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Abstract. Two results on site percolation on the d-dimensional lattice, d^l
arbitrary, are presented. In the first theorem, we show that for stationary
underlying probability measures, each infinite cluster has a well-defined
density with probability one. The second theorem states that if in addition, the
probability measure satisfies the finite energy condition of Newman and
Schulman, then there can be at most one infinite cluster with probability one.
The simple arguments extend to a broad class of finite-dimensional models,
including bond percolation and regular lattices.

Our notation is as follows. Let Zd be the d-dimensional lattice, with d^.1. Finite
d-dimensional boxes in Zd whose sides are parallel to the coordinate directions are
called rectangles. The number of points in a finite set F is denoted by φ (F). We set

and we let μ denote a probability measure on X which is stationary, i.e. invariant
under translation by each element of Zd. For each xεX, the connected
components of the nearest neighbor graph whose set of vertices is

{zeZd: x(z) = l}

are called clusters.

Definition. A subset S of Zd has density α if for each sequence of rectangles

R1£R2g... with (j Rn = Zά, the limit
n^ 1

lιm

φ(Rn)

exists and is equal to α. If S does not have density [α for any α], then S is rough.

Theorem 1. For μ-almost every xeX, each cluster of x has density.
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Proof. By ergodic decomposition, we may assume without loss of generality that μ
is ergodic. Then the number N of infinite clusters of x is μ-almost surely constant,
with O^N^co. (We need only consider infinite clusters, since finite clusters
clearly have density zero.)

Fix x e X with N infinite clusters. If R is any rectangle, each infinite cluster C of
x has φ(Cr\R) points in R; let

designate the numbers # (CnjR) for the different infinite clusters C of x, arranged in
some non-increasing order with their proper multiplicities. The rank of C in R is
the index of this arrangement which corresponds to C; it may depend on R.

For each K < N + 1 we define a stochastic process F by

FR(x) = m^R, x) + . . . + mκ(R, x) ,

indexed by rectangles, with underlying probability space (X,μ). Since F is
subadditive [that is, if any rectangle is partitioned into a disjoint union of smaller
rectangles, then the value of F on the large rectangle is smaller than or equal to the
sum of the values of F on the smaller rectangles, for each x], the multiparameter
subadditive ergodic theorem of Akcoglu and Krengel ([2], see also [8]) yields the
existence of a constant y = y(K) ^ 0 such that

RRhm Rn --

μ-almost surely, for any rectangle sequence R1ξ=R2Q... with union equal to Zd.
Therefore the "density" of the rank K cluster in jR exists and is equal to

[with y(0) = 0] we write "density" because the rank of a fixed cluster C of x may
vary with R.

Now suppose in addition that

this property can be obtained from any rectangle sequence by adding additional
rectangles. Let C be a fixed cluster of x and let Kn be the rank of C in the rectangle
Rn. We now can show that the sequence

#(*„)

of densities of C in the rectangles Rn converges as n tends to infinity, for μ-almost all
xeX. On the one hand, the subadditivity statement above shows that the set of
limit points of this sequence is contained in the set
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μ-almost surely; on the other hand, this set of limit points must be a closed interval,
because the difference between the terms n and n + \ of the sequence is bounded by

which tends to zero. Therefore the sequence has exactly one limit point, as the set

contains no intervals of positive length. That is, C has density, and the proof is
finished.

We remark that by using the techniques of Grimmett [7], an easy proof for the
subadditive theorem in the above situation is available, the point being that F is
also "asymptotically superadditive."

For our second result we first define the notion of finite energy. If F is a finite
subset of Zd and

0:F-*{0,1}

is a "coloring" of F, then we can associate to each x e X a point x e X by changing
the values of x on F to φ:

U(.) if zeF
X(Z)"{X(Z) if zφF.

If EζX is an event, we set φ(E) = {x: xeE}.

Definition 2. The probability measure μ has finite energy if for any E £ X with
μ(E) > 0 and any F and 0,

μ(φ(E))>Q.

Theorem 2. // μ [is stationary and] has finite energy, then μ-almost every xeX has
at most one infinite cluster.

Proof. By ergodic decomposition, we may assume without loss of generality that μ
is ergodic so that N, the total number of clusters, is constant //-almost surely. Then
N is either zero, one or infinity. (See [9]; the proof is a straightforward application
of finite energy and ergodicity.) If N is zero or one we are finished so assume N is
infinity. A point z e Zd is an encounter point for x e X if the following two conditions
hold:

(1) z belongs to an infinite cluster C of x, and
(2) the set C\{z} has no finite components and exactly three infinite

components. Again using finite energy to change x in a large box, it is seen that the
origin is an encounter point with positive probability, say 2ε. It follows from the
ergodic theorem that for μ-almost all xeX all large (depending on x) rectangles R
contain at least ε#(.R) encounter points.

We next show that for any x E X and any rectangle R, the number of encounter
points of x in R is less than the number of points on the boundary of R. This will
finish the proof, since we cannot have

Φ (boundary of R)

for large R, because the dimension d is finite.
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Let C be a fixed cluster of x. Define

Y= Cn(boundary of R) .

If zeR is an encounter point for x, then removal of z from C defines by (2) a
partition

P = {P1,P2SP3}

of the set Y, such that Pt φ 0 for 1 ̂  i<^ 3. Moreover, if z' e R is another encounter
point with partition Q = (βl5 β2, β3}, then the indices for P and Q can be chosen in
such a way that P1 ^ β2uβ3 simply choose Pl to correspond to the component of
C\{z} containing z' and Ql to correspond to the component of C\{z'} containing z.
Thus the following lemma implies that the number of encounter points belonging
to C is at most Φ(Y) — 2, and summing over all infinite clusters completes the
proof.

For our final lemma we shall use the following notation. Let 7 be a finite set
with at least three elements. A partition of Y is a collection P = {Pl5 P2, P3} of three
non-empty disjoint subsets of Y whose union is Y. Partitions P and Q are
compatible if there is an ordering of each such that Pι2<2 2u<23 A collection P of
partitions is compatible if each pair P, Q e P is compatible.

Lemma. If P is a compatible collection of partitions of Y, then

Proof. If Φ(Y) = 3, then Y has only one partition and the lemma is valid. We
proceed by induction on n = # ( Y), supposing the lemma valid whenever # ( Y) < n.
Choose any PeP. Then P = {Pί,P29P3} with #(p.) = n.>0 and nl+n2 + n3 = n.
Divide P\{P} into three classes Pi (1 ̂ z'^3), with QcP{ if

after reordering of the β-indices. (The P-indices are now fixed.) Clearly each
<2eP\{P} belongs to exactly one Pt. Now fix an i, say i = l, and define

where ΔφY. For each β e Pl define a partition Q; of Yλ by setting β7 - {β'l5 β2, Q3}
with Q ^ ί Q i π P u / d . Then

is a compatible collection of partitions of Y1? and

Hence by induction

Note that the proof consists of a version of the statement that the encounter
points in a rectangle can be connected to boundary points in such a way that the
graph which arises is a tree, and hence that there are not enough boundary points
to accommodate a positive frequency of encounter points for large rectangles. We
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have chosen the above formulation to avoid messy statements concerning paths
and the corresponding visual arguments.

We list in the references a number of related articles with partially overlapping
results.
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