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Abstract. The integrability problem of integro-differential equations with,
generally speaking, singular kernels is discussed after an example of new
continual analogs of the two-dimensional Toda lattices. These equations are
associated with new infinite-dimensional Lie algebras via zero curvature type
representation. The structural constants of these algebras are distributions. A
formal solution of the Goursat problem is obtained. For the case with the
kernel of the integral operator being δ + -distribution an explicit expression in
quadratures for the solutions is given.

1. Introduction

Recently an interest in the integrability problem for nonlinear integro-differential
equations revived, mainly due to physicist-theoreticians and applied mathema-
ticians. There would be no harm to note that this problem has been in a stagnant
state for a long period. The renaissance in question is motivated, in particular, by
the problems of fluid flow dynamics and plasma physics. Probably, it is not alien
also to the gauge theories in particle physics. In this, the integro-differential
equations such as Benjamin-Ono or sine-Hilbert are usually studied. These
equations are derived from the wave or evolution differential equations by
introducing in one of the terms an integral operator with the Cauchy or Hubert
kernel over a spatial argument (see, for example [1]). However, at present there are
not any sufficiently general and self-consistent constructions of nonlinear integro-
differential equations and the integrability criteria for them.

Thus, it seems reasonable for this goal to try to generalize an algebraic
approach which proved itself in a good light in the problem of constructing and
explicit investigation of the integrable differential systems [2]. Here we take as the
starting point in the spirit of the Volterra method [3] for transition from finite to
infinite number of variables, a continual extension of the multicomponent
differential systems. In the present paper the two-dimensional generalized Toda
lattice is used as an example of such an initial differential system. Its continual
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extension, in which a new argument is a continuous limit of a lattice knot number,
represents a new type of non-linear integro-differential equations. As far as I know
this kind extension of the lattices and the corresponding equations were not earlier
proposed.

Here there would be no harm to stress the following. First, the idea of
considering the continuous analogs of the Toda lattice has been repeatedly
discussed in literature (see, for example [4]). However, in all limits previously
studied the systems are reduced to the equations of the Korteweg-de Vries type,
i.e., they did not lead out of the framework of a pure differential picture. Second, the
known equation for the induced Langmuir plasmon scattering by ions [5] just
represents in the aforementioned sense the continual limit of the difference KdV
(or, which is the same, the differential equations of Lotka-Volterra type). The latter
serves as a Backlund transformation for the Toda lattice. Probably, the integro-
differential analogs of the discrete systems discussed here are not uninteresting for
a series of physical applications.

As we will see below, an investigation of the problem of construction and
integration of non-linear integro-differential equations in the spirit of the algebraic
approach [2] requires the introduction of essentially new types of Lie algebras.
For the latter ones the structural constants are the kernels of the integral, generally
speaking, singular operators. By means of the Cartan-Maurer type equations these
algebras generate the unknown non-linear equations. In this connection the
integrals of motion and the characteristic integrals already become the non-local
objects with respect to the corresponding argument. Their study uses the elements
of singular integral equation theory, in particular, the formulas of Poincare-
Bertrand type.

For the continual generalizations of the Toda lattices one manages to explicitly
construct a formal solution of the Goursat problem in the form of an infinite series.
Establishing its convergence requires additional conditions to be put on the
integral operator whose kernel is a continual analog of the Cartan matrices.
Apparently, these conditions are related with the finiteness of functional growth of
continual algebras in the spirit of Kolmogorov and GeΓfand. Such a conception
should generalize the notion of finiteness of growth for the Kac-Moody algebras.
In the simplest nontrivial case when the integral operator in question is the Hubert
operator, i.e., its kernel is the causal δ ± -function, the series is cut off on the second
term. Then a solution of the corresponding integral generalization of the Liouville
equation is given by a simple formula. For this kernel it is also possible to obtain
the solutions of the integral generalization of the sine-Gordon equation on the
class of iV-soliton solutions.

The consideration and results of the present paper are partly announced in [6]
and in the invited talk at the IX Congress of the IAMP (Swansea, U.K., July 1988).

2. Derivation of Equation and Continual Lie Algebras

Consider a two-dimensional generalized Toda lattice with fixed end-points
described by the exactly integrable system of equations [7, 2]

(1)
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Here k is the Cartan matrix of finite-dimensional simple Lie algebra G over C of
rank r. The proposed continual analog of this system has the form

d2x(z +, z _ t)/dz + dz _ = exp J dt'K(t, t')x(z + , z _ t') = exp(Kx), (2)
L

where K is an integral operator with, generally speaking, a singular kernel. The
integral in (2) is taken over some contour L and should be understood in the sense
of the principal value. The new variable t is just a continuous limit of a lattice index,
i.e., X;(z + ,z_)->:x(z + ,z_; t). The range of variation off and the contour in (2) are
not fixed yet. In the simplest evident case when K(t, t') = 2δ(t —1'\ Eq. (2) reduces to
the well-known Liouville equation, i.e., (1) with r = l and k = 2.

A continual analog of the periodic problem can be written in the same way,

d2x/dz + 3z _ = Qxp(Kx) - exp( - Kx). (3)

It is interesting to compare Eq. (2) rewritten for the function y = Kx, i.e.,

d2y(t)/dz + <9z _ = j dt'K(U t') exp j (ί'),

with a structure of the aforementioned equation for the Langmuir waves with zero
linear damping [5],

dρ{k)/dτ = j dk' Γ(fc, k') exp ρ(fe'), ρ = In nk(τ).

Before we begin with the integrability problem of the non-linear integro-
differential equations under consideration let us elucidate with which algebraic
structures they are related. Remember for this aim that the algebraic approach for
the integrability problem of two-dimensional differential systems [2] is based on
the zero curvature representation

[d/dz+ +Λ + , d/dz_ + ^ _ ] = 0 . (4)

The latter generates the corresponding non-linear integrable equations by means
of a realization of the functions v4±(z + ,z_) in the subspaces @ G±m of a graded

Lie algebra G = 0 Gm of finite growth, zero growth for exactly integrable systems

as well. To carry out the analogous investigation of the integro-differential
equations we need in the following a generalization of the algebraic structures. In
this connection, as well as in the discrete case (1), the integrability of the equations
is naturally defined by the properties of the operator K whose algebraic sense at
first will be discussed by the example of Eq. (2).

One can easily be convinced that Eq. (2) is generated by representation (4) with
the functions

A± - jdt[±±h(ήdx(t)/dz± +X±(0exp(i&c(ί))] , (5)

where the elements h(t) and X+ (t) obey the commutation relations

= o , Vι{t),x±{t')-]=±κ{t'9t)x±{t')9 ix+(t\X-(O~] = δ(t-t')h(t) (6)

(Here and in what follows the dependence of the function x on the arguments z+ is
omitted as a rule.)
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In analogy with the contragradient Lie algebras it is natural to consider these
elements as the generators of a subspace (local part) G{/f) of some infinite-
dimensional, in principle, Lie algebra G. The latter as a whole is generated by the
repeated commutations

and the Jacobi identities for it are easily verified. The algebra G will be called the
continual algebra. The function K(t, f) is, generally speaking, a distribution and
serves as a continual analog of the Cartan matrix. In the simplest singular case with
δ-typQ kernel the algebra G( = G^) coincides with the centre-free current algebra
without Schwinger term which, however, can be involved in the consideration.

The algebra G introduced above can be generalized if one changes G(<f) by the
subspace G$ = φ G™ with the elements X _ α(ί), ha(t) and X + α(ί), 1 ύ α ύ R,

m = 0, ± 1

satisfying the relations

ίhM MO] = 0, \_K{t\ X±β(t')] = ± Kβa{t\ t)X±β{t'),

lX+a{t\X-βm = Kβ δ{t-t'Mt).

T h e s e e l e m e n t s g e n e r a t e t h e c o n t i n u a l a l g e b r a G(R) w i t h t h e local p a r t G[fJ. T h e n ,

rea l iz ing t h e f u n c t i o n s A+ in t h e s u b s p a c e s G ^ ^ l

α = 1

we obtain from representation (4) the following multicomponent generalization of
Eq. (2):

d2xa(t)/δz + dz_= exp f dt' Σ KΛβ(t, t')xβ(tf). (8)
L β

The multicomponent generalization of Eq. (3) is found in the same manner.

3. Solution of the Goursat Problem

It is possible to obtain a formal solution of the Goursat problem for the equations
under consideration with an arbitrary operator K. This solution is represented in
the form of an infinite series which is convergent only under the appropriate
constraints on K. We confine ourselves to consideration of Eq. (2).

For this goal supply the nonlinearity with a parameter /, d2x/δz + dz^
= Aexp(Kx), which one can put equal to 1 in the final expression for the solution.
Expand x(z, t; λ) in a power series of λ, x(z, t\ λ) = Σ λnxn(

z> O Then the zero mode

x 0 sa t i s f ies t h e L a p l a c e e q u a t i o n , d2x0/dz + dz_ =0, s o x o ( z , t ) = XQ(z + ,t)
+ Xo (z_,ί). Performing a reccurrent procedure we obtain the expression

Σ
n^1

(9)
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Here

Φ ± ( ί o ? ί 1 ? . . . , ^ _ 1 ) Ξ J...J Π d z ^ z ^ - z
1

θ(z) is the Heaviside function, ω is any permutation of the indices from 1 to n — 1.
Note that expression (9) can be rewritten for the function y ~ Kx in a more

symmetrical form with notations τm={z^zm,tm}, dτm = dz^dzmdtm, namely

Π dτmexpy0(τm)) Rn(τ9τl9...,τn).
w = l

Here

m= 1 l_ /= 1

L(τ,, τ j = θ(z; -z+)θ(z; -z~)K(te, ί j .

Using the multiplicative properties of Φ± and putting A = l, it is suitable to
present (9) in a form

exp[ - x(z, ί)] = exp[ - xo(z, ί)]

n ^ 1 m = 1

X ΣΦ~^tωW'''^ω(n-l))Dn(t9tu...,tn.1;ω)\, (10)
ω J

where

n - 1

n = Π
1

= 0

This expression represents a direct continual extension of the known formula
[2] for a two-dimensional generalized Toda lattice with fixed end-points
associated with a finite-dimensional simple Lie algebra G. Due to the properties of
the Cartan matrix of G the number of terms in the series for the solutions
exp[ —xf(z)] of the lattice is equal to the dimension dt of the ίth fundamental
representation of G, i.e., Dd+ί =0. For the continual case (10) the picture becomes
more sophisticated. Naturally, for K(t,t') = 2δ(t — t'), i.e., when (2) reduces to the
Liouville equation, D 2 = 0 and (10) reproduces the well-known general solution

Γ z- 1
exp[-x(z + ,z_)] = exp(-x 0 ) 1 - J dz'+e2χt{z%) j dz'_e2xδiz'-} . (11)

L J
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However, already in the simplest nontrivial case when K(t, £') is the Cauchy kernel,

i.e., K = K+=ΐ+ίH or K = K_=ΐ-ίH, H2=-ΐ, K±(t,t') = 2δ±(t-tf)= -(t-tf

π
± iO)'1 is the causal function, /is the identical operator, we have D2(t, ί') = 2δ(t — t')

. But in this

due to the relation K ± exp(X ± x) = 2 exp(K ± x). That is why the general solution to
Eq. (2) with such a kernel is given by the formula

Γ
exp[-x(z + ,z_;ί)]=exp(-x0) 1 - f dz'+e*x 0+(z;' °

L «-
• (12)

(The analogous construction takes place also for the Hubert kernel.) In other
words here a cut off in the series in (10) is provided not only by the properties of K
but also by the properties of the "bare" function exp(Xx0). This fact resembles the
situation in the theory of dynamical symmetries where the "spectrum generating
algebra" of the Schrόdinger equation is closed for the appropriate potentials only
on a class of its solutions.

Similar to the case of the Toda lattices [2] expression (10) can be rewritten in a
form

l_j V / J * " * J 1 1 Ml Ml \ 1 ' ' * * ? M/

« ^ 1 m = 1

'ί1)...x+(gjf_(ί f l)...jr_(ί1)|ί>^ (13)

J
Here M±(z + ) are the solutions of the equations

δM±(z±)/δz±=M±(z±)fΛexp};ί(z±,ί)Ar

±(O,

presented by the multiplicative integrals, X+(t) are the elements of the continual
algebra subjected to relations (6). In this relation

= <5(ί-t1)<5(ί-F1)χ Π 5(Γm-ί<B(IB))D1I(ί1,...,ίfl;ω); (14)
co m — 2

|ί> is a normalized basis vector for which h(f)\t} = δ{t-f)\t), X+(t')\t} = 0 and
<ί|Z_(O = 0for all t'.

Expression (10) gives a formal solution of the Goursat problem on the
characteristics z+=a + . Investigation of the convergence properties of the infinite
series in (10) is defined by the properties of the operator K or, in the end, by the
continual algebra itself. For the case of Toda lattices we know [2] that the absolute
convergence of the series for the periodic problem is provided by the finiteness of
growth of the corresponding Kac-Moody algebra (for the fixed end-points of the
lattice the algebra is finite-dimensional and this series converts into a finite
polynomial). Here, for the continual algebras, we probably need a notion of
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finiteness of the functional growth. However, at present we do not have any
satisfactory understanding of this question at our disposal. Thus in the next section
we shall stick to some heuristic reasonings based on the notion of the characteristic
integrals determined on a class of the solutions of Eq. (2).

4. Characteristic Integrals

Recall that for differential systems the presence of a complete set of the
characteristic integrals bears witness on their integrability in a definite sense. At
the same time, however, these integrals give a practical possibility to explicitly
construct the solutions only for the simplest cases (see, for example [2]). To my
knowledge, the problem in such a statement for the integro-differential equations
has never been investigated. Here the characteristic integrals already become
nonlocal objects that put obstacles in the way of their study.

In the second order with respect to the derivatives over z + or z_ the
expressions

W2

±{dx/dz±,d2x/dz2

±)

= j dtv(t) {d2x(t)/dz2

± + C0(dx(t)/dz±)2

with Cm = const, 0 ^ m ̂  2, represent the characteristic integrals for Eq. (2). This
means that dW2

±/dzτ = 0 on a class of the solutions to Eq. (2) in the following cases.
The operator K should be either

(i) symmetrizable, i.e., there is such a function v(t) that v(t)K(t, t') = v(t')K(t', ή;

in this, χ C m K m = 0; C 2 = 0 iff C o = C 1 = 0 , or
m

(ii) eigen-operator for the function exp(Xx), i.e., K exp(Xx) = c exp(Xx),
c = constΦθ; in this, C 0 = c(l + d)/2, Cγ — —d, C2 = d/2c; <i = const. Further on we
put c = 2 without waste of generality.

Note that if in the first case (i) the operator K is an invertible operator then it is
the Lagrangίan density which corresponds to Eq. (2),

Se= j dtv(t) l^

The higher order integrals for multicomponent systems of type (8), i.e., the
functions

Wfidxjdz*, d2xjdz2

±7..., dnxjdz\),

for which dW^/dzτ=0 with account of Eq. (8), arise under the fulfillment of
definite polynomial relations for the kernel.

Thus, the only thing we managed to obtain here for Eq. (2) is the singling out of
two cases mentioned above. In this, the first one requires an additional
specialization of the kernel K. The solution for the second case for K = K ± follows,
as we have already said in Sect. 3, from the formal solution of the Goursat problem
constructed there. However, it seems useful to obtain this solution on the basis of
the methods of the singular integral equation theory (see, for example [8]).
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5. Solutions for the Integral Analogs
of the Liouville and Sine-Gordon Equations

Consider as the operator K in Eqs. (2) and (3) the operators K+ or X_
whose kernels are δ± -functions. Acting by them on these equations from
the left with account of the relation Kexpy = 2expy, y = Kx, we obtain the
Liouville and the sine-Gordon equations, d2y/dz + dz_ =2expy and δ2y/dz + dz_
= 2expj; — 2exp( —y), respectively. As a result the problem of finding the
solutions to Eqs. (2) and (3) for the operator under consideration reduces to the
solution of the degenerated case of the singular characteristic integral equation

l ^ l (15)
πi L t —t

Here the inhomogeneity is the well-known general solution of the Liouville
equation and N-soliton solution of the sine-Gordon equation. In other words, Eq.
(15) determines the analytic f-dependence of arbitrary functions XQ(Z±J) of the
solution to the Liouville equation (11) and of the soliton parameters of the sine-
Gordon equation. In its turn Eq. (15) is solved by the standard methods of singular
integral equation theory under maintenance of the corresponding Holder type
conditions. In particular, the final solution for the integral analog of the Liouville
equation is given by formula (11).
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Note added in proof. The same method as in Sect. 5 can be applied also to another wave and
evolution integro-differential equations. For example, consider an integral analog of the KdV
equation xf + x±i(xί}χ)' = 0. Its solutions is obtained via the solutions of Eq. (15) with the
inhomogeneity being the JV-soliton solution of the KdV equation y' + 'y + 2yy = 0 with y = K + x.




