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Abstract. We prove non-existence of bound states for a class of JV-body systems
in homogeneous electric fields. This class includes atoms and Born-Oppenheimer
molecules. This result in conjunction with a stability result of [HS] implies
existence of resonances for such systems.

1. Introduction

Though the quantum N-body problem was intensively studied for the past 20
years, the field still abounds with many basic problems. For instance, physical
intuition suggests that a system placed in an external field which, in a certain
direction, pulls it apart overcoming the attraction between particles should not
have bound states. In particular, a homogeneous electric field applied to a system
containing charged particles of opposite charges should break the bound states of
this system. So far this rather obvious statement is proven only for two (one)-particle
systems ([T,AH,HS] see also [A]). The purpose of this article is to prove that
for a large class of TV-body systems including atoms and Born-Oppenheimer
molecules, there are no bound states in the presence of homogeneous electric fields.
This result coupled with the stability result of [HS] (see also [Hu]) implies the
existence of resonances in such systems. It is shown in [Sig] that these re-
sonances have exponentially small (in the inverse of the strength of electric field)
width. The latter is determined by the width, in an appropriate Agmon metric, of
the barrier that the system has to penetrate. This shows that establishing
non-vanishing of this width is a delicate matter.

Note the principal difference between the one (two)-body and Aτ-body problems.
In the one-body case, the total potential acting on the particle in question is
V(x)—E'X, where E is the electric field strength (times the charge of the particle).
Hence the force acting on the particle in the E direction is
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where E = E/\E\. It is positive (close to \E\) for |x| sufficiently large, provided
|VF(x)| vanishes as |x| ->oc (in fact, vanishing of E-W(x) in the direction of field
would suffice). In other words, if the particle is in the half-space E χ>0 and
sufficiently far from the origin, it is pulled off to GO by the electric force. In the
N-body case, the total potential is ΣVίj(xί—xj) — ΣeiE χί, and the total force
acting on the fth particle is the direction of E is

In general, for not so large | £ | , this force pulls the particle to oo only when this
particle is away from other particles. Put differently, along the planes

{x|x- =Xj for some j}, (1.1)

this force can be negative and push the particle back to the origin.
In our proof we adopt a modification of the method of [FH(H — O)2] and

[FH] (see [RSIV] for a review of related works), where the absence of the positive
energy bound states is shown for a large class of systems. The N-body systems we
consider are specified as follows. N particles have "arbitrary" interactions with
arbitrary fixed centres and repulsive (at least, in the direction of the electric field)
interactions with each other. In fact, our assumptions are even weaker than that
since we incorporate the electric field into the potentials and its effect shows only
through a general estimate. Our approach is not intrinsically an N-body one.
Instead of using the geometry of the JV-body problem we use that the interactions
between moving particles are repulsive. This fact allows us to reduce the problem
to one of independent particles interacting only with the fixed centres. Though we
cannot separate variables and reduce the problem to the one-particle one, as it is
normally done, the resulting problem, given some additional tricks, can be easily
managed. The underlying intuition is that the repulsive interaction between moving
particles will prevent them from sticking together, i.e. will keep the system away
from the planes (1.1) along which the electric force is not effective. Note that
repulsive estimates instead of geometric analysis were used in [L] in an analysis
of Λf-body scattering.

The paper is organized as follows. The second section deals with the 1-dimen-
sional one-particle case. Here we develop most of our machinery. The third section
treats the n-dimensional one-particle case. This treatment is, in fact, reduced to a
few remarks concerning essentially the notation. No new ideas or tools are
introduced here. The fourth section deals with the general case, i.e. the class of
JV-body systems described above. In the fifth section we discuss generalizations to
potentials including electric fields vanishing at infinity as 0(|x|~α) with a < 2.

2. One-Dimensional One-Particle Problem

a. Hamiltonίan. We define a class of Schrδdinger operators (Hamiltonians) on
L2(R) which includes one-dimensional Stark Hamiltonians. Let p = — i(d/dx), and
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define

H=p2 + V(x) on L2(R).

The potential F(x) will be assumed real and such that H is self-adjoint and the
force — V pulls the particle which is on the interval x > R to oo:

(A) V=V1 + V2 with J^eLj^R), V1 (x) ̂  - c max (x, 0) for some c > 0 and

(B) F has a distributional derivative satisfying: — V'(x) is bounded and ^ <5 for
x ^ R for some 5, K > 0.

By the Faris-Lavine theorem (see e.g. [RSIT]), H is self-adjoint due to condition
(A). This condition will be also used to guarantee the unique continuation property
for H (see [ABG, H, SchS] and the references therein). Condition (B) on the force
will be used to show that H has no bound states. Note that the usual Stark potential

V(x) = W(x) - Ex,

where W(x) is a one-body potential with W'{x) vanishing as x—>oo, obeys this
condition:

E>0 as x->oo.

We present some properties of the domain of H used henceforth. We have

D(H) c= local Sobolev space of order 2. (2.1)

This follows readily from the local //-boundedness of V with the relative bound

0. Next,

x)-V2\ (2.2)

where <x> = (1 + x + ) and x+ = max(x,0). We prove this embedding in Appendix.

b. Exponential Bounds. In this section we prove exponential bounds on bound
states of H... as if the latter exist. These bounds are used in the next section to
prove absence of bound states.

Theorem 2.1. Let φ be a bound state of H. Then eax+ψ εL2 for all α ̂  0.
This result is expected; in a bound state, the particle tries to avoid the region

in which force pulls it to oo.
Idea of the Proof. First we defined a smooth version of x+ shifted to the right

x-R-\/2 if x^R + l9

O if x^R

, O ^ F ^ l , F ' ^ 0

The graph of F is shown in Fig. 1:

Now assume on the contrary that for some α > 0,

eaFφφL2. (2.3)

We absorb this fixed α into F (i.e. we write F for aF). Let for t > 2R + 2, Ft(x) be
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Fig. 1

smooth and obeying

Ft(x) =
F(x) if x^t

at if x g It,
(2.4)

F\k)(x) = O(Γk + 1\ fe^l, and FJ'M^O for x ^ K + 1 and 0 ^ F; ̂  F (the deri-
vatives are taken in x) (see Fig. 1). Form the wave packets

, = \\eFtφ\\

Because of (2.3),

(2.5)

(2.6)

This relation suggests that φt is a scattering sequence. Define the self-adjoint
operator

This is just the momentum localized to the region where the force — V pulls the
particle to -f oc (see Condition (B)). The commutator i\_H, AF~\ is, up to local terms,
the force in this region. As expected, the local terms vanish along the sequence ψt

which allows us to show that

<i[tf, AF~\ )t^δι for t suffic. large,

and for some 31 > 0. Here and henceforth we use the notation

(2.7)

On the other hand we show that

CrK (2.8)

The latter estimate is a Virial type result which witnesses the bound-state nature
of φt. It exploits the eigenequation

(HF<-E)ψt = 0, (2.9)

where E is the eigenvalue of H corresponding to the eigenfunction ψ and

HF = eFHe~F = H -(Ff)2 +2iAF. (2.10)

Contradicting Eqs. (2.7) and (2.8) show that eFψeL2, which implies the statement
of the theorem.
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Proof of Theorem 2.1. First we prove Eq. (2.7). We use the equation

= -FV +2pF"p-±Fiυ

9 (2.11)

which is obtained by the straightforward evaluation of the commutator. Since F"
has a compact support and due to Equation (2.2) and since \V'\ is bounded on
suppF, eGu is in the domain of [H, AF~\ for any ueD(H) and any smooth G such
that eGueL2. Since Fίv has a compact support we have

Hence

(Fίvyt-+0 as ί-*0. (2.12)

Since F ' ̂  0, we have that

pF'p^O. (2.13)

Since F ' has a compact support, φteD((F")ίl2p). Next, by (B), F'V is bounded.

We show that for t suitably large

- < F F > t ^ | . (2.14)

First, observe that F is chosen in such a way that

-F'V'^δF'. (2.15)

Next, since F' and F, are supported in [R, oo), we have

Hence
<F> f ->l as ί->oo.

Thus (2.14) follows. Equations (2.11) (2.14) yield

OlH9A
F-]\^ for large/. (2.16)

Next we derive a Virial-type result. Let

(A)G = (ψG,ΆψGy with φG = eGψ.

Lemma 2.2. Let G and J be smooth with bounded derivatives, let Jf live in x^R
and J" have a compact support and let \\JGED{AJ)Γ\D(AG). Then

(ilH,AJl)G=-4Re(AJAG)G-2(J'G'G"}G. (2.17)

Proof. Observe first that since supp J" is compact, φG is in the domain of [_HiA
J'].

Note the eigenequation

{HG-E)φG = 0.
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We use a "Virial theorem" for this equation:

Due to the equation

HG = H-(G')2+2iAG,

we have that \j/GeD(H). Furthermore, the last two equations yield

Using that

and

we arrive at (2.17). •

For special J and G we derive a more detailed relation. Let

F't(r) if r^2R + l

Then
F't = F'χt. (2.18)

Note that J =FS and G = F t obey conditions of Lemma 2.2 and, due to Eq. (2.2),
φt is in the domain of γJ/2AF.

Lemma 2.3. The following identity holds

Proof Using (2.18) and computing a simple commutator, we obtain

Pick 5 > 3ί. Taking into account that

F s = F on supp F't and i7' = 1 on supp χ't9

we derive

Taking J =FS and G = Ft in (2.17), using the last expression and taking into account
support properties of the functions involved, we arrive at

< i [H, /lFs] X = r.h.s. of (2.19). (2.20)

This together with Lemma 2.4 below completes the proof of Lemma 2.3. •

Lemma 2.4. Let ueD{H). Denote (B)u = (u,Bu). Then

. (2.21)
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Proof. Since due to condition (B), V is bounded on suppi7^ and on suppF, and
since 0 ̂  F's^ F' and Ff

s-+F' pointwise, we have

<F'SV')U^(F'V')U (2.22)

as s—>oo. Moreover

<ff )> I (-><F ( i t ! )>1,. (2.23)

Next, we claim that

<pF:p>u^<pF"p)u. (2.24)

To prove this we observe first that

FΪ=F"+χf

5. (2.25)

Note that χf

s^0, χ^Ois'1) and is supported in [s, 2s]. Define φs = ( — sχ's)
1/2.

Then φs = O{\) and is supported in [5,25]. Taking this into account, we obtain

This together with Eq. (2.2) implies that

>0 as

which, by virtue of (2.25), yields (2.24). Equations (2.22)-(2.24) together with (2.11)
yield (2.21). Q

Equation (2.19) implies

O[H,AFl^-4\\Xt1/2AFψt\\2-2<F"F'2)t + CΓ\

with the constant C independent of t. Since F" ^ 0 we obtain furthermore

This contradicts Eq. (2.16). The contradiction proves Theorem 2.1. •

c. Absence of Bound States. In this section we use Theorem 2.1 to prove that, given
conditions (A) and (B), H has no bound states. The strategy of the proof is similar
to that of the proof of Theorem 2.1. Instead of t we use α as a parameter.

Theorem 2.5. H has no bound states.

Proof. Let φ be an eigenfunction of H with an eigenvalue E. We show that this
assumption leads to a contradiction. By Theorem 2.1,

e*FψeL2 for all α ̂  0.

Define the wave packets

\\e*Fψ\\'

We claim that φaeD(p) and therefore φyeD{AF) (cf. Proposition A.2 of Appendix),
indeed, let χeC% obey O ^ χ ^ l and \χ{n)\^Cn. Set φσ = χψy. Then φaeD{p2\
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Since eβFψxeL2 for all β we have, due to condition (A), that

Furthermore, we compute

(Hφx,φxy =E\\φJ2 + Re(χe*Flp2,χe°FW,ψ} =E\\φJ2 + \\(χe*Fyψ\\2. (2.26)

Therefore (remember, ί|t//J| = 1)

and consequently

^C^aX (2.27)

which yields \\χpφa\\ ̂  C2(α) and which, in turn, by the monotone convergence
theorem, implies the desired result. The latter and equation

Hφ,=(-iaF/p + E-2F" + ot2(F')2)ψa

imply ψteD(H).
Denote

Equation (2.17) with J —F and G =aF yields

(i[_H,A^ya= -Az\\AFψΛ2 -2a2(F'2F"}a, (2.28)

Since F" 2; 0, this yields

O[H,AFy?x£0. (2.29)

On the other hand, Eqs. (2.11), (2.13) and (2.15) give

< i [ f M / Γ ] > β ^ < F > I - K * ' " ' > β . (2.30)

Recall, F' ̂  0. We show that for some δ > 0,

( F ' X S Ϊ ^ J for α suffic. large. (2.31)

We have

j F e 2 β F ^ 2 J e 2 x F φ 2

l ) ^ = F ( Λ + 1)(I - / ) , (2.32)

where

2.33)
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We estimate
R + l

ί e ^ r e2*F(*+i>

R + l oo

ί e^r e2*F(*+i> ί Ψ2

J e2aFφ2 J ί//2

+ 2 iί + 2

The first factor on the right-hand side vanishes as α -> oo while the second factor
is independent of α and finite, provided ι// / 0 for x^iR + 2. By the unique
continuation theorem (see e.g. [ABG, H, SchS]), the latter is the case for φ φθ.
Thus /->0 for α-»αo, and therefore

for α sufficiently large.
Next, since Fiv is supported in (— oo, R + 1]

R+ί

J e2«Fφ2

}J^C^ . (2.35)
p2αF,/ /2

— oo
e 2 a F φ 2

By the same argument as above (see (2.34)),

(Fiv}a-+0 as α-*oo. (2.36)

Equations (2.30), (2.31) and (2.36) imply that

< i [ H , A F ] } a ^ β for a sufficiently large (2.37)

for some β > 0 independent of α. The last equation contradicts (2.29). This proves
Theorem 2.5. •

Remark 2.6. The result of Theorem 2.1 alone without condition (B) on the force
suffices to prove Theorem 2.5. However, if we do not use condition (B), we need
an extra estimate, e.g.

\\AFφ\\-^oo as α—>oo.

3, One Particle in n Dimensions

Now p — — z'V and p2 = \p\2 = —A (negative Laplacian) on R". The Schrόdinger
operator under consideration is

H=p2 + V{x) on L2(R"),

where the potential V(x) is a real function on L2(R") obeying the following
conditions:

(A) V= Vί + V2 with V^Ll^W) and V^x) ^ -a(h-x)+ for some a > 0 and /zeRπ,
F 2 G L ^ ( R " ) + L^R"), /? > n/2 for n ^ 4 and p = 2 for w ̂  3.

(B) FeLfoc(R"), p > n/2.
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(C) V has distributional first derivatives satisfying — /rVK(x) is bounded and ^ δ
for hx^R for some δ, R > 0 and h, the same as in (A).

Again, by the Faris -Lavine theorem, H is self-adjoint due to condition (A).
Condition (B) is needed to guarantee that H has the unique continuation property
(see [ABG, H, JK, SchS]). Condition (C) is the condition on the force. It is satisfied
if V combines the one-body potential W(x) with VW(x) vanishing as \x\ ->αo and
the electric potential —Ex with E h>0.

Applying an orthogonal change of variables (the rotation taking e1 = (1,0,..., 0)
into h) we reduce the second part of condition (C) to

dV
Γ(x) is bounded and ^ <5 for x1 Ξ> R, (3.1)

dxi

where x 1 is the first component of x.

Theorem 3.1. Let ψ be a hound state of H. Then e*iχl)+ψeL2(Rn) for all α ̂  0.
The proof of this theorem is exactly the same as the proof of Theorem 2.1 with

all action taking place only in the x1 -direction. For instance,

AF = &F(x1)p1+p1F{xi))

with pι — — ift/δx1). Using this theorem we show exactly as in Sect. 2.

Theorem 3.2. H has no bound states.

Remark 3.3. A slightly simpler version of the proof is obtained if one takes p 1 instead
of AF, one uses then that </> ί->0 and </>α->0 for any feC$ in order to prove
positivity estimates of the type (2.16) and (2.37). This version does not extend,
however, to the N-body case.

4. Many-Body Systems

a. Hamiltonian. We consider a system of N particles (for the sake of notations of
the masses j) interacting with a number of fixed centres. The Hamiltonian of such
a system is

H = Σ (PΪ + K) + Σ vij on L2(RnNl (4.1)

where Pj= —iVj with V; , the gradient in the variable x ; , Vί = Vί(xί) and Vtj =
Vij(xi — Xj\ the real potentials. Vx are assumed to obey conditions (A)-(C) of Sect. 3
with the same h. V{ is the potential of interaction of the z"th particle with fixed centers
and an external field. The potentials V- are supposed to obey

Vtj and {h yWVijELPiR") +LG0(R'2)

with p > - for n ̂  4 and p = 2 for n ̂  3 (4.2)

and to be repulsive in the h direction:

(h-y^-VV^^O. (4.3)
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In fact, we need this condition only for \h-y\ ̂  Rx for sufficiently large R{.
Note that atoms with infinitely heavy nuclei and the Born-Oppenheimer

molecules in an electric field E obey the above conditions. In this case

for Rj ε R 3 (positions of the nuclei) and

e2

Again, in order to simplify the notation we apply the same orthogonal trans-
formation (rotation g in R" taking e1 to h) to all xi:(x1,..., xN) ^(g(x1\... 9 g(xN)).
Then condition (C) on Vt reads in this case as

CJV (V)ι-ψ- is bounded and ^δ for y1 ^ R, (4.4)
oy1

and for some δ, R > 0 and condition (4.3) on V^ becomes

dV .
(4.5)

cyι

As in the one body case we have

D(H) c loc. Sobolev space of order 2.

b. Exponential Bounds. As in the one-body case we want to show that the bound
states of H, if they exist, decay exponentially in the direction of the field. We begin
with introducing a function F(x) measuring this decay similarly to the one-body

N

case. The first impulse to define it as F(x) = Σ F^xf), where Fι is equal F of

Sect. 2, must be suppressed. It meets technical difficulties. We define F(x) as follows.
Let

where g(s) is smooth non-negative function with the following properties

{s — R — \ for s ^ R -f 2
#(s) = < Λ Γ . n

[ 0 for s ^ K
and

Next ||#(x)|| will denote the Euclidean norm ofthe vector g(x): \\ g(x) || =(Σg(xf)2)1/2.
Now define a smooth non-negative function φ with the properties

\s-Rλ-^ for s^R^ + l

0 for s^Rx

and
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We choose Rx so that

Define

F(x) = φ(\\g(x)\\). (4.6)

Theorem 4.1. Let φ be an eίgenfunction of H. Then eaFφeL2 for all a.

Proof. We follow closely the proof of Theorem 2.1. Assume on contrary that
eaFφφL2 for some α ^ O and show that this assumption leads to a contradiction.
In what follows we incorporate α into F, i.e. write F for otF and φ for ocφ. Define
for t > 2Rί + 2 a smooth, positive function φt(λ) such that φf] = O(ί~ k + 1), k ^ 1,
for Λ ̂  Rx + 1, 0 ^ φ'tS Φ' (the derivatives are taken with respect to λ) and

φt(λ) = φ{λ) if λ^t and = α ί if λ ^ 2ί.
Introduce

i7

t(x) = 0 t ( | | ^ M I I ) and Φt=—ψr—' ( 4 7 )

Then

11^^1=1 and φt-^-+0. (4.8)

Henceforth we use the following notation

AF = ,

Our task is to obtain a contradiction by estimating <[H,Λ F }) t in two different
ways. First we compute

i[H, AF] = 2p(Hess F)p -\Δ2F-WF VV, (4.9)
where

Hess F = Hessian of F.

We evaluate HessF. We have (remember that | |g| | ^ K 1 on suppφ'(||gf( )| |))

'e\ (4.10)

(4.11)

with the obvious notation e\. We compute

δ2F g'^gj g?

dxjdx)

Taking into account that φ' ^ 0 and denoting ^ =(ί/./ | |^ || )(φ/)1/2? w e obtain

Using the Schwarz inequality and the fact Σg2 = φ\ we obtain

Σ ξ g'.g J^ g .y'.ξ .<Σ1- tf ξf . (4.1 2)
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Hence, since g'[ ̂  0 and φ' ^ 0,

H e s s f i [ i ί ί r ϊ ! } (413)

Since φ" ^ 0, we have that

HessF^O. (4.14)

First, we prove a virial type result. For t>2Rί + 2 we introduce the smooth
function

1 for r<^2R1 + l.

As in Sect. 2, φ't — φ'θv It is easy to compute that

VFt = χtVF, (4.16)

where χf(x) = 0,(||0(x)||).

Lemma 4.2, φt is in the domain of [if, ,4Fs] for all s including s = oo.

Proof. We will use Eq. (4.9). First observe that since Ft is bounded and VFt =
Odll^HΓ1), where |||^||| = ( | | # | | 2 + 1 ) 1 / 2 , we have, due to Proposition A.I of
Appendix, ψteD(H). Next, since

Hess F = O( HI 0HΓ1), (4.17)

we conclude due to Proposition A.I that

D(H) aD((RQssF)1/2p). (4.18)

Thus φt is in the domain of p HessFp. Next, we consider the term —VF-VV. Using
Eq. (4.10), we obtain

Since g\ is supported in xj ̂  R, the right-hand side is bounded by condition C
(Sect. 3). Hence φt is in the domain of ΣVF-VV^ Next, we compute using (4.10)

α 2 ' - α 2 ' δV
-VF-VV^-V^—ZL^-. (4.20)

2 || g || (3xf

By the assumptions on potentials

is infmitesimally form-bounded with respect to p2 (see e.g. [RSίl, Theorem X.20],
see also [CFKS, p. 7]). Hence, due to Eq. (4.20),

the right-hand side bounded by Proposition A.I of Appendix. Thus
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\\VF VVψt\\<co9

which together with (4.9) and (4.18) shows that φt is in the form domain of [H, AF].
Replacing in the derivation above F by Fs we conclude that φt is in the form-domain
of [H, AFs~] as well Q

Lemma 4.3. For each ί, ι//f LS m ί/ie domain of χ}l2AF and

< i [ H , ^ ] > ^ _ 4 | | & 1 / 2 Λ i > t | |
2 + C r \ (4.21)

wfoic/i C independent oft.

Proof. We follow the proof of Lemma 2.3. Since χt is supported in ||#(x)|| ^2t
and due to Proposition A.I we have that φt is in the domain of χ}/2AF. Relation
(4.16) leads to

λFt _ „ ΛF VF Vy (4 22)
At 2 At- v

Pick s > 3ί. Taking into account that

FS = F on supp(VFt), (4.23)

χs = \ on supp χf, (4.24)

we obtain a generalization of Eq. (2.19):

M 2 + <Λ>t> (4 2 5 )
where

J ί = - χ 2 V F V | V F | 2 - | V F | 2 V F V(χ 2)+VF V(VF Vχt). (4.26)
Using that

:=2(HessF)(VF) (4.27)

in the sense of [R^-vectors, we get

VF V | V F | 2 = 2 < V F , ( H e s s F ) V F > ^ 0 , (4.28)

due to Eq. (4.14). Since

|Vπ(χ f)*|^ const r " ,

we conclude that

Jt S const r 1 . (4.29)

Equations (4.25) and (4.29) yield

</[//,/4F s]> f^ -4\\γJ/2AFφt\\2 + Ct~\ (4.30)

Next we show that <[//,^ F s ] >f-><[//, XF] > r Since φs->φ pointwise and since

are bounded, we have due to (4.19) that

F ;>(. (4.31)
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This fact together with (4.9), (4.14) and \Δ2FS\ ^ const implies that

(4.32)

with the right-hand side independent of s. Since $2'(s) is monotonically increasing
and since V^y) is repulsive in the direction e1 (see Eq. (4.5)), we have

Hence (remember, φ's ̂  0)

Since 0^φ's^φ and φf

s->φ\ then due to bound (4.32) and Fatou's lemma and
the Lebesgue convergence theorem

<VFs VF0 >ί-><VF VKίj>ί< oo. (4.34)

Note for a future reference that the argument of the previous paragraph implies that

- V F VJ/ ^ O . (4.35)

Hence by virtue of (4.31) and (4.34),

<VFs VlOt-><VF VK>f (4.36)

as-^oo. Finally, clearly

(Δ2FS\-*(Δ2F\. (4.37)

Now, as in Lemma 2.4 one can show that

< p Hess Fsp)t-+(p Hess Fp)r (4.38)

Equations (3.46)-(4.38) together with Eq. (4.9) yield

<[//MF']> t-><[/ίMJ !]> f (4-39)

as s-^oo. Equations (4.30) and (4.39) yield (4.17). •

Lemma 4 A For some fixed δ2>0,

l i m < i [ / / , ^ ] > ^ ^ . (4.40)

Proof. We estimate every term on the right-hand side of (4.9) separately. We begin
with the last term. We claim

For any xesupp*//, let k=k(x) be defined by gk{x)=maxgj{x). Then for this x,
j

gk(x)^~-=\\g(x)\\. (4.42)
JN
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Hence

^ L (4.43)

and therefore, since Rx > 10^/iV, and by the definition of gk,

9'k(x) = l (4-44)

Furthermore, since (for the same x)

we conclude with help of Eq. (4.4) that

kAχ)^δ- ( 4 4 5 )
dxk

Equations (4.43)-(4.45) and the fact that gb g\ ̂  0 for all i yield (4.41).

Collecting Eqs. (4.35) and (4.41), we obtain

4=4>'. (4.46)

Equations (4.9), (4.14) and (4.46) yield

^ ' -Λ2F. (4.47)

Now we estimate Δ2F. A straightforward computation (similar to (4.11)) yields

1). (4.48)

(In fact, (4.11) implies this equation.) We show first that if F 1 is supported in
{x I HI g HI :g p} with some p < oo, then

(FiX-ίO. (4.49)
Indeed,

Γ)//2

.0.ί l = \e2Fψ

Next, we claim that for any y > 0

<lll0lir v >t-*O as ί->oo. (4.50)

Indeed, for any <5 ->0,

As before the last term vanishes as t ->oo, so (4.50) follows. Equations (4.48)-(4.50)
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imply

(Δ2F}t->0 as ί-»oo. (4.51)

Now Eqs. (4.47) and (4.51) imply

^ φ ' y t + R t i (4.52)

where Rt^0 as ί-»oo.
Finally, we estimate (φ'}t. Since φ' ̂ 0 , we have

J e2Fίφ2

Next

<p2φ(Ri+l)

The last two relations yield

<φ'> ^ δ1 for t sufficiently large (4.53)

with δ1 > 0 independent of t. Equations (4.52) and (4.53) yield (4.40). Π

Equation (4.21) contradicts Eq. (4.40). This proves Theorem 4.1. •

Now we proceed to the main result of this paper:

Theorem 4.5β The many-body Hamiltonian H has no hound states.

Proof. We follow the proof of Theorem 2.5. We assume H has a bound state φ
and we show that this assumption leads to a contradiction. Theorem 4.1 implies that

eaFφel2{RnN) for all α^O,

with F defined in (4.6). Define

eσFφ

Since eβFφaeL2 for β > 0, we have φaeD(p)2nD(H) by Proposition A.I. Therefore
following the argument given in the proof of Lemma 4.2 we conclude that φa is
in the domain of [if, AF~\.

First, we estimate (i\_H, AF^ >α from below. This estimate is based on Eq. (4.47).
We begin with the term (AF)X. We use again Eq. (4.48). We first show that if F1

is supported in {x| | |#| | Sp}, l h e n

{Fί}a^0 as α->oo. (4.54)

This relation is slightly more subtle than Eq. (4.49). We have
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J β Ψ e2aφ(p) J Ψ

j φ2

Since φ(p +1) > φ(p\ the second factor on the right-hand side vanishes as α -» oo,
while the third factor is independent of α and is finite, provided φ φ 0 on
{x| || g || ^ p + 1}. The latter is guaranteed by the unique continuation theorem (see
[ABG, H, JK, SchS]). Furthermore

<| | |0 | |Γ V >«-O as α->oo (4.55)

for any y > 0, which is proven exactly in the same way as (4.50). Equations (4.48),
(4.54) and (4.55) yield

(Δ2F}a-+0 as α^oo. (4.56)

Next we want to show that

lim (φrya ^ δt (4.57)

α->-oo

for some δ1 > 0. As in (4.53) we have

j e2aFφ2^

Next

< <

jV^2 = J e2^φ2=e2aφ(Rι+2) j

The last expression vanishes by the same argument as before.
Equations (4.47), (4.56) and (4.57) yield

lim <i[//,AF]>α^—2= (4.58)

for some δ2 > 0.
On the other hand we have a Virial type result. Indeed, recall that φaeD(AF).

Hence a straightforward generalization of Eq. (2.28) gives

α. (4.59)

The last term of this relation was already computed and estimated: Eq. (4.28).

Equations (4.59) and (4.28) yield

(4.60)

This inequality contradicts (4.58) which shows that the bound state φ for H is

impossible. •
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5. Generalizations

Open problem: To extend the results and proofs above to the case of electric field
whose strength vanishes as |x|->oo as O(\x\~a) with α < 2. Instead of condition
(C) (Sect. 3) one can consider the condition:

(C)' V has distributional first derivatives satisfying

- ( h ' x f ( h ' V V { x ) ) i s b o u n d e d a n d ^ δ f o r h x ^ R a n d α < 2

for some δ,R > 0 and some heRn.
In the case when the repulsive part of V(x) is due to an electric field E(x\ this

condition allows E(x) = O(\x\ ~a) with α < 2. Note again that after an appropriate
change of variables condition (C) becomes

δV
-(x 1 )*—Ax) is bounded and ^δ for x^ ^ R and α < 2.

dx1

A more precise statement of this problem is to show that H as defined in Sect.
4 but with condition (C) replaced by condition (C) has no bound states. One way
to go about this problem is to analyse the commutator /"[7ί, .4J, where, after the
change of variables, A1 = j(pίG(xi)-\-G(xί)p{) in the one-particle case and an
appropriate generalization of this expression along the lines of Sect. 4, in the
many-particle case. Here G(s) is a smooth function such that G, G' ^ 0 and G(s) = 0
for s :§ R and =(s — K)α for s ^ R + 1. One should proceed along the lines of the
proofs of the previous section with some additional calculations involving the
Virial-type result. We believe, in fact, that there is no bound states even if condition
(C) (or (O)) is replaced by the condition

(C") - / r V F ( x ) ^ 0 for Jrx^R

for some heΈίn and some R > 0.

Appendix

In this appendix we establish some elementary properties of the domain of H. The
latter is a many-body Hamiltonian as defined in Sect. 4a. Special cases of the results
below apply to the one-body Hamiltonians of Sects. 2a and 3. The conditions on
potentials we use here are somewhat more general than in the main text and can
be further generalized. We assume

(i) Vι - V\]) + V\2) with V^iy) ^ -ay\ for some a ^ 0 and V\2)eLp{Rn) + L°°(RΠ).

(ii) Vij and y1^Vij/dy1)sLp{Rn) +L°°(R"). Here and above p > (n/2) for n ^ 4 and
p — 2 for n ^ 3.

By the Faris-Lavine theorem (see e.g. [RSIT]) the N-body Hamiltonian H, with
these assumptions, is self-adjoint. Moreover, V\2\ V{ and y1(δVij/dx1) are infini-
tesimally p2 form-bounded (see e.g. [RSΠ, Theorem X. 19]).
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Proposition A.I. Assume (i) and (ii). Then

D(H)czD(p2\\\g\\Γ^y (A.I)

Proo/. First we show that D(H) c £>(/> |||# ||| ~ ( 1 / 2 ) ) . Let ueD(H) and / = |
It suffices to show that feD(p). Let χ e C ^ with 0 g χ ̂  1 and |dαχ| ^ Cα. Set v = χf.
We use the equation

(A.2)

with the notation (B)υ = (υ,Bv'). By condition (i),

( A 3)

Moreover, as was mentioned in the paragraph following conditions (i) and (ii), V\2)

is infinitesimally form p2-bounded. As a result we have

- Σ < ^ X ^ ϊ l ! H I 2 + c !M! 2 . (A.4)

Furthermore, by the infinitesimal form boundedness of VVp due to condition (i),
we have

Σ ^ + C H I 2 . (A.5)

Next, commuting H through χ|||<Sf||Γ(1/2) and using that

we obtain

|<H>J^|<| | |^!ir 1 i/>J+C||/! | 2. (A.6)

Collecting the estimates above and using Eq. (A.2), we arrive at

^\\pv\\2 ^ cons t .

This inequality yields | |χp/ | | g const, which, by the monotone convergence
theorem, implies that | | p / | | ^ const, i.e.feD(p).

Now we prove (A.I). Commuting H through \\\g|]|~1/2, we obtain

Hence by the result above feD(H). Next, similarly to (A.4) and (A.5), we derive

| | | K t > | | ^ | | p 2 i > | | + C | | υ | | ,

which yields

\\Vυ\\g,\\Hv\\+C\\υ\\.

Commuting H through χ and taking into account that feD(p)nD(H)y we obtain

Applying again the monotone convergence theorem, we conclude that feD(V).
Consequently, since p2 =H — V, feD(p2), which implies (A.I). Π
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Proposition A.2. Let H be as in Proposition A.I. Let φ be an eigenfunction of H.
Let F be a smooth function with bounded derivatives and such that ι^FeD(|| |#|| |"/ 2).
Then φFeD(H) n D(pn). Here n = 1,2.

Proof. Recall the definition

HF = eFHe'F = H-\VF\2+ 2iAF. (A.7)

Clearly φFeD{HF) as follows from the eigenequation

HFφF = EφF. (A.8)

Inserting (A.7) into this equation, we obtain

HφF = (E + \S/F\2-2iAF)φF. (A.9)

Using this equation and the Schwarz inequality, we obtain

As in Proposition A.I one can show that

- < Φ F , V Φ F ) ^ U P Φ F \ Ϊ 2 + C\\\\\9\\\1I2ΦF\\2- (A.Π)

This together with the equation

\\pφF\\2 = <φF,HφF)-(φF,vψFy (A. 12)
yields

Thus φFeD(p). Equation (A.9) shows that φFeD(H). The case n — 2 is proved in
the same way. Π
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