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Abstract. It is shown that any local quantum field theory admits thermody-
namical equilibrium states (KMS-states) for all positive temperatures provided
it satisfies a "nuclearity condition," proposed by Wichmann and one of the
authors, which restricts the admissible number of local degrees of freedom.

1. Introduction

Although the requirement of a reasonable thermodynamical interpretation is an
ίndispensible condition on any fundamental physical theory it has not found an
expression in the generally accepted postulates of local quantum field theory
[1,2]. There may be two reasons for this omission: first, quantum field theory is
regarded primarily as a framework for the description of elementary systems
(particles), even though its thermodynamical aspects are receiving increasing
attention in recent years [3, 4]. And second, there is the common belief that the
thermodynamical features of a theory can be derived from its microscopic
properties by applying the rules of statistical mechanics. It seems therefore
unnecessary to amend the basic postulates regulating these microscopic properties
by further conditions.

Taking this pragmatic view one misses, however, the point that the rules of
statistical mechanics are not always applicable: there exist quantum field theories
which do not admit any thermodynamical equilibrium states [5]. Conversely,
presuming a decent thermodynamical behaviour, one can establish interesting
structural properties of the underlying elementary systems [6]. Thus a closer
examination of the relation between the framework of quantum field theory and of
quantum statistical mechanics seems to be of interest.

As a step in this direction we establish in the present article the existence of
thermodynamical equilibrium states (KMS-states [7, 8]) for all positive tempera-
tures in quantum field theories satisfying a nuclearity condition proposed in [6].
This crucial input restricts the number of local degrees of freedom of a theory in a
physically sensible manner. It was argued in [5, 6] that the nuclearity condition
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distinguishes theories with a realistic thermodynamical behaviour. The present
results substantiate this conjecture.

Our construction of equilibrium states is quite explicit and may be of use also in
applications: in the first step we exhibit subspaces Jtif(A) of the physical Hubert
space Jf7 representing all local excitations of the vacuum in a given region. The
relevant properties of these spaces are discussed in Sect. 2. We will show in
particular that the operators e~βHE(Λ), /?>0, where H is the Hamiltonian and
E(A) the projection onto Jt?(A), are of trace class.

This result puts us into the position to define (Sect. 3) "quasi-Gibbs states"

ωβ,Λ{A)= ^ TrE(Λ)e-βHE(Λ)A, (1.1)

where Z is a normalization constant and A any (bounded) observable. These states
differ from the standard Gibbs-ensembles, but they describe a situation which is
close to equilibrium in a certain specific sense. (The states satisfy a local version of
the KMS-condition.)

It is favourable to work with the states (1.1) instead of the Gibbs ensembles
since the thermodynamical limit, where E(Λ)-*1, can be controlled more easily.
Our main result is that in this limit all limit points of the above states satisfy the
KMS-condition. So they describe systems in thermodynamical equilibrium
[9,10].

For the derivation of this result we have to assume that the time translations
act strongly continuously on the observables, i.e. we are working in the framework
of C*-dynamical systems. This assumption is necessary since the equilibrium states
may be locally singular relative to the vacuum due to infrared problems. We
illustrate this phenomenon in Sect. 4, where we also discuss some related
questions.

We conclude this introduction with a list of assumptions and definitions.

1. (Net structure) We consider a system of (concrete) C*-algebras SΆ(Θ) labeled by
the open, bounded space-time regions ΘcTR.d and acting on a Hubert space Jtf.
These algebras are subject to the condition of isotony,

2I(0i)C9I(02) if GXZG2. (1.2)

The smallest C*-algebra containing all the algebras 2Ϊ(C?) is denoted by S2I and
assumed to act irreducibly on 2/£. (Note that we do not assume that $1 is separable.)

2. (Time-translations) The time translations are represented by a group of
strongly continuous automorphisms αί? t e IR, of 91 which act in the geometrically
obvious manner

ί n). (1.3)

Here n is a unit vector denoting the time direction with respect to some Lorentz-
frame which will be kept fixed in the following. We assume that the time-
translations at are unitarily implemented on Jf? by

at{A) = eίtHAe'itH, A e ϊ ί , (1.4)
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where H is a positive selfadjoint operator (Hamiltonian) with the simple
eigenvalue 0. The corresponding normalized eigenvector is denoted by Ω (vacuum)
and we assume that Ω is cyclic for the algebras 21(0) and 21(0)', where the prime
indicates the commutant of the respective algebra in J*(Jf). We recall that this
property of Ω is a consequence of the standard postulates of local quantum field
theory (Reeh-Schlieder theorem [1]).

3. (Nuclearity) Besides these familiar properties we assume that the algebras
21(0) satisfy the nuclearity condition proposed in [6]. We state this assumption in a
form, used in [11], which is equivalent to the original condition but more
convenient: the maps ΘβtΘ: 21(0)->^f given by

θβt(!{A) = e-βHAΩ, 4 e 21(0), (1.5)

are nuclear for any β > 0. This means that for fixed β and 0 there exists a sequence
of vectors Φ{ e #? and of linear functional φt e 21(0)* (which can be chosen to be
continuous with respect to the ultra-weak topology induced by 21(0) C J*(Jf) [11])
such that Σ ||(/>j|| IJΦ II < oo and

β l Φ ί , AeSΆ(Θ). (1.6)
ί

The trace norm of ΘβiΘ is defined by

Hβ^l l^ infΣί lΦi l l IIΦill, (1.7)

where the infimum is to be taken with respect to all vectors and functionals
complying with the above condition. We assume that for small β > 0 and large
diameters r of 0 there holds the bound

\\®β,AιύecrmΓ\ (1.8)

where c, m, n are positive constants which neither depend on r nor on β.
As was discussed in [5, 6] the quantity || Θβf&\\ ί may be regarded as a substitute

for the partition function in quantum statistical mechanics. Thus the nuclearity
condition may be understood as the requirement that the partition function exists
and that it exhibits in the limit of large volumes and temperatures a behaviour
which complies with the physically motivated bound (1.8). In fact one expects that
the constants m, n in this bound can be put equal to the dimension (d—\) of space
in realistic theories [6,12]. But we do not need to make such an assumption here.

We emphasize that we also make no use of spacelike commutation relations
(locality) in our discussion. The only specific input from local quantum field theory
is the assumption that the time-translations act locally on 21, i.e. the image of any
algebra 21(0x) under the action of at is, for limited times ί, contained in some fixed
algebra 2ί(02) which is still "small" in the sense of the nuclearity condition. Our
reasoning can be extended to any net of C*-algebras on which a dynamics acts in a
similar manner.
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2. Spaces of Localized States

In this section we will construct the spaces of localized states, mentioned in the
Introduction, and show that they can be used to define a certain analogue of the
partition function.

As an essential ingredient we use the fact that systems, which are localized in
space-like separated regions, are strongly decoupled, as a consequence of the
nuclearity assumption [6,11]. In particular there exist states, in which all
measurements in two such regions are completely uncorrelated. This is made
precise in

Lemma 2.1. Let 0,0 be bounded open regions such that the closure of 0 is contained
in 0. Then there exists a unique vector ηeJ^- called the canonical product vector -
with the following properties:

i) (η,AB'η) = (Ω,AΩ)(Ω,BΏ) (2.1)

for allAeSΆ(Θ), 5 /e2I(0) /.
ii) η is cyclic for 21(0) v 21(0)'.1

iii) η is an element of the natural cone Pq (cf [8]J associated with the von
Neumann algebra 21(0) v 21(0)' and the cyclic and separating vector Ω.

Proof The existence of η has been proven in [6, 11], the uniqueness is a direct
consequence of standard properties of the natural cone P* (Theorem 2.5.31 of
[8]) D

The significance of the canonical product vector η was uncovered in [25]. Here
we use this vector in the following

Definition. Let A = (&, 0) be any pair of space-time regions as in Lemma 2.1. For
given A we define the Hubert space J^(Λ) c Jf by

je(A): = WΘγη> (2-2)

where η is the canonical product vector associated with A. The projection onto
is denoted by E(A).

The interpretation of J^(Λ) as a space of vectors representing local excitations
of the vacuum is based on

Lemma 2.2. Let A = {Θ,@). Then
i) ffl (A) is invariant under local operations in 0:

(2.3)

ii) The vectors of 2/f{Λ) induce product states on 21(0) v 21(0)' which are equal
to the vacuum state on 21(0)', i.e.:

(Ψ, AB'Ψ) = {Ψ,AΨ) (Ω, BΏ) (2.4)

for all Ψ £ jf{A), A e 2ί(0), B' e 2t(0)\

1 By M v N we denote the von-Neumann algebra generated by M and N
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iii) Jίf(A) is complete in the following sense: to every normal state φ on
there exists a vector Ψ e JtifiA) with

for all ,4 e 21(0).

Proof
i) is an immediate consequence of the definition,

ii) follows from (2.1).
iii) As in [13] we define a linear operator W: #C ->J^(x) Jf7 by linear extension

from

, ,4 e 21(0), # e 2 I ( 0 ) \ (2.5)

One easily shows that W is unitary and fulfills

WAB'W* = A®Bf (2.6)

for A, B' as above. Using W, we can write

(2.7)

Since 21(0)' has a cyclic vector, there exists a vector ΨreJf inducing the given
normal state φ on 21(0). Hence Ψ: = W*(Ψ®Ω)eje(A) fulfills iii). •

For an increasing sequence An of pairs of double cones eventually exhausting
all of space-time, one expects the corresponding spaces Jf(An) to tend to the whole
Hubert space Jf. It is, however, necessary to adjust the relative sizes of the regions
0, 0 in this limit in order to control the surface effects. The precise conditions
are given in

Lemma 2.3. Let Gr he the double cone of radius r about the origin 0 of Mίnkowskί
space and let At = (Θrι, (9Rι) for sequences i\ < Rb r —• oo. // m, n are the constants in
the nuclearity condition (1.8), and

Rt

> oo jor m}tn,

respectively

~φ~ι ~* °° JOr m<n,

then

in the strong operator topology.

Proof. It has been shown in [14] that under the above assumptions the canonical
product vectors r\b associated with the A{ by Lemma 2.1, converge to the vacuum
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vector2 and that, as an easy consequence, the unitary operators Wt defined by
(2.5) fulfill

Wi*(Φ®Ω) ^ >Φ for all Φ e J T .

By (2.7) we have E{Λt)= Wi*{\®PΩ)Wb where PΩ is the projection onto <C Ω.
Therefore

for all ΦEJT. •

Further properties of the 34?(Λ), which support their interpretation as spaces of
vectors describing excitations of the vacuum localized in a finite volume will be
discussed in a separate publication [15]. For our present task of constructing
equilibrium states, the most important feature of 3^{Λ) is the fact that the
restriction of the exponential function of the Hamiltonian H to 3Ίf(Λ) has the
spectral properties, which are necessary for the Gibbs construction.

Proposition 2.4. Let Λ = (Θ, Θ\ β>0. The operator e~βHE(Λ) is of trace-class, and

We-WEiΛn^Θ^h, (2.9)

where Θβj is the nuclear map defined in (1.5).

Proof In a first step we construct a convenient orthonormal basis of jf(Λ): let
be an arbitrary orthonormal basis of Jif with Ψί = Ω. We define

where M ί 7 e^(J )f) are matrix units given by

MiίΨ = (ΨpΨ) Ψi

By (2.6) we have Uije
ςΆ(Θ)'r, Furthermore

UijUkl = djk Uιb Ufj=Uji9 s- lim Σ UH = \. (2.10)
IV^oo i= 1

Then

Uiίη=W*(Ψi®Ω)

is the desired orthonormal basis of Jf (A). Introducing an isometry VeWfi)" by

we can also represent this orthonormal basis by

Unη = UnVΩ, (2.11)

2 Actually this has been proven in [14] for the massive case only. One easily gets the general result

by combining Lemma 3.1 and Eq. (3.16) of [14] with the assumed bound on | |β β ,^l | i in (1.8)
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where Un VeS&φ)". Next we note that for any ultraweakly continuous linear
functional ψ on 21(0) one has

\ψ(A)\2^\\ψ\\.\ψ\(AA*), ,4 e 21(0),

where \ψ\ denotes the absolute value of ψ [16]. Consequently there hold the
inequalities

λ>o i \2 Ik

for any vector Ψ e Jf and any functional φ as above.
We are now in a position to estimate the trace norm of e~βH E(A). By polar

decomposition we get

where F is a partial isometry with range in J^(A). Making use of the previous
remarks as well as the nuclearity condition (1.6) and (1.7), we thus obtain the
estimate

Ύτ\e-βHE(Λ)\=Σ(UnVΩ,Fe-βHUnVΩ)
i

The statement of the proposition now follows from this bound by taking the
infimum over all admissible vectors Φn and functional φn. •

This result allows the following

Definition. The quantity

): = ΊΐE(Λ)e~βHE(A) (2.12)

is called quasi-partition function. (This terminology is suggested by the fact that
Z(β,Λ) snares many properties with the partition function of the canonical
ensemble occupying a finite volume at temperature β~ι [17].)

In the present context we only need the subsequent elementary result on the
quasi-partition function. In physical terms it says that the effect of the surface
energy of the states in J^{A\ which lessens the eigenvalues of E(Λ)e~βHE(Λ\ does
not outrun the increase in the number of states contributing to the trace in the
thermodynamical limit. For the derivation of this result it is again necessary to
adjust the relative sizes of the regions Θ and Θ.
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Lemma 2.5. Let Atbe a sequence of pairs of double cones as in Lemma 2.3. Then

lim inf ZGM;)>(). (2.13)

If e~βH is not a trace-class operator (as is the case in quantum field theory) then the
sequence Z(β,Λi) diverges.

Proof Let Ψp j=\,...,N be any set of mutually orthogonal and normalized
vectors. Then it follows from Lemma 2.3 that

lim inf Z(β, A^lim inf ΊτE(Λ^e~βHE(A^
i i

^lim inf £ (E{Λ^Ψpe-βHE{Λ^Ψ^ = Σ (Ψj9e~βHΨj)>09
i ; = 1 7 = 1

where the last inequality follows from the fact that e~βH is invertible. The second
half of the statement follows likewise from this estimate. •

3. Local and Global Equilibrium

We will now show that under the assumptions stated in the Introduction, there
exist thermodynamical equilibrium states for every (positive) temperature. To
begin with we recall how one distinguishes the equilibrium states within the set of
all states by means of the KMS-condition [7, 8]. We also introduce a notion of
local KMS-states.

Definition. A state ω is called KMS-state at inverse temperature β>09 if for every
pair of operators A, Be<$l there is a function FAB, which is holomorphic on
Sβ: = {t + is\O<s<β} and continuous on Sβ, such that

(3.1)

for all ί e R .
A state ω is called local KMS-state in Θ if for every pair of operators A, Be Ψί(Θ)

there exists a function FAB with analyticity and continuity properties as above such
that the boundary condition (3.1) holds for t in some neighbourhood of 0.

The interpretation of KMS-states as equilibrium states is justified by their
stability and passivity properties [8]. We also note that on physical grounds the
KMS condition refers to a particular Lorentz system: the definition of temperature
requires the introduction of a heat bath which distinguishes a rest frame. In fact it is
a consequence of the KMS-condition that the Lorentz transformations cannot
unitarily be implemented in the GNS-representation induced by a KMS-state
[18].

Using Proposition 2.4 we can define for given Λ = (Θ,@) and β>0 a "quasi-
Gibbs state" by

co (A):= TvE(Λ)e~βHE(Λ)A (3.2)
Z{β,Λ)

for AeSΆ. This state has the following characteristic properties:
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Proposition 3.1.
i) ωβtA{A B') = ωPtA(A) ω0(B') (3.3)

for AeSΆ{Θ) and B' eSH{Θ)'.
ii) cθβtΛ is a local KMS state in any subregion Θ^CΘ whose closure is contained

in the interior of Θ.

Proof i) As a consequence of Lemma 2.2(i) E(A) commutes with 21(0). Fur-
thermore, by (2.6) and (2.7) we have

E{Λ)BΈ(Λ) = ωo(B')E{A)

for all B' e 21(0)'. This immediately implies (3.3).
ii) Let ,4,£e2I(0o), where 0O is any subregion of 0 as above. We set

FAB(t + is): = ί

with ί + is e Sp. The analyticity and continuity properties of FAB then follow from
Proposition 2.4 and the continuity of ί->l/(ί). Since by Lemma 2.2 £(Λ) e 21(0)',
and since for some £ > 0 4B(ί) e 21(0) if |ί| < (5, it is also clear that FAB satisfies the
boundary condition (3.1) for small t. •

Up to this point the strong continuity of at was not essential. Yet this
assumption becomes crucial in the proof that in the thermodynamical limit all
limit points of the quasi-Gibbs states cθβtΛ are (global) KMS-states.

The control of this limit requires a careful choice of operators which, on the one
hand, are analytic with respect to the time-translations, such that the analyticity
part of the KMS condition needs no further considerations. On the other hand the
operators have to have good localization properties since we want to exploit the
fact that the KMS boundary condition is locally satisfied by the states coβtΛ. These
two almost conflicting requirements are met by the operators introduced in the
subsequent lemma.

Lemma 3.2. Let p e N be fixed and let 2ί p c2l be the *-algebra generated by all
finite sums and products of operators of the form

A(f)=μtf(t)at(A),
where f is any one of the functions

f(ή = comte-κ(t + w)2p (3.4)

(with κ>0,we(L) and Ae[j 21(0) any local operator. Then
ΘΘ

i) Each Betyp is an analytic element with respect to α, i.e. the operator-valued
function t-+at(B) can be extended to a holomorphic function on (C.

ii) Each Be2ίp is almost local in the sense that for any r>0 there is a local
operator Br e 2I(0r) such that

where c is a constant which does not depend on r.
iii) The algebra 2lp is invariant under αz5 z e (C, and norm dense in 21.
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Proof, i) Since each function / is entire analytic and since \f(t + z)\ is, for z varying
in any compact subset of (C, bounded by some integrable function of t, the
analyticity of the generating elements A(f) of 2Ip follows from Vitali's theorem. But
finite sums and products of analytic operators are again analytic, thus the first
statement follows.

ii) Again it suffices to establish this statement for the generating elements A(f)
of 2IP. Setting A(f)r = 0 if r is small, we can furthermore restrict our attention to the
cases (since A is local) where at{A)CςΆ{Θr) for \t\^r/2. With

A(f)r= J dtf(tMA)eS&(Or)

the second statement then follows from the decay properties of f(t) for large |ί| and
the fact that A is bounded.

iii) The set of functions / is invariant under complex translations, hence it is
clear that 2IP is invariant under αz. Since the set of local operators (J 21(0) is norm

Θ

dense in 21 and since the time translations act norm-continuously on the elements
of 21, the last part of the statement follows by choosing in A(f) a suitable sequence
of functions / approximating the ^-function. •

Making use of the restrictions imposed by relation (1.8) on the volume
dependence of || ΘβyΘ\\ x we are now in a position to establish the KMS-property for
all weak limit points of ωβtΛι, provided the regions Gb Θ{ tend to the whole space-
time in an appropriate manner.

Proposition 3.3. Let Ai = (Θrι,ΘR) be a sequence of pairs of double cones where

Rf = r f . ( l + r ? ' m ) , rf-»oo (3.5)

and m, n are the constants appearing in the nuclearity condition (1.8). Then every
weak limit point of the sequence ojβ;Λι is a KMS state at inverse temperature β.

Proof Let ωβ be any weak limit point of the sequence of states ωβtΛι. For the proof
of the statement it suffices to show that ωβ satisfies the KMS-boundary condition
(3.1) on one of the norm-dense and α-invariant subalgebras 2Ip of 21 introduced in
the previous lemma (cf. Definition 5.3.1 and Proposition 5.3.7 in [8]). In view of the
fact that the elements y4,£e2ίp are analytic we can rewrite this boundary
condition in the form

ωβ{Axiβ(B)) = ωβ(BA). (3.6)

For the proof of this relation we choose p>(n + m)/2. Then we have for A, Be 2ίpJ

Hm — i — Tr[B, E{Λ$\ e~»HE{A^A - 0 , (3.7)

which can be seen as follows: with our choice of the regions Θb Θ{ we know from
Lemma 2.5 that Z(β,Aι)7>c for some c>0. Moreover, if J3rιe2I($Γι) is the local
approximation of B constructed in the previous lemma we have \β(Λ^ Brι] = 0
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according to relation (2.3). Hence we obtain the estimate

^ ^ l . \\B-Br.\\
cc

for certain constants c l 5 c2, and c3. Here we made use (in the last inequality) of
Proposition 2.4, the nuclearity condition (1.8) and the second part of Lemma 3.2.
Taking into account the particular choice of Rt and p we thus arrive at relation
(3.7).

Now since Be$ίp, there also holds αl7ϊ(l?) e 9IP. Hence we get for ε > 0 and
suitable (large) j e N,

\ωβ(Aaiβ(B) - BA)\ ^ \ωβt Λj(Aaiβ(B) - BA)\ + ε

where, in the last step, we twice made use of relation (3.7) and the symmetry and
hermiticity properties of the trace. But the bracket under the trace in the final
expression vanishes, hence relation (3.6) follows. •

Since the value β > 0 was completely arbitrary in our discussion we obtain as an
immediate consequence

Theorem 3.4. Let 21, cct be a C*'-dynamical system with properties given in the
Introduction. Then there exist KMS-states for all inverse temperatures β>0.

We conclude this section with a remark on the construction of equilibrium
states with non-vanishing chemical potential. To this end let us assume that 21 is an
algebra of charged fields on which there acts continuously a global gauge group
which is generated by a charge-operator Q commuting with the Hamiltonian H. If
the corresponding charge is tied to massive particles one expects that for
sufficiently small numbers μ and ε>0,

Setting H' = H + μQ and

af

t(A) = eitH'Ae~itH\ ,

it is then obvious that 91, a't is again a C*-dynamical system with properties given in
the Introduction. Hence there exist KMS-states for chemical potential μ and all
β>0.

An alternative approach to the construction of these states, which does not rely
on charged fields, but only on local observables, could proceed as follows: instead
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of choosing in the definition of the subspaces jtf(Λ) a product-state vector η
representing the vacuum in Θ as well as in Θ'3, one should take a vector ηq e Jίf
inducing a product state, which has a fixed charge-density q in Θ, and which
coincides with the vacuum in Θ'. Then there must also sit a compensating charge in
the boundary region &r\Θ if the vector ηq is to have total charge 0.

It is clear that the vectors ηq will not converge in the thermodynamical limit,
thus there is no analogue of Lemma 2.3 under these circumstances. But Lemma 2.5
should hold nevertheless, and the construction of KMS-states could then be
performed as in the present case.

It would be of some interest to convert this heuristic argument into a rigorous
proof. More generally, it would be desirable to know whether all KMS-states on
91, αt can be approximated by "quasi-Gibbs states" of the form (3.2) for a suitable
choice of product-state vectors η.

4. Conditions for Normality

The general results of the preceding analysis have been established within the
framework of C*-dynamical systems 91, oct. It is the aim of the present section to
discuss under which circumstances the assumption of a strongly continuous action
of at on 91 can be relaxed. (For a similar discussion, cf. [26].)

Let 91 be a C*-algebra with the properties given in the Introduction, apart from
the strong continuity requirements on at. Since relation (1.4) implies that oct(A) is
weakly continuous with respect to t, we can still define for any A e 91 and any real
test function /

A(f)=μtf(t)at(A) (4.1)

as a weak integral. In order to simplify the subsequent discussion we assume that
all operators A(f) are elements of 91, and we denote the C*-algebra generated by
these operators by 9I0. The local algebras generating 9I0 are given by 9ίo($) = 9I($)
n9ί 0 , and these algebras are weakly dense in the original local algebras generating
91. It also follows from relation (4.1) that the automorphisms at act strongly
continuous on 9ί0. Hence the preceding results can be applied, showing that there
exist KMS-states ωβ on the C*-dynamical system 910,^ for any β>0.

The question now arises whether these states can be extended to 91 without
violating the KMS-condition. This is always possible if the states ωβ are locally
normal relative to the vacuum representation of 91 on Jf7. In fact, this condition is
also necessary if the local algebras 9ί($) are von Neumann algebras [19].

In general, however, a little less is needed. We first note that one can extend in a
canonical manner any KMS-state ωβ on 9l0 to an αΓinvariant state ώβ on 91. This
extension is given by

= ωβ(A(f)), Λe9l, (4.2)

where / is any test function with j dt f(t) = 1. Making use of the fact that ωβ is an
αΓinvariant state on 9I0, it is easy to verify that the functional ώβ does not depend

3 Note that if 51 is an algebra of local observables, then $!($') Q 5l($)', where & is the causal
complement of Θ
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on the particular choice of the function / From this it follows at once that ώβ is
positive and invariant under αf.

We will see that ώβ is a KMS-state on 91 if ωβ is regular in the sense of the
following

Definition. The state ώβ is said to be α-normal (with respect to the given dynamics

αf)if
]imώβ(B*lA-A(δJ]) = O (4.3)

n

for all A.Be^l and all sequences δn of real test functions (with uniformly bounded
ίZ-norm) which approximate the ̂ -function.

It is clear that ώβ is α-normal if it is locally normal relative to the vacuum
representation of 3ί. The converse needs, however, not be the case. As already
mentioned, there holds the

Proposition 4.1. Let ώβ be the extension of ωβ given by relation (4.2). // ώβ is
oc-normal it is a KMS-state.

Proof Let Jfβ, πβ, Ωβ be the GNS-Hilbert space, the representation, and the cyclic
vector, respectively, fixed by ώβ. Since ώβ is αΓinvariant we can define a unitary
representation Uβ(t) of the time translations by

Uβ(t)πβ(A)Ωβ = πβ(at(A))Ωβ, A e 91.

The operators Uβ(t) are continuous with respect to t on the subspace πβ(
(Ά0)Ωβ

Cfflβ because αf acts strongly continuous on 9ί0. We will show below that this
subspace is dense in J^β. Hence there exists by Stone's theorem a selfadjoint
operator Hβ such that

For the proof that πβ(
<Ά0)Ωβ is dense we make use of the assumption that ώβ is

α-normal. Namely if A, Be9ί and δn is any ^-sequence as in the preceding
definition we have

lim (πβ(B)Ωβ, [πβ(A)- πβ{A{δn))] Ωβ) = lim ώβ(B* [_A - A(δn)]) = 0 .
n n

Since πβ(A(δn))Ωβ is uniformly bounded and πβ(ΪΆ)Ωβ is dense in Jfβ, it thus follows
that

w - lim πβ(A(δn))Ωβ = πβ
n

showing that

The proof that ώβ fulfills the KMS-condition can now be accomplished in a
standard manner: let A(δn) be any sequence of operators as in the preceding step.
Since convex combinations of ̂ -sequences are again (5-sequences we may assume
without loss of generality that πβ(A(δn))Ωβ as well as πβ(A*(δn))Ωβ converge
strongly to πβ(A)Ωβ and πβ(A*)Ωβ, respectively. Moreover, since ώβ\^ί0 satisfies
the KMS-condition, we have

\\e-βH>l2πβ(A(δj)Ωβ\\ = \\πβ(A*(δJ)Ωβ\\.
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From this equality and the fact that e~βHβl2 is closed it readily follows that all
vectors in πβ($l)Ωβ are in the domain of e~βHβ/2 and

\\e-βH'l2πp(A)Ωβ\\ = \\πβ(A*)Ωβ\\9 AeM.

But the latter relation implies that e~ βΠβ is the modular operator [8] correspond-
ing to 7fy(2I)"5 Ωβ. Hence ώβ is a KMS-state. Π

This result makes plain how ώβ might fail to be a KMS-state: the functions t
-+ώβ(B*oct(A)) may not be continuous in the sense of the above definition. In the
case of C*-dynamical systems this possibility is ruled out from the outset. But if one
relaxes the requirement of strong continuity of αf there do exist models fitting into
our framework where this does happen.

An instructive example of this kind is the theory of a free massless scalar
particle in d = 3 space-time dimensions. The structure of this model relevant for our
purposes (in an arbitrary number d^.3 of dimensions) can be summarized as
follows: the basic building blocks are the symmetric Fock-space Jf over the single-
particle space JΓ = L2(]Rd~1) and the unitary Weyl-operators

W{f) = ei{a*{f) + a{f))~, (4.4)

where fe Jf and a*{ -),a( ) are the familiar creation and annihilation operators.
The dynamics is fixed by

at(W(f))= W(eitωf) = eίtHW(f)e'ίtH, (4.5)

where ω is the single particle Hamiltonian which, in momentum space, acts
according to

(4.6)

and H is the "second quantization" of ω. The (weakly closed) local algebras are
defined by

(4.7)

where <£(Θ) are certain specific real linear subspaces of Jf. If, for example, (9 c R d is
a double cone centered at 0 and OcIR^" 1 is its base, then

g>(Θ) = ω~-112 Θ(O) + iω+ {/2 9(O), (4.8)

where 3>{O) is the space of real test functions with support in O.
It is well-known [20] that the algebras SΆ(Θ) and the time translations eιtH have,

up to the strong continuity of αf, the properties listed in the first two conditions
given in the Introduction. Following the reasoning in [12] it is also straightfor-
ward to show that these theories satisfy for any d^3 the nuclearity condition. In
fact one can put rn = n = d — l in the bound (1.8), in agreement with Stefan-
Boltzmann's law and our interpretation of the quasi-partition function.

In spite of this structure there does not exist any KMS-state in this model if
d = 3. This can be seen as follows: assuming that there is a KMS-state ωβ for some
β>0 one finds, by making use of the KMS-condition as in [21] that ωβ(W(f)) = 0
whenever fe£?{Θ) is not in the domain of ω~1/2. At this point the dimension of
space-time enters: only for d = 3 there exist such elements / in <£{Θ). For any such
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/ the function λ-+ωβ(W(λf)) is discontinuous at λ = 0, and consequently ωβ cannot
be a normal state on the von Neumann algebras 91(0). But this is in conflict with
the general results in [19] according to which any KMS-state ωβ on 2ί is
necessarily normal on each 91(0). Hence there is no such state in the theory. (For a
more detailed discussion of this model cf. [17].)

The reason for the absence of KMS-states in this model can be explained in
physical terms by comparing it with the corresponding models in d > 3 space-time
dimensions. There spatially homogenous, locally normal and primary KMS-states
exist and are given by

"V,c{W{f)) = e i c ( ^ } ( 0 ) e~(/'coihβω/2 / ) / 2 (4.9)

for arbitrary celR. These states correspond to ensembles in thermodynamical
equilibrium with a mean background field c which is produced by the collective
effect of zero-energy massless particles (Bose-condensation).

The limit-points of ωβc for c / oo describe states with infinite field strength
which are no longer locally normal. These states do not contribute to the Gibbs-
ensemble if d > 3, since there the creation of an infinite field requires already locally
an infinite amount of energy.

The situation is different, however, if d = 3. There one can create states with
arbitrarily large field strength c from the vacuum without needing much energy.
The important point is that in three dimensions the surface energy between regions
of field strength c and of zero field strength can be kept arbitrarily small by making
the surface layer between these regions sufficiently large. Hence states with infinite
field-strength contribute to the Gibbs-ensemble in the thermodynamical limit if
d = 3, and this explains why the corresponding states are not locally normal.

This simple model illustrates the fact that the nuclearity condition (1.8) does
not impose stringent conditions on the infrared properties of a theory. It essentially
restricts only the high energy behaviour. It seems, however, that infrared problems
of the above type are absent in theories satisfying a compactness condition
proposed by Fredenhagen and Hertel: instead of putting limitations on the
number of states which are localized in Θ and at the same time contribute
substantially to a given spectral subspace of the Hamiltonian, this in a sense dual
condition restricts the number of states of fixed total energy on a given local
algebra 91(0). (For the precise condition cf. [22].)

It is noteworthy that the above model violates this condition if d = 3, but for
d^4 the condition is satisfied [23]. This fact as well as further partial results [24]
seem to indicate that the states ώβ constructed above are KMS-states in all
theories satisfying the Fredenhagen-Hertel condition.
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