater than or equal to

-Clε-L=f(y)g(Da)Jf(x)g(Da)f(y)-~L=.

In the first term of (8.6) we can commute g(Da) to the middle and obtain

~-/L=f(y)Ji(x)g(Da)f(yi-D)h(Hb)HHb,AMHb)f(yi-D)g(Da)Ji(x)f(y)^-L

(8.7)

plus 0(<x>~2). Now there comes the most crucial step of our estimate. Due to
the inequality (8.4), the definition of Θ and the location of the support of
g(Da)f{yi D) the expression (8.7) is greater than or equal to

< >

Arguments similar to the ones applied above show that (8.8) is greater than or
equal to

2JJ<χ) J(χ)
V

- c2ε-^=f(γ)g(Da)Jf(x)g(Da)f(γ)-^= (8.9)

< > < >

plus 0(<x>~2) where c2 does not depend on ε. The first term of (8.9) equals

Θ-^)h(H)~L=f(y)g(Da)JΪ(x)g(Da)f(y)~L=h(H)
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plus 0((x}~1~μ). Eventually, we multiply our estimations from both sides by EΔ,
use the fact that EΔh(H) = EΔ, add up all the terms with i = 1,..., N and do some
commuting. Having done this we can conclude that there exist numbers c1,c2 and
c3 such that

ΪEΔ(H-λ)-±=

1 =Q(x)g2(Da)(H-λ)EΔ+hc

Since ε was an arbitrary positive number and cί and c2 did not depend on ε we
may assume that c1ε + c2ε < δ/2. This ends the proof of Proposition 6.4.

Acknowledgement. 1 am very grateful to I. Sigal for helpful conversations.
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