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Abstract. A general construction of ferromagnetic systems with many phase
transitions is given. It is based on two new results: an extension of one of the
GKS inequalities to not necessarily ferromagnetic interactions, and a unique-
ness of the Gibbs state theorem for perturbations of some simple systems at all
temperatures.

1. Introduction

This work arose from an attempt to understand the global structure of phase
diagrams of classical ferromagnetic lattice systems. Several techniques have been
developed to study the low temperature phase diagrams; among them the Peierls
argument [27, 19, 6], reflection-positivity techniques [14-16], Pirogov-Sinai
theory [29, 34, 32] and its extensions [3, 9, 25, 34, 4, 5], and algebraic methods
peculiar to ferromagnetic systems [21,23,28, 32,26]. However, very little is known
about how this phase diagram changes with the temperature, especially in systems
with multispin interactions. Here we explore a general mechanism explaining
occurrence of many phase transitions in some ferromagnetic systems as the
temperature is varied. In particular we construct models for which the existence of
several phase transitions can be proved. Later, in this introduction and in Sect. 5.4,
we comment on the relation of this work to an earlier related work by Pfister [28].

The systems considered here are ferromagnetic in the sense that the configu-
ration space is an (abelian) group and the Hamiltonians H are negative definite, i.e.
they are linear combinations of characters with negative coefficients. Such systems
have a distinguished Gibbs state < >+ which breaks the symmetry of the
Hamiltonian in a maximal way. Let jtfβ(H) denote the set of characters σ for which
(σ)βH φ 0, where β is the inverse temperature. By a general argument, [30,28], stfβ

is becoming larger as β increases, it always contains the group 3%(H) generated by
the characters appearing in H and it stabilizes both at low and high temperatures,
to jtfJH) and to i o ( f l ) ( = J(ίf)) respectively. If jtfJH) is strictly larger than
£#o(H) one has a phase transition as the temperature is varied. The problem is to
investigate at how many temperatures £#β{Ή) is changing.
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Now, one can think about many chains ... Cstfk-1CstfkCs$k+ι C ... of trans-
lation invariant groups. For instance, one could consider splitting the Hamiltonian
H into a sum £ Hk of smaller and smaller summands so that when the temperature
is lowered si is enlarged by adding to it first the characters which are the order
parameters of the largest summand, then changed again when the order
parameters of the second largest summand develop non-zero expectation values,
and so on. In this paper one has the finite abelian group Zp at each lattice site
("Zp-models"). In the examples of [28] p is composite, the interaction is between
nearest neighbors and sik+ι = 2j/k; in the cases considered here p is prime and
stfk+ί is obtained from jtfk by adding to it the generator Dk of jrfjjtϊ^ (see the
theorem of Sect. 3.2). The Hamiltonians Hk are quite arbitrary, apart from a
requirement that Dk has to be of a regular shape, in a sense. The general case
should be some "mixture" of the situation considered here and in [28], but this has
not been worked out (see the comments at the end of the paper, where we also show
how Pfister's examples fit into our framework).

To explain our general result we start with a discussion of a simple model with
several phase transitions. This model will be referred to in the sequel as the
"benchmark model." It is defined on a simple square lattice Z2, has spin \ and
Hamiltonian with nearest neighbor vertical bonds, next nearest neighbor hori-
zontal bonds and four-point "plaquette" bonds:

H = ~ Σ {aσxσχ + e2 + bσxσx + 2ei + cσxσx + eίσx + e2σx + el + e2},
X

where the sum is over all points x of the lattice, and σx is the usual spin-^ variable at
the point x. The same Hamiltonian is also written as

H= -a X σA + x-b £ σB + x-c £ σc + x α,5,c^0, (1.1)
X X X

where A = {0, e2}, B = {0,2eι},C = {0, e\ e2, e1 + e2} A + x denotes the translate of
A by xeZ 2 , and

<*A= Π σχ-
xeA

We discuss now the number of phase transitions in this system as the temperature
is varied.

If c = 0 and a and b are strictly positive one has two mutually non-interacting
Ising models. Therefore the magnetization <σo>

 + is non-zero at temperatures low
enough. By the GKS inequalities this is also true for positive c.

Let now α = 0 and let τx = σxσx + ei ( = σD + x, where D = {0, e1}). Then

H= -b X τxτx + ei-c £ τxτx + ei, (1.2)
X X

i.e. in terms of the τ-variables one has an Ising model. This suggests that at low
enough temperatures, or large β, and a = 0

< ^ > ; f l * 0 , (1.3)

while this expectation value is zero at temperature high enough. That this is indeed
the case follows from [23] (see the next section). Moreover, by [23] expectation
values in the Gibbs states of (1.2) of σA which are not products of a finite number of
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τx are zero at all temperatures. In particular one obtains that for a = 0,

<°o>βH = 0 for any βφO; (1.4)

we want to show that (1.4) holds also for small a for some β for which (1.3) holds.
Note that a proof of this may require a somewhat subtle argument for one needs a
kind of a stability result for Hamiltonians for which the Gibbs state is non-unique
[see (1.3)]. Such a result must depend on the observable one considers: with σxσy in
place of σx one has that ( σ / y ) / f f # 0 as soon as αφO (by the Griffiths-Kelly-
Sherman (GKS) inequalities [20,24]).

In conclusion, for a, b, c > 0 we have that at low temperatures <σo>+ > 0 and
(σDy + >0, while at high temperature both expectations are zero. The question we
focus on is whether both order parameters become non-zero at the same time or,
on the contrary, there is an intermediate range of temperatures for which
< σ o > + = 0 and (σD)+ > 0 (by GKS, if the magnetization is non-zero then
< σ D > + > 0 too).

We prove below that if a is non-zero but small compared with b and c then the
latter possibility holds, and there are two phase transitions ocurring at different
inverse temperatures βλ > β2, where

^ 2 - inf{ i S:<σ ΰ >; i ϊ >0} (1.5)

and

j8i=inf{j8:<σo>;H>0}. (1.6)

Monte Carlo calculations [13] seem to indicate that for a large the two
temperatures coincide.

The proof has two ingredients. First, we establish a correlation inequality to
majorize the (magnetic) correlation functions of the ( > + -state of (1.1) by the
corresponding expectation values in the < > +-state of the Hamiltonian

- a Σ °A + x-f(b,c) X σD + x, (1.7)
X X

where / is an increasing function ofb and c (Sect. 3.3). If a = 0 the Hamiltonian (1.1)
has a unique Gibbs state which is easily computed and for which the magnetiza-
tion is zero. By the above mentioned inequality (or by [23]), this implies that the
magnetization is also zero for the system with Hamiltonian (1.1) if α = 0. However,
in order to prove the existence of two phase transitions for the interaction (1.1) we
need to show that the magnetization of (1.1) is zero for small but non-zero values
of a.

This follows from our second general result, which is deduced from a general
uniqueness criterion of Dobrushin and Shlosman [8]. It states that small
perturbations of a Hamiltonian of the form J £ σD + x with D of a regular shape (a

factorizable trivial system of Sect. 3.2), but otherwise arbitrary, have a unique
Gibbs state. We note that this is a uniqueness result which is valid at all
temperatures, not only in the high- or the low-temperature region.

(In the present example, (1.7) is the Hamiltonian of the Ising model, and the
vanishing of the magnetization for small values of a can be deduced either from the
well known explicit formula for the magnetization of the two-dimensional Ising
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model, or a result of Fisher [12]. The later approach works also in higher
dimensions. Neither of these methods generalize to our more general setting: the
result of [12] depends on a self-avoiding walk representation of the system and on
some additional properties characteristic for systems with two-body interactions.)

The paper is organized as follows. After introducing the notation and
reviewing some well known results (Sect. 2), we state the two new "ingredients": the
inequality and the uniqueness theorem (Sect. 3.1); we deal first with the spin-^ case.
This allows us to describe the construction of models with many phase transitions
as soon as possible (Sect. 3.2), leaving the rest of the paper for the details of the
proofs and for extensions of the results. The proof of the inequality is the subject of
Sect. 3.3, and we devote Sect. 4 to the proof of the uniqueness theorem. In
Sects. 5.1-5.3 we sketch how the results can be extended to the situation when one
has at each lattice site Zp, with p prime, instead of Z 2 , and in Sect. 5.4 we compare
our work with Pfister's. In the appendix we collect some results whose proofs have
a stronger algebraic flavour.

2. The Framework

The lattice L is a discrete Zv-invariant subset of Rv; in most of the paper we will
deal with the case of a simple lattice, i.e. L = ZV. In the spin-^ case, which is
considered first, the configuration space of the system is

which is an abelian group with pointwise multiplication

a topological space with the product topology; and a measure space with the
σ-algebra generated by the cylindrical sets. If A C L, we shall denote X^ the set of
configurations on A: X^ = {— 1,1}Λ, and for X e X its restriction to A is denoted by
XΛ. The configuration equal 1 everywhere will be denoted 1.

We will consider systems with translation-invariant finite-range interactions.
For such system the Hamiltonian is uniquely written in the form

H=~ Σ
Be

where gfi = 3&{H) is a ZMnvariant family of finite subsets of L (the "bonds"), and
J(B) = 0 if diameter of B exceeds certain value.

The function σB is a character of X; moreover

aB(jc = crB + c , (2.1)

where B + C = (BuD)\(BnD) is the symmetric difference. Hence, the group
structure of the dual group to X is isomorphic to the group ^y (L) of finite subsets of
L with the symmetric difference as the group operation. We will consider similarly
defined group structure in the set of all subsets of any set.

For a finite set A c L, a configuration Y on its complement defines a boundary
condition. More generally, we shall consider boundary conditions in which some of
the spins of the boundary have been removed. Hence, every partial configuration
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YeXM with M e / , defines a boundary condition with the spins on M set in the
configuration Y, and those outside of M removed. The Hamiltonian on A for a
boundary condition 7eXM, McAc, is the function

X^HΛ(X \Y)= Σ J(B)σBnM(Y)σBnΛ(X) (2.2)
BcΛuM
BnΛΦΦ

defined for XeXΛ. The Gibbs state in A for the boundary condition 7 e X M ,
Hamiltonian H and inverse temperature β is the probability measure ρΛ( | 7) on
X^ such that

p-βHΛ(X\Y)

^ > (2.3)

where Z(Λ \ Y) is the normalization factor and β is the inverse temperature. The
(infinite volume) Gibbs states are the probability measures on X whose conditional
probabilities on X^ given a configuration YeXΛC are precisely the measures
ρΛ( I 7). The set of such Gibbs states will be denoted as A(βH). We shall denote by
< > + , or ρ + , the Gibbs state obtained as the vague limit of the net {ρΛ( | 1)} as A
tends to L through the family of all finite subsets of L directed by inclusion. This
Gibbs state is translation-invariant.

If the system has a unique Gibbs state - as is the case at high temperatures -
then this state coincides with QβH and it has the property that all the correlation
functions ρβH(σA) vanish unless σA is a product of characters σB with
Equίvalently, we have that if there is a unique Gibbs state then

U): ρ;H(σA) * 0} (2.4)

satisfies

s/p = @9 (2.5)

where M = M(H) is the subgroup of ̂ y (L) generated by 3#.
In general stfβ is a subgroup of ^ / L ) which by the GKS inequalities is

becoming larger as β increases. It contains always s$0 = 3${H), to which it is equal
at sufficiently high temperatures. Elements of stfβ which are not in M(H) can be
considered as order parameters since they tell which part of the (internal) symmetry
group of the system is broken (see [33, 30, 21, 28], and [32] for a review). We are
interested here in the problem of how jtfβ is changing with the temperature.

By a general argument [23], srfβ stabilizes at low temperatures, i.e. there is an
inverse temperature, say β^, such that s$β is the same, say s/^, for all β>β(X). stfβ{H)
can be determined from M{U) in a purely algebraic way [23,32]. For simple lattices
s$^(H) is always generated by translations of a (unique, up to translations) element
D(D = {0,e1} for the "benchmark model" (1.1) with a = Q). To compute D, and to
prove its existence, one introduces in 3?f(Zv) the structure of a ring with product

C D= Σ D + a- (2-6)Σ
aeC

This allows the identification of ̂ y (L) with the group algebra Z 2 [Z V ] of Z v with
coefficients in Z 2 . Z 2 [Z V ] is a unique factorization domain, and D is the greatest
common divisor of J* (see [23, 32]):

D = g.c.d.(«). (2.7)
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In particular

ρ + (σD)>0 (2.8)

at low enough temperatures. (In case of general lattices M{β) is a Z2[Zv]-module,
and J / ^ is identified with the second dual of this module, [31]). Generalization of
this structure to the Zn-case is described in Sect. 5.

Let us finally recall the high temperature expansion (HTE) [33, 21]. Given a
Hamiltonian H o n a finite subset A of L:

H=- Σ ΆQσc,
CeΨ,

where <β is some family of subsets of A [and J(C) need not be positive], the partition
function

Z(A;H)= X exp-Ή(X)
XeXΛ

is written as follows:

I coshJ(C)λ,ZV;Ή) (2.9)

The non-trivial part in this expression is the "reduced partition function"

Z°{A;H)= X Π tanhJ(C), (2.10)Π
Cea

where JΓ(^) denotes the set of cycles associated with the family ^ of bonds:

V) = {families α C ^ | £ C = θ j . (2.11)

We note that if Jf(^) φ {0}, then the decomposition of each set A e <$ into a sum of
bonds of ^ is not unique. Indeed, if aA is a family of sets in ^ with sum A, then for
each α e JΓ(^) the family a + α^ (where " + " is the symmetric difference of sets) also
adds up to A. The HTE of the correlation functions takes the form

ίO if Aφ<%

i ^ jj tanhJ(C) if AsV, ( 1 1 2 )

where in the second line aA is any fixed family of bonds whose symmetric difference
is A.

3. Spin \

For the ease of the exposition we deal first with the spin-^ case. Extension of these
results is given in Sect. 5.

3.1. Two New Results: An Inequality and a Uniqueness Theorem

The first new result which will be used in our discussion of the examples of models
with several phase transitions is the following inequality, which will be proved
in Sect. 3.3.
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Theorem 3.1. Consider two ferromagnetic translation invariant finite range
interactions:

# i = - Σ Jχ(B)σB9 H2=- Σ JiiB)σB
Be@ι Be@2

such that each bond of the first interaction is a symmetric difference of a number of
bonds of the second one, i.e.,

^ C J 2 . (3.1)

Then there exists a smooth, strictly increasing function β^>f{β) with the properties

f(β)\O as β\0, /(j3)/oo as j8/oo, (3.2)

and such that

QβH! + K(°A) ̂  Qf(β)H2 + K(°A) (3-3)

for every ferromagnetic interaction K (not necessarily of a finite range), and every
finite ΛcL.

For the second result the Hamiltonian H2 will be of a very simple form: We will
call a system trivial if its fundamental family of bonds ^ 0 consists of exactly one
bond, i.e.

(3.4)

for some finite C c Z v called the fundamental bond; and

H=-JΣσc + x- (3.5)
Λ:

A system is factorizable if all its bonds are cartesian products of one-dimensional
bonds. In particular, a fundamental bond of a. factorizable trivial system is of the
form

C = Cί x . . . x C v ,

where each Q is a subset of the ith coordinate axis of 77. Note that this is equivalent
to

with "•" defined in (2.6). We note that a product of two sets is factorizable if and
only if each of the sets is (the "only if" part follows from the fact that Z 2 [Z V ] is a
unique factorization domain).

Factorizable trivial systems are simple to analyze and they have a unique
Gibbs state at all temperatures. However, we will need the following stronger
result.

Theorem 3.2. Consider a trivial interaction H— — J YJOC + X with a factorizable C.
X

Then for any positive r there exists Rr c j>0 such that for any perturbation
K=ΣK(B)σB with range less than r and

Λ r,C i J (3.6)



98 R. Fernandez and J. Slawny

the Hamiltonίan H + K has a unique Gibbs state, i.e. A(H + K) has exactly one
element.

[Note that we are absorbing the inverse temperature β in the couplings J and
K(B).^\ This will be proved in Sect. 4. We have no doubt that the theorem, thought
not the proof of Sect. 4.3, holds without the assumption that C is factorizable.

In our construction of models with many phase transitions we will use only the
following corollary of Theorem 3.1 and 3.2. If ^ l 5 ...,&k are (families of) subsets
of the lattice then \βx, ...,^fc] denotes the subgroup of 8Pf{L) generated by the
translates of these subsets.

Corollary 3.3. Let H' and H" be any two ferromagnetic translation invariant finite
range interactions and assume that D: = g.c.d.^(H') is factorizable. Then for all
small enough ε^O,

£ ™ - K H 0 if Aφ[D^(H")-].

Proof Since &(Hf) C [D], by Theorem 3.1 there is a constant a > 0 such that for any
positive ε and any finite Ach

0 ^ ρ+. + CHMA) £ ώ o + «H»(σ A) (3-7)

By Theorem 3.2 for all small enough ε the Gibbs state of aHD + &H" is unique and
hence by (2.5) ρβ

+

HD + fiH"(σJ = 0 if Aφ [D, @(H")~]. Now the corollary follows from
the inequality (3.7). Π

3.2. Construction of Spin \ Models with Several Phase Transitions

We will show now how the preceding corollary can be used to prove that there are
several phase transitions in suitably constructed models.

Theorem 3.4. Let Hu...,Hn be ferromagnetic translation invariant finite range
interactions, let B be the family of the bonds of Hb and let

Assume furthermore that

...,BJ and D^D,.^, . . . ,BJ, ΐ = 2,...,n, (3.8)

and that all Db i=l,...,n, are factorizable. Then there exist ocu ...,αM>0 such that
the Hamiltonian

H = aίH1+ ot2H2 + .. ,OLnHn

has at least n phase transitions. More precisely, there exist inverse temperatures
βu ...,/?„ such that 0<βι<...<βn and

U°D) = ® for β<βt, and ρ^σ^φO for β>βt. (3.9)

Remarks. 1. We introduced aί for the sake of symmetry. Rescaling, one can set
cc1 = 1, as is done in the following.

2. The theorem proves a perturbative version of a conjecture by Holsztynski
[22] which states that in case J(Bi) = 1 there are precisely n changes of srfβ if
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a1 < oc2 < ... < oίn. Numerical results on the "benchmark model" seem to contradict
Holsztynski's conjecture in its original form. Also, we do not know if the only
possible changes of srfβ are those associated with splitting of the Hamiltonian, as in
the theorem.

Proof. The proof has an inductive character. We will go through more initial steps
than is logically necessary to facilitate the reading and to have a complete proof for
the "benchmark model" before the induction starts.

By the uniqueness of the Gίbbs state at high temperatures, by (2.5), and by (3.8),
there exists β\ such that

ei(H1 + ...+Hn)K1) = 0 for β<β\.

By (2.8), there exists β'[ such that

QβH^oJ + 0 for β>β»,

hence, by GKS inequalities

Therefore the model with Hamiltonian Hγ + . . . +Hn exhibits at least one phase
transition. To obtain a second phase transition we consider the Hamiltonians
Hi + ε2(H2 + • + Hn). By the previous argument there is one phase transition for
any ε2 = 0 with order parameter σDχ. We then pick a β'2>β'[ and apply
Corollary 3.3 to H' = β'2Hι and H" = β'2(H2 + ... + Hn) to conclude that there exists
ε2, 0<82<l, such that

^(H 1 +ε 2 (H 2 + ...+Hn))(σJ = 0 if

By GKS we have that

τ2iH2 + ...+Hn))(σΛ) = O if β^β'i (3.10)

for all Aφ[DuB2, . . . ,BJ; in particular for A = D2.
We now repeat the above construction with a slight variation. An inverse

temperature β"2 > β2 is chosen in such a way that

for β>β2.

Such a β"2 exists by (2.8). Then by GKS inequalities,

if β>βl; (3.11)

and the model has a second phase transition associated to the order parameter σDr

The requirement β2 > β'[ implies that for the chosen ε2 both phase transitions occur
at different temperatures.

To obtain a model with a third phase transition we resort to Hamiltonians of
the form H1

J

Γέ2[H2 + 83(H3 +... +HJ] for ε 3 ^ 0 . Reasoning as above we
conclude that these models have two phase transitions corresponding to the order
parameters σDl and σDr We pick any β'3>β2 and apply Corollary3.3 to
H' = β'3{Hi + &2H2) and H" = βf

3ε2(H3 + . . . +Hn). We find that there exists
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ε 3e]0,l[ such that

'ε2H2+'ε2ε3(H3 + ...+Hn))(σA) — ̂  " F < P 3

for all A φ [D2, B3,..., B J , in particular for A = D3. By (2.8) we can choose β\ > β'3 in
such a way that

Qβ(Hι + ε2ff2 + -e2ϊ3H3)(σD3) > 0 fθΓ /? > β\ ,

and hence, by GKS inequalities,

Qβ(Hl +τ2H2 +-ε2S3(H3 + ... + Hn))(^D3) * 0 f θ Γ β > ^3

This proves the existence of the third transition line. It is certainly different from
the previous two since β'3> β"2.

It is now clear that by induction with respect to k rg n we can define β'b β", and Et

satisfying

0<β\<β'[ <β'2<β2<--<β'k<βk a n d 0 < ε 2 < ... <ε k

and such that for β <̂  β'k

i +-E2H2 + ε2ε3H3 + ... + ε2 ... εk - i H k - i + ε2 ... ε k H k ) ( σ D k ) + ^ . ( 3 . 1 3 )

Now, let

0 ^ = 1 , α 2 = β 2 , α 3 = έ 2 έ 3 , . . . , α π = ε 2 ε 3 . . . ε I I 5

and

since 0 < ε f < l , the Hamiltonian in (3.12) is "more ferromagnetic" than H and
therefore (by GKS) for β^β'k

QU°A) = 0 i f

and in particular, by (3.8),

- 0 for β^β'k.

Similarly, since the Hamiltonian in (3.13) is "less ferromagnetic" than H, again by
GKS

ώ W * 0 for β^ft.

Let

by GKS (3.9) holds, and since β't ̂  βt ^ β" and ^;+ ί > β'[ one sees that βί+1 is strictly
larger than βt. This finishes the proof. Π
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The following corollary yields a concrete class of examples, of which the
"benchmark model" is a particular case.

Corollary 3.5. // g.c.d.(D,τ4) = l, 1 φ[_D,A] and D is factorizable then for any n
there exist α 2 , ...,otn>O such that

exhibits at least n phase transitions. More precisely, there exist 0 < β1 < β2 < ... < βn

such that

QβH(σD»-i) = ° f°r β<βi> and QβH(σDn-H0 for β>βi9

where D° = l = {0}.

Proof All one has to check is that Dt = Dn~ι and that the condition (3.8) is satisfied.
W e a p p l y t h e t h e o r e m t o H± = HDn + HDn-i A,H2 = Hm-2 .A9 ...,Hn_i=HD.Λ

and Hn = HA. We have: D 1 = g.c.d.(B1) = g.c.d.(ΰΛ, Dn~ι •A) = Dn~1 and
Dn~1φ\Dn,Dn~ιΆ]i since otherwise \s[D,A\ Similarly, D 2 = g.c.d.(B l9B2)
= g.c.d.(DII~1, Dn-2A) = Dn~2 and again Dn'2φlDn~\ Ώn~2 Ά\ It should be
now obvious that the claim follows from the theorem. •

Remark. Both by inspection of the proof and by a continuity argument one can see
that if the theorem, or the corollary, holds for some values αf of the parameters it
holds for all values of the parameters in some neighborhood of αf.

33. Proof of the Inequality (Theorem 3.1)

By the hypothesis (3.1) of Theorem 3.1 each bond of J \ is a symmetric difference of
bonds of 0&2. This implies that there exists a map from Mγ to finite subsets of J*2,
B\-*%>B, which commutes with translations and such that

Π σc = σB-
Ce<$B

Moreover, we can choose the families ^B in such a way that ^B contains no non-
trivial cycle, i.e.

j f(« B ) = {0}. (3.14)

Furthermore, for each C e J \ we define an interaction JB with bonds ΉB in such a
way that B)-^JB commutes with translations and

Σ JB(Q^J2(C) (3.15)
B.CeVβ

for any Ce&2. For any Be^γ we now set

$B= Σ
C^

{ΦB)B6^1 is a translation invariant finite range interaction in an obvious sense.
Note, however, that ΦB(X) depends on the restriction of the configuration X to

*(B)=cU
 C>

which may be larger than B.
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Because of (3.15) and the second GKS inequality, it is enough to prove the
theorem with H2 replaced by

This is what we will do.
We consider a finite subset A of the lattice. We let Lx and L2 denote the

Hamiltonians in A defined by βHί +K and f(β)H'2 + K, respectively, and by the
"1 "-boundary conditions in the complement of A. Let Z1 and Z 2 be the
corresponding partition functions. Our goal is to define /(/?) such that

(Z2Γ 1 Σ σA(X)e~L2iX)-{Ziy
1 Σ σA{X)e~Lί{X)^0

XeXΛ XeXΛ

for every A and every Ac A. This is equivalent, [17], to

X,YeXΛ

X,YeXΛ

where the last line was obtained by making the change of variables Yh->X • Y,
Xh-+X. Since 1 — σA(Y)^0, it is enough to show that

x

for each YeXΛ. That is, we must show that

e-L2(X)~Lι(X Y)

\f(β) Σ $B(X v 1) + β Σ Ji(B)σB(X Y)
|_ 5:s(β)n/lΦ0 B.BnΛ + Φ

J3(B)U+σB(Y)-]σB(X)] (3.16)

is a positive definite (p.d.) function of X for each YeXΛ; here X v 1 denotes the
configuration equal to X on A and to 1 on the complement ofΛ. Up to this point
we followed Ginibre's [17] proof of one of the GKS inequalities.

Now, (3.16) can be written as a product of factors of the form

exp Γ Σ Js(B) [1 + σB(Y)-]σB(X)Ί, (3.17)
[ Φ J

exp[/(j8)ΦB(Xvl)] with s(B)nA + φ, BnA = Φ, (3.18)

and

BJσ^^X Y)] with BnA + φ. (3.19)

Expressions (3.17) and (3.18) are p.d. functions of X because they are exponentials
of p.d. functions (see [17, first GKS]). Thus it is enough to prove that one can
choose / in such a way that (3.19) is p.d.

We note first that it is enough to consider the case of s(B) contained in A. For
otherwise the function (3.19) of X can be considered as a restriction to
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X^ x {1Λ'\Λ}, where A'jA is big enough, of the function

And since a restriction of a p.d. function to a subgroup is p.d., our claim follows.
Thus we reduced the problem to showing that

R(A)= Σ σA(X)ew\f(β) Σ
XeXΛ I Ce^

for each finite subset A of the lattice, Ac A, and each B such that CcA for all
Ce# B . This we do by resorting to the HTE (2.12).

According to (2Λ2)±Jί(A) = 0 if Aφ{B}v<$B = <#B. Hence it is enough to
consider the case of A e ̂ B, that is, of such A C A for which there is an aA C ̂ B such
that σA = γ\ σc [since JΓ(^β) = 0 such aA is unique]. The HTE oϊR(A) involves a

CeocA

sum over all cycles a e Jf(%>Bu{B}). By (3.14), there are exactly two such cycles: the
trivial one, α = 0, and the one formed by all the bonds, α= [B}u^B. Therefore, the
HTE of R(A)ϊoτ A = ΰΓA\s

π
^ Y ) ] Π tanh[/03μβ(C)]Ί.

Since |tanhx| < 1, we see that R(A) is made non-negative choosing f(β) in such a
way that

Π tanh[/(j8)J^Q] ^Itanh^J^^σ^Γ)! -ItanhjSJ^B)) (3.20)
Ce^B

for each 5 e f l t Since J\ is translation invariant and of a finite range one has
here a finite number of inequalities which certainly admit a solution / satisfying
the condition (3.2). This ends our proof of Theorem 3.1.

We note that the condition that Hί be ferromagnetic is not essential. In the
general case ρ+ of the left-hand side of (3.3) can be replaced by any Gibbs state of
βHί+K. We also note that our proof shows that for the Hamiltonian
βHι + f(β)H2 + K both the first and the second GKS inequality hold, and that one
obtains the following stability property of the inequalities: if H2 is ferromagnetic
then for any small enough Hu ferromagnetic or not, for which @t(H1)C&(H2), the
GKS inequalities hold for Hι+H2. •

4. The Uniqueness Result

This section is devoted to the proof of Theorem 3.2 using a criterion due to
Dobrushin and Shlosman [8] (DS-criterion) which we review and slightly adapt in
the sequel. In this section we absorb β in the definition of the interaction.

4.1. The Basic Criterion

Let us introduce the notation needed to state DS-criterion. For a separable metric
space X with metric δ let Rδ be the Kantorovich-Wasserstein metric on the space of
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measures on X:

Rδ(μ,ρ) = sup | μ ( / ) - ρ ( / ) | , (4.1)

where the Lipschitz seminorm | |L on the space of real-valued measurable
functions is:

O(X, I)

(Definition (4.1) can be stated equivalently [10, lecture 20] in terms of joint
distributions.) In particular, if X is finite and χ is the discrete metric
χ(X, Y)=l—δxγ; the metric (4.1) coincides with the variational metric

Rχ(μ, ρ) = Var(μ, ρ) = sup \μ(A) - ρ(A)\. (4.3)
A measurable

DS-criterion consists in a bound on the Kantorovich-Wasserstein distance for
Gibbs measures on a finite configuration space X^ with metric

= Σ X(Yt>Zt). (4.4)
teΛ

We remark that then

) (4.5)

for any measures μ, ρ on X^.
We consider the space Άr of interactions of a fixed range r < oo, with the norm

| 0 | = sup \φB\o0, and for a finite AcZv we denote dA = {xeΛc:dist(x,A)<r). We
Be®

then have:

Theorem 4.1 (Dobrushin-Shlosman). Assume that there exists a finite AcZv such
that for all pairs of configurations X, Z differing at most at one point

QA \Z))ύ ^ p ( 4 6)

for some ε > 0. Then for all the interactions in an open nonempty neighborhood of φ
in Άn the Gibbs state is unique.

We will use a sufficient condition for this theorem almost identical to
Theorem3.3 of [8]. For finite sets AcMcZv and a (partial) configuration Y we
denote by ρMtΛ(

: \Y) the projection of ρM( -\Y) onXΛ:

Yyι j dX ί

In addition we consider two integers n, d which will be chosen eventually large
enough and such that n > d. The integer n is the size of the side of a (large) cube
Dn = {teZv:0^ti^n, i=l,...,v}, while d is the size of much smaller cubes of
"excluded" volume placed inside Dn adjacent to its boundary. These cubes are
defined as follows. We take d in the range 2r<d<n/3 and for each t0edDn we
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t d - d , > r

Fig. 1. Possible choices of the cubes Λ'ά(t0) for a site ί0 at a distance dί from an edge of a
parallelepiped Dn. The figure on the left corresponds to the case dι>d — r, while the one on the
right to dγ^d — r. The dashed lines represent the boundary of the parallelepipeds 7] of the
decomposition (4.7). Each Λ'd(t0) is chosen so that the point t0 is at least a distance r away from
Λd(t0) and all sides of the parallelepipeds Tt are at least of size d — 2r

choose a cube Λ'd(t0)cDn of side of length d such that, if Λd(t0) = Dn\Ad(t0) we
have:

Cl) No spin in Λd(t0) interacts with the spin at f0, i.e. \t — to\ > r for all t e Λd(t0).
C2) The set Λd(t0) can be decomposed into a disjoint union of a finite number k

of large enough parallelepipeds Tt; explicitly:

«o)= U Tit
i = 1

(4.7)

where k = k(Λd) does not exceed a certain integer p(v) that depends only on the
dimension, and each T{ has sides of size at least d — 2r.

Such a choice is always possible (see Fig. 1). In the sequel the t0 dependence of
the sets Λd and Λ'd will not be written explicitly in order to simplify the notation,
which we try to keep close to that of [8].

Our proof of Theorem 3.2 is based on a slight adaptation of a theorem by
Dobrushin and Shlosman:

Lemma 4.2. If for n, d large enough with 2r<d<nβ and each t0edDn,

Ϋd ( 4 8 )

for some c, y >0, for each pair of configurations X W coinciding off to; then (4.6)
and therefore also the conclusions of Theorem 4.1 hold.

Remark. This result is basically proven in [8] (Theorem 3.3). For the sake of
completeness we present an alternative proof based on the expression (4.1) for the
Kantorovich-Wasserstein metric.

Proof Choose a ί o e D n and consider a pair of configurations X W coinciding off
t0. Take an arbitrary measurable function / on Dn with | / | L ^ 1 for the distance δDn

[defined in (4.4)], i.e., such that

\f(X)-f(Y)\^\{ieM:XίΦYί}\. (4.9)

The idea is to write the average of/ as the sum of two contributions: one due to
the averaging over configurations inside Λd and the part corresponding to
flippings of spins in A'd. The former is insensitive to the boundary conditions by
hypothesis (4.8); and the latter contribution can be bounded by the sum of the
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oscillations of/ in Λ'd - which is a small correction if the volume oϊΛ'd is negligible
compared to that of Dn.

Let us then define a new function / * - which can be identified with a function
on XΛd - obtained by fixing the spins in Λ'd at some value g. That is, if gΛ,ά denotes
the configuration that at each site takes value g:

,gΛ')> (4.10)

Obviously

We have:

S \QDJJ I Y) - QDJJ* I Y)\ + \QDJJ* I Y) - QDJJ* I w)\

+ \QDJJ*\W)-QDM\W)\,

which implies

(4.11)

+ sup{\ρDn(h\Y)-ρDn(h\W)\:h on XΛd with | f t | L ^l} . (4.12)

If X is the configuration for which \f — f*\o0 is achieved, we obtain from (4.9) and
(4.10):

\f-f*L = \f(X)-f(XΛd,gΛd)\^\Λ'd\. (4.13)

On the other hand, the second term in (4.12) is precisely

RsΛ(QDn,Λd( I n QDn,Λd( ΛZ))ύ \Λd\ VM(QDntAd(' I ?), QDn,Λd(' I z ) )

^\Λd\ce~yd. (4.14)

The first inequality is due to (4.5) and the second one to the hypothesis (4.8). If the
bounds (4.13) and (4.14) are substituted into (4.12) we obtain:

uniformly in t0. It follows that if one chooses dv = εn with ε < 1/2 the condition (4.6)
is satisfied for Λ = Dn with n large enough. •

Furthermore, condition (4.8) of Lemma 4.2 can be obtained from a bound on
the reduced partition function. Indeed, as the Hamiltonian on Λd does not depend
on the value of the spin at t 0 (condition Cl above), it is straightforward to obtain

Vκ(QDn,Λjί'\nQDn,Λd('\W))

Z(Λ'd\Y,X) Z(Λ>d\W,X)
SZ(Λd\Y) sup

XeXy.

= Z°= Z°(Λd\Y) sup

Z{Dn\Y) Z(DJW)

Z°(Λ'd\Y,X) Z°(A'd\W,X)

Z°(Dn\Y) Z°(Dn\W)

(4.15)

(4.16)
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Therefore, we see that to prove (4.8) it is enough to show that all the reduced
partition functions in (4.16) tend to one exponentially fast with d uniformly in the
boundary conditions. Moreover, using the decomposition (4.7) we have the bound

inf Π Z°(Tt I Xd^Z°(Ad I Y)£ sup Π Z\Tt \ X^
iXi) ί (Xύ i

which shows that it is enough to prove the exponential behavior of Z° only on
parallelepipeds. We thus have:

Proposition 4.3. // an interaction φ is such that there exist positive α and y with the
property that for each parallelepiped A = [0, AΓJ x ... x [0, JVV] and each boundary
condition Y

\Z°(A\Y)-ί\^(xe-yinfiNi, (4.17)

then (4.8) holds and hence all interactions in some open neighborhood of φ in Άr have
unique Gibbs states.

4.2. Partition Functions for Factorizable Trivial Systems

To conclude the proof of Theorem 3.2 we use the HTE to show that the bound
(4.17) on Z°(A \ Y) holds for factorizable trivial systems. We notice that for general
spin-^ systems, the set of bonds defined by a given boundary condition 7 e X M ,
MdA\ depends only on the set M; and the corresponding set of cycles increases
with M. If we denote by $ΓΛ the set of cycles for the boundary condition 1 (or any
boundary condition YeXΛC\ we have from the HTE (2.10) that for a trivial system
with Hamiltonian H= —J £ σ c + x ;

with ί = tanh|J|.
The result (4.17) will be obtained from (4.18) plus the fact that the cycles for

factorizable trivial systems are superpositions of periodic arrays of bonds parallel
to the coordinate axis. Therefore each cycle involves a large number of bonds,
which causes the right-hand side of (4.18) to decrease exponentially with the linear
dimensions of A.

To state this crucial property of the cycles it is notationally convenient to
identify families of bonds with subsets of Z v :

a<^{xeZv:C + xea}. (4.19)

We adopt such identification for the rest of this section; in particular the cycles
a<EJfΛ are identified with subsets of A* = {xeZv :(C + x)uA Φ0}.

To follow the argument it may be useful to keep in mind a simple example
(Fig. 2). Consider the system in Z 2 with the unit square as fundamental bond:

C = {(0,0), (0,1), (1,1), (1,0)}. (4.20)
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- - t -•-

(α)

L _ ι _ •_ J .

oc

(b)

( c )

Fig. 2a-c. Part a is a cycle with fundamental bond (4.20) on a 3 x 3 square A and, on the right, the
corresponding subset of the lattice obtained through the identification (4.19). Parts b and c show
two different decompositions of α in the form (4.21). The decomposition in part b is economical
while that in part c is not. The symbol " + " stands for the symmetric difference

Its cycles - for " 1 " boundary conditions - are formed by the superposition of arrays
of bonds parallel to each coordinate axis, with period 1. In the left part of Fig. 2a we
show an example of a cycle when A is a three-by-three square. The corresponding
set α, obtained via (4.19), is formed by the heavy dots in the diagram of the right;
where we have used dashed lines to depict the set Λ*.

In the appendix we prove the following characterization of the cycles of
factorizable trivial systems.

Proposition 4.4. For a factorizable trivial system there exists an integer q such that
every element α of JfΛ has a decomposition

« = Σ «(0, (4.21)

where " £ " stands for the symmetric difference and each α(i) is a subset of Λ* periodic
in the ith direction with period q. This decomposition is far from unique.

Let us fix q in the sequel and denote for each set A and for ίf^i^v;

LUq(A) = {aCA:ot\Λ is periodic in the iih direction with period q},
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With such notation, Proposition 4.4 can be succinctly stated as

X-ΛCLUV(Λ*) (4.22)

From (4.18) and (4.22) we see that to obtain the bound (4.17) for factorizable trivial
systems, it is enough to prove the following proposition. (Note that if A is a
parallelepiped, the set A* is a larger parallelepiped.)

Proposition 4.5. Assume A = [0,N1] x ... x [0, JVV]. Then, for each ί < 1 there exist
cί,c2>0 depending on t, q, v but independent of JV1? ...,iVv such that

X ί W ^ C i ί Γ ^ , (4.23)
αeL^v(Λ)

αΦO

where N = min Nj.

Proof We will show, by induction in i, that

X ί ' ^ c ^ - ' 2 " , (4.24)
αeL^i(yl)

αΦO

for every 1 ̂  / 5Ξ v.
F o r z = l, α(l) is formed by (JV2 + 1)...(JVV + 1) periodic one dimensional sets

parallel to the first axis; hence

V ί l α η u v 2 + i)...(jv v + i ) i ( 4 2 5 )

αeLi([0,Ni]) J

The fact that each set of L1([0, iVJ) has period g implies that there are at most 2q

different such sets, and all except the empty one have at least NJq points; hence:

X tlal^ί+2qtNi/q. (4.26)
αeL^tO.Λίi])

The bound (4.23) for i = \ follows from (4.25) and (4.26).
For the inductive step we use the following lemma. •

Lemma 4.6. // 2 rg k g v,

Proof Every fcGL<k(yl) is of the form

(4.28)

with χeLk(A) (set of "columns") and θeL<k^1(A) (set of "horizontal sections,"
which in Fig. 2 are in fact "rows"). The decomposition (4.28) is not unique, and to
prove (4.27) we need to restrict this degeneracy and to select those decompositions
for which |χ| +10| does not differ too much from |α|. That is, we need to exclude
decompositions as that or part c of Fig. 2 where there are many "annihilations."
For such purposes we adopt the following definition.

Definition 4.7. The decomposition (4.28) is economical if every other decompo-
sition (χ\ θ') of the same a satisfies

I z l ^ l z Ί . (4.29)
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For each element of L^k(A) there may be several economical decompositions,
hence:

£ ί |α |^ £ ύχ + θ\ (4.30)
aeLsk(Λ) (χ,θ)eπ(Λ)

where π(Λ) denotes the set formed by all the economical decompositions of the
elements oϊL<k(Λ). From (4.30) we see that to prove (4.27) it suffices to show that
for all economical decompositions

Iz + ̂ f-f. (4.31)

But the fact that

(y - y) =

shows that (4.31) - and hence (4.27) - is a consequence of the following property of
economical decompositions:

Claim. For an economical decomposition (χ, θ):

| 0 |^2 |χn0 | . (4.32)

Indeed, consider the "section" of θ at "height"):

θj = θn{aeZv:ak=j}.

If (4.32) were false there would exist some j 0 such that

\θJo\<2\χnθJo\. (4.33)

In such case we could define another decomposition {χ\θ') with
obtained by adding a copy of θjo every q sections (so not to destroy the
g-periodicity):

Σ

neD

neD

where D is the set of integers n such that j0 + nqe [0, Nk\ and ek is the unit vector in
the direction of the fcth coordinate axis. Certainly χ' e Lk(Λ) and θ' eL^k^1(Λ) and
moreover:

lx'l = lzl+ Σ [|0J-2|χu0J] (4-34)
neD

Hence, by (4.33)

\ϊ\<\χ\
against the assumed economicity of the original decomposition (χ, θ). This
contradiction proves (4.32), hence the lemma and with it the inequality (4.23). •

The combination of Proposition 4.5 with (4.18) and Proposition 4.3 yields the
uniqueness result of Theorem 3.2.
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5. More General Abelian Groups

The results summarized in Sect. 3.2 generalize to systems where the spin at each site
takes values in the group Z p = {0,1,...,/?—1} of integers modulo p. Theorem 3.2
requires the restriction that p be a prime. In this section we sketch the proofs of
these extensions.

5.1. Definitions and Notation

As for spin-^, the configuration space

X _ 7 Z V

~£JP

is endowed with the product group structure and topology. The characters of X are
functions of the form

OB(X) = γi e2niB(a)X(a)lp = ]~| ̂ (a) ? (5 J)
a a

where B - a multiplicity function - is an element of Z p

z v ) , i.e., a Zp-valued function
which is zero except on a finite set of points of Zv, called support of B and denoted
suppE. For p = 2 (spin 1/2) we recover the notions of Sect. 3. The set of characters
forms a group denoted X*, which is isomorphic to the group of multiplicity
functions with coordinatewise sum modulo p. The latter is in fact a ring with
product

A B(x)= Σ

which is also written as

ΛB= ΣA(x)B + x, (5.2)

which is a generalization of (2.6). Here "]Γ" is the coordinatewise sum modulo p,
A(x)B is defined by (A(x)B) {y) = A(x)B(y) (modp), and for C e Z p

z v ) and x e Z v, C + x
denotes the translated (C + x) (y) = C(x — y). The ring so obtained, in fact an algebra
over Zp, is the standard group algebra Z p [Z v ] of Z v with coefficients in Z p.

The Hamiltonians are functions of the form

H=- Σ J(B)σB,

where J* is a Zv-invariant family of multiplicity functions, and the complex
numbers {J(B)} satisfy J( — B) = J(B) so that Hamiltonians are real-valued. The
range of the interaction is the supremum of the diameters of the supports of the
multiplicity functions in J*. The interaction is real if J(B) is real for each B, and
ferromagnetic if J(B) > 0 for each B. The Gibbs state ρ + is defined by placing as
boundary condition the function 1, where l« = 0 z for each aeZv.

All the results summarized in Sect. 3.1 have natural generalizations to the
present setting. The ring structure of the set of bonds is now that of Z p [Z v ] , which
is also a unique factorization domain if/? is prime. Results (2.8) and (2.5) hold, 3d
being the ideal of Z [Z v ] generated by 3ft.
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5.2. Proof of Theorem 3A for a General Finite Abelian Group
at Each Lattice Site

We discuss here only the points where the proof differs from that of Sect. 3.3.
We first note that even when the characters (5.1) are complex-valued, for

ferromagnetic Hamiltonians the correlations ρ + {σB) are real (Bochner's theorem),
in fact nonnegative [18,28]. Proceeding as in Sect. 3.3, we see that we must show

Σ ^ (5.3)
X,YeXΛ

We then observe that to prove this is enough to show that

is positive definite for every A e έ?f(Zv). Indeed, if this is true, then there are
numbers tc > 0 such that

X), (5.5)

and hence

LHS of (5.3) =
X,YeXΛ

tc

= Σ k\ Σ [Reσc(X)-Reσc(Y)]
σceXA ^ X,YeXΛ

-LliX)-LliY)x [ReσA(X)-ReσA(YJ]e

The last inequality is a well known result (see e.g. [18, Example 4]).
The positive definiteness of (5.4) is a particular case of the following lemma.

Lemma 5.1. Let $ be a finite Abelian group; f g real valued functions on $ such
that

i) / is positive definite,
ii) the Fourier transform g of g is real-valued, and

iii) for any σ e ^*,

7 > ) = 0 for all n=>g(σ) = 0. (5.6)

Then the function

is positive definite for s e R large enough.

Proof We could proceed as in the spin-^ case using the HTE. However we prefer
to deduce the lemma from a corresponding result on positive definite matrices,
which is of independent interest.
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First, in a standard way, by considering convolution operators, we let to any
function / on ^ correspond a ^ * x ^ * matrix F:

Fστ = J(στ-1). (5.7)

The relation

proves that (5.7) is an algebra isomorphism between the real-valued functions of ^
and a commutative algebra of matrices with indices on ^*. It is simple to check
that the isomorphism is such that:

/ is real o F is Hermitian

and

/ is positive definite o F has non-negative entries.

Moreover, hypothesis (5.6) is equivalent to the property

( F % i t = 0Vw=>(G)ffft = 0. (5.8)

Therefore we see that the lemma is a consequence of the following claim.

Claim. Let F, G be real symmetric commuting matrices. In addition assume that F
has non-negative entries and that the matrices satisfy (5.8). Then the matrix

esF + G (5.9)

has non-negative entries for s large enough.

Proof of the Claim.1 Property (5.8) allows us to assume without loss of generality
that for each σ, τ e ^ * there exists some n for which

(F%τ>0. (5.10)

Indeed, otherwise we could classify the indices into groups Ik such that (Fn)σ τ = 0
for every n when σ and τ belong to different Ik. This classification is well defined
because F is symmetric. By (5.8) also Gσ τ = 0 when σ and τ belong to different Ik.
Therefore F decompose into block matrices along the diagonal for which (5.10) is
true, and it is enough to study (5.9) for each such block.

The inequality (5.10) is exactly what we need to be able to apply Perron-
Frobenius Theorem to the matrix F. As a consequence, of all the eigenvalues λk of
F there is one of them, λ0, such that

\λk\<λ0, feφO. (5.11)

The eigenvalue λ0 has multiplicity one, and the components (v0 \ et) of the
corresponding eigenvector v0 with respect to the canonical basis e{ are strictly
positive:

(5.12)

1 We owe this proof to Michael Aizenman
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Moreover, F and G can be diagonalized simultaneously because they commute
(and are symmetric). If {vk} is the set of simultaneous eigenvectors and yk the
G-eigenvalues; we have

Σ ( ^ ( » J ^ K Λ k + Vk. (5-13)
j fc + o

By (5.11) and (5.12) the first summand in (5.13) dominates for large s. Therefore

(5.14)

for large s. This proves the claim, and hence Lemma (5.1) and Theorem 3.1.
Combining (5.13) with the requirement (5.14) one could obtain an explicit relation
for s of the type (3.20). •

5.3. Generalization of Theorem 3.2
for an Abelian Group of Prime Order at Each Lattice Site

A system is trivial if & is formed by translating multiples of a single multiplicity
function C, called fundamental bond:

A system is factorizable if every multiplicity function of $ is the tensor product of
one-dimensional functions. In particular a factorizable trivial system has a
fundamental bond of the form

C(x) = C1(x1)...Cv(xv),

where Q : Z - ^ Z p , 1 ̂ 1 ^v. Equivalently, C = Cγ ... • Cv with "•" defined in (5.2).

Theorem 5.2. Let p be prime, and consider the factorizable trivial system defined by

H=- Σ AB)σB (5.15)
Bemc

such that

Let rbea positive number and let the interaction K = — Σ J3(B)σB have range smaller
than r. Then, there exists a number Rr C(J) such that if

sup \J3(B)\<RrX(J), (5.16)
B

the set of Gibbs states Δ(H + K) has exactly one element.

Sketch of the Proof. Basically, we only need to discuss how to define the reduced
partition functions in the present more general setting. The proof is then a
straightforward generalization of that for spin \.
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The HTE for a trivial system takes the following form [21]. We introduce the
potentials H(x) obtained by summing all the terms of (5.15) corresponding to
multiples of the same bond, i.e., by writing (5.15) as

H=- Σ Σ J(kC + x)σkC + x = Σ Hix).
xeZv fceZp xeZ v

We also identify families of bonds with subsets of Z v x Z p [cf. (4.19)]

(5.17)

In particular, the family of bonds of the Hamiltonian HΛ( | Y\ with boundary
condition YEXM, MdA\ is identified with &(Λ | 7) = {(x,/c):supp(/cC + x) inter-
sects A and ΛuM}; and the corresponding set of cycles is identified with

JίT{Λ\Y)= ί α ( | ) Σ
1 l(x,k)ea

We remark that both 0i(Λ \ Y) and X(Λ \ Y) depend on Y only through M, and
m o r e o v e r jf{Λ \ Y) C JίT(Λ \1) = JΓΛ.

The HTE of the partition function Z(Λ | Y) is obtained by expanding each
factor e~H{x) in Fourier series and taking the trace. The result is

Z(Λ\Y)= Γfl Σ e~H^{XlY)l Z°(Λ\Y) (5.18)

L JL * x

with

Z°(Λ\Y)= Σ Π t(x,k\Y),
$r{Λ\Y) {x,k)ea

where

t(χ,k\Y)= γ e-Hix)(X\Y)
X

It is simple to check that the bound (4.16) remains valid in the present setting,
and hence so does Proposition 4.3. Moreover, by a Griffiths inequality [28]:

where t^ corresponds to the interaction in which all the J(kC + x) are replaced by
the upper bound \J\ and Y is replaced by 1M. Also, ίμ|(x,k\ \M)<\ for each
(x,k)e&(Λ | l) = /ί*. Therefore

\y°(A i yϊ — 11 < v rfΓιi s υ p p αi

αΦO

With τ(J) = max{ί|j|(x, fe | l):(x, k)eΛ*} < 1. It is shown in the appendix that
Proposition 4.4 is valid as long as p is prime (this is the only part of the proof of
Theorem 5.2 where the prime character of p is used), using "Σ" as the sum modulo p
and Λ* = 3$(Λ 11). The proof of Proposition 4.5 can then be repeated replacing
throughout the symmetric difference by the sum modulo p. •
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5.4. Comparison with Other Works and Concluding Contents

Our work on many phase transitions started with Monte-Carlo stimulations of the
Benchmark Model. The present construction was essentially completed in the
spin-^ case during the Summer of 1982, before we became aware of [28] and, more
recently, of [1,2]. Theorem 3.2 was proved at first in a more involved way using the
Dobrushin-Pechersky uniqueness theorem [7] (cf. [13]). Since the work [28]
appeared so much earlier, comparison of the present construction with that of
Pfister is in order.

In both constructions, to show that certain order parameters are zero one
compares the original model with another one, using correlation inequalities. In
[28] the comparison model, about which one has to have an independent
information, is either defined on a reduced lattice, as in the case of the Ashkin-
Teller model, or has a reduced configuration space. Thus to define models with
more and more phase transitions one has to consider larger and larger
configuration spaces. The comparison of the models is done with a help of an
inequality by Ginibre.

In our case Theorem 3.1 yields a comparison with a model on the same lattice,
so that one can construct spin-^ models with many phase transitions on the simple
lattice. Vanishing of correlations in the comparison model is obtained from the
uniqueness Theorem 3.2. We do not know how one could use Pfister's method
to obtain our results.

To further elucidate these comments we discuss an example of [1, 2] and [28]
using our method. Let n = k m,k,mφ\, and consider the system with configura-
tion space Z;fv and Hamiltonian

H=-μΣWt-ΣokA, (5-1)
n.n. n.n.

where

(The case of the circle is reduced to the one considered here using Lemma 5.2 of
[28], as in [28] see also [11]). One wants to show that for μ small enough there are
at least two changes in s^β\ at low temperatures < σ o ) + φθ, at high temperatures
both <σo>+ = 0 and (σk

0}
 + = 0, whereas at intermediate temperatures <σ o>+ = 0

while <^o>+ Φθ. The only nontrivial point is the proof of the last statement.
We first choose a β' so large that for μ = 0

<σ*0>;HΦθ for β>β>. (5.2)

By GKS (5.2) holds for μ>0 too. Then applying Theorem 3.1 to if t = - £ σk

aσ
k

b,

H2= — £ (cfk

a + σk

a) and K= — βμ £ σaσb, we obtain the majorization """'
a n.n.

\σO/βHι+K= \σ0/f(β)H2 + K

Now, H2 has "one-point" interaction only. Therefore the Dobrushin-
Shlosman Theorem4.1 applies to it trivially: ρΛ( \ Y) is independent of Y and the
right-hand side of (4.6) is zero. Hence small perturbations of f(β)H2 have unique
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Gibbs states, and since H2 and K are invariant under shifting all the spins by m, we
conclude that (so0}f{β)H2^κ is zero for β close to β' and μ small enough. This
concludes the proof. Choosing n = kί ... kr one can define systems with r phase
transitions.

One could try to combine our construction with Pfister's to describe the
situation for general Zn-models, with composite n. The case when n is a product of
distinct primes should present no new problems since for this case one has a
description of stf^ through a greatest common divisor, as when n is prime [26].
However, while for the Hamiltonian (5.1) the choice of the comparison Hamil-
tonian H2 was obvious, and H2 was easy to analyse, the description of J / ^ through
generators has not been worked out in the general case, although one does have a
reduction process for general n (and general lattices). Though we consider it likely
that s4^ should in general have a set of generators which define a model for which
an analogue of Theorem 3.2 is true; even with this problem solved, the problem of
determination of most general chains ... C^n-1 C^nCs^n + ι C ... of order pa-
rameters would still be open.

A. Cycles for Factorizable Systems

We present here the proof of Proposition 4.4 for the general case of a discrete set of
prime cardinality at each lattice site. The proof relies on the properties of the
algebraic structure of the configuration space X = Z p

 v and its dual X = Z p

z v ) . Both X
and X have a canonical (product) group structure and, moreover, X is an algebra -
the group algebra Z p [Z v ] of Z v with coefficients in Zp, with the product defined by

(A B)(y)=ΣA(x)B(y-x). (A.I)
X

If p is prime, Z p is a field and Z p [Z v ] is a unique factorization domain. In the
sequel we shall adapt our notation to the simpler case of a trivial system by
resorting to the identification (5.17). For a fixed multiplicity function C (which can
be thought of as the fundamental bond of a trivial system). We shall denote

X)=ί for every aeZv}

(symmetry group for C),

The elements of Jf c are called infinite cycles for (the trivial system with
fundamental bond) C. Note that the product makes sense because C has finite
support. The annihilator of Sc:

is known to be generated by the set

3tf(C) = {A C:AeZv[Z^}.

Let us also introduce the involution / : Z p [ Z v ] - * Z p [ Z v ] defined by
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We then have the following relation between infinite cycles and symmetry
groups:

aeJf o Σ BeSI{C), (A.2)
Bea

which is a consequence of the identity

Π ~\ / 4 \ / V"1 T>

0 \ w v Λ r + v \ ± Ύ ) = CΓ jίΓΛ 4- * / / DtX{X)L--rX \ Zip/ l{l^)-rS LΛ
_xeZv J s \Betx

valid for every seZv.
Therefore, to characterize the cycles of trivial systems it is equivalent to study

the symmetry group of the inverted of the fundamental bond. This task can be
further decomposed when the fundamental bond can be factored into coprime
factors.

Proposit ion A.I . If C,Cι, C 2 e Z p [ Z v ] - p prime -are such that C — CιC2 with C t

and C2 coprime; then Sc is generated by SCι and SCr

Proof Let us denote S the subgroup generated by SCχ and SCr Then S1 is
generated by ̂ / C J n&f(C2) C ^f(C), which implies S^ C S1. Indeed, if A e ^f{Cx)
n^f(C2) there exist multiplicity functions Q(l), β(2)eZ p [Z v ] such that

As X* is a unique factorization domain and C1 and C2 are coprime, this implies

A = Q'Cι C2 = Q C

for some Q e Z p [ Z v ] . Hence A e @f{C). Q

A factorizable trivial system is defined by a fundamental bond of the form

c = c r . . . c v ,
where each Ci has support contained in the zth coordinate axis. Then
/(C) = /(C1) ... 7(CV) is also the (ring) product of multiplicity functions with
supports along each axis. By (A.2) and Proposition A.I, the properties of the cycles
of such system can be deduced from the study of one-dimensional trivial systems.

Proposition A.2. Consider a trivial system with configuration space Z p , p prime, and
fundamental bond C. Then, if |supp(C)|=m:

i) // X, YeSc agree on a set of m — \ consecutive points, then X=Y.

iii) There exists a positive integer q such that every X e Sc has period q.

Proof i) Let T be the subset of Z where X and Y agree. We claim that max (T) = oo.
Indeed, if max(T) = 6<oo, then we can consider the bond C + b — m+1 with
support in [b — m + 1 , b + 1]. For p prime it is easy to see that the condition
1 = °c + b-m+ i(X) = °c + b-m+ ι(Y) implies Xb+ί = Yb+ί against the maximality of b.
The proof that min(T)= — oo is analogous.

ii) By i) \Sc\^pm~x. The opposite inequality follows from the fact that every
configuration on [0, ...5m —2] can be uniquely extended to an element of Sc.
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iii) By ii) each XeSc has period smaller than pm~1. Choose q as the lowest

common multiple of the periods of the p m ~ 1 configurations of Sc. •

Finally, we obtain the desired characterization. For a finite set Λ e Z v , let

Λ* = {xeZv: supp(C + x)nΛ + 0}, and

yΓΛ = fαeZpV:supp(α)eΛ*, supp ft OL(X)C + X

Theorem A.3. For a factorizable trivial system with single spin space Zp, p prime,

there exists an integer q such that for each parallelepiped A

* « = .Σ «(0

wz'ί/i supp(α)C/ί* and each OL(Ϊ)\Λ* periodic in the ith direction.

Proof. For A = ZV the result is just a combination of the previous three

propositions. For A with some side of finite size, the result follows from the fact

that each α e C/CA can be extended to an infinite cycle. Π
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