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Abstract. In view of physical applications (especially to "QCD Sum Rules"),
the following problem, pertaining to analytic extrapolation techniques, is
studied. We are considering "amplitudes," which are (real) analytic functions
in the complex plane cut along Γ= [s0, oo). A model F0(s) of the amplitude
is given through the values of F0(s) on some interval y = [ ^ s j (with sι < sQ)
and the values of its discontinuity on Γ. These values are approximate, and
are supplemented by prescribed error channels, measured in L°°-norm (both
on Γ and y). Investigating the compatibility between these data leads to an
extremum problem which is solved up to a point where numerical methods
can be implemented.

I. Introduction

Analytic extrapolation has been widely used in elementary particle theory to convey
information between space-like and time-like domains of various amplitudes. In
quantum chromodynamics (QCD) for instance, perturbation expansions, together
with the inclusion of some non-perturbative effects, allow us to approximate the
two-point functions of hadronic currents in the distant, space-like region in terms
of a few parameters (the values of the so-called "condensates"). On the other hand,
the discontinuity of these amplitudes in the time-like region is related to more
directly measurable quantities. Although analyticity strongly correlates the values
of the amplitudes in these two regions, the errors affecting both types of "data"
make the correlation much looser. Any procedure aimed to build up acceptable
amplitudes must take account of these errors in a reasonable way.

Several methods, generically called "QCD sum rules" have been devised to
deal with this problem [1]. Most of them include the "theoretical errors" in the
space-like region only at a qualitative level, and/or need (explicit or implicit)
assumptions on the derivatives of the amplitudes. The application of fully controlled
analytic extrapolation techniques should remedy these defects. As a matter of fact,
a method of this sort has been already proposed, in which the error channels in
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the space-like region are defined through L2-norrns [2]. Although this approach
is quite satisfactory from the mathematical point of view, it involves weight
functions devoided of a clear physical meaning (this is especially manifest in the
fact that these weight functions are not invariant against conformal transformations
of the energy variable).

We have argued [3] that a fully unbiased treatment should rely on i) a well
defined model of the errors, both in the space-like and the time-like ranges, ii) an
intrinsic (conformally invariant) definition of the error channels, implying the use
of L°°-norms. The aim of the present paper is to study the mathematical aspects
of this problem. Clearly, our results may be useful in various circumstances.
Applications to "QCD sum rules" will be presented elsewhere [4].

Let us now describe our purpose more explicitly. We are considering a set of
admissible amplitudes F(s) expressed in terms of some (squared energy) variable
s. By "admissible", it is meant that

i) F(s) has the usual analyticity properties of a two-point function: it is a real
analytic function in the complex s-plane cut along the time-like interval Γ=[_s0, oo),

ii) the asymptotic behaviour of F(s) is restricted, fixing the number of
subtractions in the dispersion relation between F(s) and/(s) = Im F(s -f io)\seΓ.

A "theoretical" model F0(s) for the amplitude is given in some space-like interval
7 = [s 2 5 s 1 ] , together with a positive function σL(s) defining the error channel
± σL(s). We do not exclude "a priori" the case s2 = — oo. Of course, the functions
F0(s) and σL(s) have no need to conform to the analyticity properties i) (if s2 — — GO,
the behaviour of F0(s)±σL(s) for real s—> — oo must however be in agreement
with the asymptotics prescribed in ii)).

Similarly, an "experimental" model fo(s) is given for the imaginary part of the
amplitude on Γ, together with an allowed error channel + σR(s).

We shall say that the above data are compatible if there is at least one admissible
amplitude F(s) such that:

\F(s)~F0(s)\SσL(s) on y (I.I)
and

\f(s)-fo(s)\SσR(s) on Γ. (1.2)

Clearly, to decide about compatibility amounts to find the infimum of the

functional:

\F(s)~F0(s)\
sup — (13)

σds)
in the set of admissible functions F(s) subjected to the constraint (1.2).

It is worth mentioning that a similar problem was considered in ref. [5]. There
however, a constraint of the type (1.2) was imposed on the modulus of F(s\ not
on its imaginary part. This made the problem a more difficult one, and a solution
was provided in particular cases only. It turns out that by proceeding here essentially
in the same spirit, one can "solve" our problem up to a point where numerical
methods may be implemented. We have first to make sure that the infimum of the
functional (1.3) is attained. This is the main result of Sect. II below (to avoid
inessential complications, we first restrict ourselves to the unsubtracted case). In
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Sect. Ill, we derive the structural properties of the extremal functions in the case
of a bounded interval y. The imaginary parts of these functions on Γ are found
to have a rather simple characterization. The extensions to subtracted dispersion
relations and unbounded intervals y (especially relevant to QCD applications) are
discussed in Sect. IV. Although the former extension is very easy, it is not so for
the latter: one then faces the usual difficulties encountered when the data region
in the holomorphy domain and the boundary of this domain are not disconnected
sets. In fact, we shall content ourselves with a strategy to reach the infimum from
below. Some concluding comments are made in Sect. V.

II. Preliminary Results

We have first to formulate our problem in precise mathematical terms. There are
given:

i) on Γ= [s0, oo) (with s0 > 0): a real (not necessarily continuous) function fo(x)
and a continuous function σR(x), strictly positive for x > so(σR(so) / 0 is not
required). It is assumed that:

fo(x)lxeLι{Γ), (II.l)

σR{x)lxeL\Γ) (Π.2)

ii) On y = [s 2> s i] (with s1 < s0 and possibly s2 = — oo): a continuous, real function
F0(y) and a continuous strictly positive function σL(y).
Let 3F be the class of real analytic functions F(s) of the form:

where ^ M z Δ M e L c o ( Γ ) i ( I L 3 )

σ(x)
Ί d x ( s e C \ n where

π so x — s σR(x)

One notices that our assumptions (II, 1-2) are sufficient to make full sense of this
definition of 3F through unsubtracted dispersion relations. One also remarks that
#~ is a convex subset of the space of holomorphic functions on C\Γ.

We now define the two functional over J*:

(^ne norm is the ess sup-norm on L00(/")), (H 4)

( t n e norm is the sup-norm on C(y)), (II.5)

where

Λ{x) = — , φ{y) = — . (II.6)
O'R{X) σL{y)

Let 9 be the set of points (χR,χL) in U2+ such that {FE^\χR[F^ ^ χR,
Z L [ ^ ] = ZL} is n ° t empty. The physical problem is to determine if Θ contains
points (χR g 1, χL ^ 1). Clearly, it is enough to construct the "lower boundary"
d Θ _ of Q), i.e. to solve the extremum problem:

X-(χ)= inf
Fe.F
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for all χ ̂  0. dS) _ is the graph of the function χ_(χ). It will be shown below that
the infimum in Eq. (II.7) is attained.

Our aim is then i) to describe the general properties of the function χ_(χ) ii)
to describe the structural properties of the extremal functions (i.e. of those F which
saturate the bound χ _ (χ)). To this end, it is convenient to introduce the "discrepancy
function":

] ^ (Π.8)
0(y) 0 ( y ) ]

Then

()0(y) , (11.9)
χ-y J

which allows us to consider the functional (II.5) over 3F as a functional χL[/4] over
l^(Γ). The extremum problem (II.7) is now restated as:

where χ L [ 4 ] = IIMOIL (11.10)

A. The Infimum is Attained

When 52 > — oo, Ili/ΌOIL < °° f° r aU ̂  i n ^(Γ), and χ_(χ) is a well defined
(finite) function on the whole interval [0, oo). This is not necessarily so in the case
52 = — oo:χ_(χ) = oo cannot be excluded "a priori." We are of course assuming
that the behaviours of F0(y) and σL(y) when y -• — oo are such that there exist
FeϊF for which χ L [ i 7 ] < o o . This clearly implies that χ_(χ) is finite on some
(maximal) interval (χ0, oo) with 0 g χ0 < oo.

Proposition 1. Vχ> χ0, ί/ze infimum in Eq. (11.10) is attained for a (non-necessarily
unique) function ziχeL°°(Γ):χ_(χ) - χ L [ΛJ.

Proof. From the definition of χ-{χ), there is a sequence {Δn} in U°(Γ) with
|| Zln || ̂  ̂  χ Vn and such that:

This sequence is contained in Bχ, the ball of radius χ in L^(r). Now, according
to the Banach-Alaoglu theorem [6], Bχ is compact in the weak-* topology of
L^(Γ). Since U°(Γ) is the dual of L1 (/"*), this means that there exists a subsequence
{Δnr} c= {Zl̂ } and some ^ χ e ΰ z such that:

\im] dxg(x)Λnr(x)=] dxg(x)Δχ(x) VgeL\Γ). (11.12)
»•-> oo so so

In particular, the assumption (II.2) allows us to take g(x) = σR(x)/(x — y) in
Eq. (11.12), as long as yey:

\imldχσ^Δn(x)=]dχσ^Δχ(x) Vyey. (11.13)
c->oo so -^ j so Λ y

Let φr(y) and i/̂ Cy) be the functions respectively associated to ΔUr and Δχ through
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Eq. (II.9). Then, from Eq. (11.11):

lim\ψr(y)\^χ-(χ) Vyey (11.14)
r—> oo

and from Eq. (11.13):

Hm\φr(y)-ψxW = 0 Vyey (11.15)
r—> oo

(notice that the latter limit is not necessarily uniform on y if this interval is
unbounded).

Hence, taking the lim in \φχ(y)\ S \ΨAy)\ + \ΦΛy) — Φχ(y)l w e deduce that:
r-> oo

\Ψx(y)\£x-W
which yields:

= su

Since χ L [ 4 χ ] < χ_(χ) would contradict the very definition of χ_(χ), the proof is
completed.

To Δχ(x) corresponds the extremal function in #":

B. Properties of the Function χ-(χ)
They essentially reflect the convexity of the set 3F and of the norms:

Theorem 1. χ-(χ) is a non-increasing, convex (and thus continuous) function on

Proof. That the function χ-(χ) is non-increasing is a trivial consequence of the
definition (11.10), through set inclusion. In order to prove that it is convex, let us
take any χx and χ2 with χ0 < χ1 < χ2, together with corresponding saturating
functions Λ1(x) and Δ2(x):

r , ™ ( Π 1 9 )

Consider

χ = λXl+(l-λ)χ2 with 0 ^ / g l , (11.20)
and define

Δ{x) = λΔ1{x) + (ί-λ)Δ2(x). (11.21)

If ^iίy), 0"2(J;) a n d ίA(y) are respectively constructed from Δ1(x), Δ2(x) and
through Eq. (II.9), then:

Λψi(y) + V-λ)φ2(yY (π.22)

Hence:

(11.23)
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On the other hand, Eq. (11.21) implies:

\ \ Δ \ \ x ^ λ \ \ Δ ί \ \ : X 3 + ( \ - λ ) \ \ Δ 2 \ \ a ΰ ^ λ χ ί + ( l - λ ) χ 2 = χ. (11.24)

Therefore /_(%) g χL[zϊ], which, together with Eq. (11.23), entails the announced
convexity property:

χΛλϊΛ + (1 - λ)χ2) ^ λχ-.(yΛ) + (1 - λ)χ-(χ2). (11.25)

Let us add that Fχ(y) may accidentally coincide with the data function F0(j;)
if this function has itself an analytic continuation in the whole of £\Γ and if χ is
large enough. In such a case, the function χ_ (χ) will vanish identically above some
critical value of χ.

III. Properties of the Extremal Functions for a Bounded Interval γ

In this section, we need to assume that 7 is bounded (s2 > — 00). Only then we
shall be able to gain detailed information on the extremal functions. What can be
done in the unbounded case will be presented in sub-sect. IV.A. Of course, we are
also assuming that the extremal functions Fχ(s) under consideration do not identify
with the data function F0(y) on 7, i.e. that χ~{χ)> 0.

In order to describe conveniently certain properties of Fχ(s), it is useful to
introduce the number of its "effective extrema." This essentially amounts to count
the number of times the continuous function φ(y) = [Fχ(y) — F0(y)]/σL(y) reaches
its extrema χ_ (= χ_ (χ)) or — χ_ on 7, but counting only for 1 any set of successive
extrema of the same sign (and not excluding the possibility that φ{y)= ± χ _ on
a whole subinterval of 7). To have a precise counting procedure, let us define two
decreasing sequences {uj} and {vj} in 7 = [s 2 > s i] as follows (Fig. 1):

u! = largest value of y ^ s 1 for which \φ(y)\ = χ_;

we set ε = φ(uγ)lχ- (= ± 1)

Uj = largest value of y ^ uj^1 for which φ{y) = ( — )j+1εχ_

(7 = 2,3,...). (III.1)

/
/

S 2

V--Λ—
^ 3 = V 3 - ^ T Jv2 / \ ]

V \Vί/ V

^ p ί
//

J

\,
\ s<l

0

-1

Fig. 1. Construction of the sequences {UJ}, {VJ} and typical graphs of the functions ψ(y) (full line) and

όψ(y) (broken line). Here: number of effective extrema n = 3 and ε = 1
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Vj = smallest value of y ^ uj+ ί for which φ(y) = ( — )j+18χ^

(7 = 1,2,...). (IΠ.2)

Evidently:

(the strict < sign in Eq. (III.3) follows from the continuity of φ(y)). Moreover, the
two sequences must be finite. Otherwise, the limit of {Uj} would belong to the closed
interval γ and would be a point of discontinuity oϊφ(y) (since φ{uj+1) = ~ φ(uj)\/j).

Then, let n be the largest index j for which Uj exists (and υn be defined by setting
un + 1 = s2 in Eq. (III.2)). One observes here that our "compactness" assumptions
s2 > — oo and σL(s2) / 0 are essential to guarantee that n is finite. In general, this
property would be lost by relaxing any one of those assumptions.

Definition 1. The number of effective extrema of Fχ(s) is the integer n^ 1 just
constructed.

We are now in a position to establish the

Lemma L Let χ be such that χ_(χ)Φθ. Then any function Δχ solving the
problem (11.10) obeys the condition:

\Δχ(x)\ = χ a . e . o n Γ (and thus | | 4 χ | | x = χ). (IIT.4)

In other words, the discontinuity on Γ of any extremal function Fχ(s) not
identical with the data function saturates its bound almost everywhere.

Proof. Assume Eq. (III.4) to be wrong. Then 3d > 0 and a set E a Γ with positive
Lebesgue measure μ(E) such that:

\Δχ(x)\^χ-d a.e. on E. (ITΪ.5)

Let n be the number of effective extrema of Fχ(s). Consider the covering of 7̂  by
the intervals of length α = μ(E)/2n:

Jι = Oo + /α, 50 + (/ + l)α], / = 0,1,2,... . (III.6)

Since μ(EnJι) ^ α, there are at least 2n such intervals, Jlk, for which μ(EnJlk) > 0.
Pick any n of them with the proviso that there remains no pair of adjacent ones,
and excluding Jo. Denote by Ik these closed, non-overlapping intervals. Using
μ(EnIk) > 0, and the compactness of the Iks, it is readily shown that in each Ik,
there is a point xk such that

μ(En [xk - η9xk + iβ)> 0 V/j > 0. (TTI.7)

For an appropriate choice of index assignment:

s() < xλ < x2 < ••• < λ'π (our construction implies strict < signs). (III.8)

We also set:

X)[{x) = characteristic function of Enl){,
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a n d o b s e r v e t h a t 0 < μ\ ̂  2η.
Let us n o w define, for λ>0 a n d a n y real set { r 1 , r 2 , . . .,rn} w i t h rί = l:

(here: ε = ± 1 as specified in Eq. (III.l)). First of all, Eq. (III.5) implies:

]| Δ || Qo ^ χ as soon as A is small enough. (III. 11)

Next, using Δ(x) in place of Δχ(x) in Eq. (II.9) gives:

) k=l Hk ii χ ~~ y
k

Since for y < s 0 :

we can rewrite Eq. (III. 12) as:

Γ R(y) Ί

where

() Σ ' ()
fc = 1 Xk - S

and 0(η) is uniform in y over γ. In a final step, choose {yi,y2,- ••>Λ-i} m 7 s o

that u i + ! < ̂  < ι;; (see Eq. (III.3)). According to Appendix A, the rk'$ in Eq. (III.15)
can be adjusted in such a way that R(s) has exactly (n — 1) simple zeros at s = yjt

Moreover, since rι = 1:

(-iyR(y)>0 for yJ+1<y<yj

(j = 0,l,. ,n;v/esetyo = sί,yn + 1=s2).

For η small enough the function δφ(y) has, like R(y), exactly (n — 1) simple zeros
on 7. They are now located at y} = ̂  + O(^) with:

Using the continuity of t/r(j;) and c)!/'^) on y, one readily infers from Eqs. (III. 1-3),
(III. 14) and (III. 16-17) that there are positive v and p such that (see Fig. 1):

for yejuJ+1,yj}, (HI. 18)

for ye}yj,uj]. (111.19)
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Choosing λ < v/p, we deduce:

-χ-<(-)j+1εψ(y)<χ- for ye]yJ+ί,yj} (j = l , . . . , w - 1 ) . (111.20)

Hence |ι^Cy)| < X- on the whole interval y, and χL[2ί] < χ. This, together with Eq.
(III.ll), contradicts the fact that Fχ(s) is an extremal function. Therefore the
hypothesis (III.5) cannot be true, and the proof is completed.

In fact, any function Δχ(x) solving the problem (11.10) must belong to a much
more restricted class than the one defined by Eq. (III.4). To show this, let us
introduce a partition of Γ in two sets Γ+ and 7"_ defined by:

Γ± = {xeΓ\Δχ(x)=±χ}. (111.21)

Ignoring the trivial (but possible!) cases where μ{Γ+) = 0 or μ(Γ _) = 0, we need
the following

Lemma 2. Suppose that there are p intervals Kt = [_ai,bi'] c Γ subjected to the
conditions'.

bt^ai+l (i=l,2,...tp-Ubpmaybe infinite),

for ε = + o r - , μ ( K f n Γ f - ( _ ) ί + i ) > 0 Vi = l , . . . , p . ( ' j

Then

α) p t^n
β) if p = n: ε ε = — 1

(again, n is the number of effective extrema of Fχ(s) and ε is defined in Eq. (III.l)).

Proof. As in the proof of Lemma 1, one proceeds "per absurdo" and uses a
"perturbation" argument based on Appendix A. Therefore, we shall content
ourselves with a very brief sketch. Assume first p ̂  n + 1.

i) If εε = l5 one selects the intervals K1,...,Kn and shows that by a suitable
decrease of | ^ ( x ) | on each set i ^ n / ^ ^ + i, \ψ(y)\ can be decreased on the whole
interval γ (Eq. (A.3) is used in this step).

ii) If εε = — 1, the same procedure works with the intervals K2,...,Kn + x.
In both cases, we run into contradiction. Hence p^n.

When p = n, the argument i) is still valid and leads again to a contradiction. Hence
εε= — 1.

Lemmas 1 and 2 allow us to deduce in a fairly simple way the general structure
of the function Δχ(x).

Definition 2. A function defined on Γ will be called a p-step function if it is right
continuous, takes only the values + χ and has (p — 1) jumps.

Theorem 2, Let χ be such that X-(χ)φO and Fχ(s) an extremal function with n
effective extrema. Then its imaginary part fy(x) = Im Fχ(x + io) on Γ has the form:

Λ W = fo(x) + σR{x)Δχ{x), (111.23)

where Δχ(x) is a m-step function. Moreover.
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m g n, (111.24)

if ϊn = n:εΔχ(so)<0. (111.25)

Proof. Let ί+ (respectively ί_) be the smallest value of x ^ s0 for which 4 χ (x) = + χ
(respectively —/) a.e. on [s o , ί + ] (respectively [ s o , ί _ ] ) . It is easily deduced from
Lemmas 1 and 2α) that either t+ > 0, ί_ = 0, or ί+ = 0, ί_ > 0. We then define a
non-decreasing sequence { ί j in F by:

ί. = t- > 0 (ε = ± ); we can set Δχ(s0) — εχ,

tt = smallest value of x ^ ti-1 such that Δχ(x) = s( — )ι + 1χ

a.e. on [ί - ^ ί j (i = 2,3,...). (111.26)

Applying again Lemmas 1 and 2α), we find that:

ti>ti.ι V/ = 2,3,... (111.27)

and that the sequence must stop at some index i = m—ί with m ^ n (i.e. ίw = oc).
This just means that Δχ(x) is a m-step function subjected to the condition (III.24).
As for the result (111.25), it immediately follows from Lemma 2β).

IV. Extensions

A, Unbounded Interval y
As already mentioned in Sect. Ill, nothing prevents the number of effective
extrema of Fχ(s) to become infinite when y = (— oo,^] . More than that, for the
applications we have in mind [3,4], the data functions F0(y),f0(x) and the error
functions σL{y\ <τR(x) are such that this phenomenon is likely to occur when χ is
large enough. In this case, very little can be said about the corresponding function
Δy(x). In particular, there is no guarantee that it is still a step function (with
possibly an infinite number of jumps). We were even unable to prove that |4 χ(x) |
saturates its bound χ a.e. on Γ (and actually we see no compelling reason for this
to be true in general).

Although we know that the infimum χ_ in Eq. (11.10) is still attained, we are
lacking of a practical procedure to construct it, since we cannot restrict at once
the class of Δ's to step functions. Fortunately, a partial way out is provided by
the following fact: χ_ can be approached arbitrarily close from below by solving
as previously the extremum problem (11.10) for bounded sub-intervals [s(ί), s : ]
(which involves only step functions Δ) and letting s(ι) go to — oo. This results from:

Theorem 3. Consider an arbitrary decreasing sequence {s{ι)} -> — oo and define:

χ{!}= inf χ{[}lΔl (IV. 1)
ΔeLx(Γ)

where

Z M = ((sup( W(j;)| (IV.2)

and ψ(y) is still given by Eq. (11.9). Then {χ(-} is a non-decreasing sequence and
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Proof. For all 4eL°°(Γ):

VK*] ^ z Γ υ M ^χLlA] = sup \φ{y)\ (TV.3)
yey=(- oo,si]

by set inclusion. This implies that the sequence {γ}1}} is non-decreasing and bounded
from above by χ_. Thus it has a limit γ}™] ̂  χ_. One has to show that χ(^X)) = χ-.
Suppose that this is wrong:

X (-x )<Z- (IV.4)

From Sect. II.A, we know that for each i, γ}1} is attained for some (step) function
Δ{1\ Using again the Banach-Alaoglu theorem, we can assert that a subsequence
{Δ(ir)} a {Δ{ίy} exists, which converges to some Δ{co} (with ||zl(Xl) | | α ^ γ) in the
weak-* topology of LΎ(Γ). Define φ{r\y) and φ(cc\y) from Δ(ir) and Δ(cc) as in
Eq. (II.9). Then, given any yey:

lim φ{r)(y) = φ{co)iy) (IV.5)

by the weak™* convergence (and noticing that yey(ίr) for /'f. large enough). Now, for
yeγίir).

I Φ{%>)\ ύ ή:] [4(ί-»] = z(i-' ^ z ( α ; ) (i v.6)

Using Eq. (IV.5), we deduce that for any yey:

| ( / /χ) C v ) |^ χ (χ) . ( 1 V J )

Hence z L [/l < x ) ] ^ χ ^ ' and, according to our assumption (IV.4):

which is a contradiction.

B. T/?β Subtracted Case
The extension of our analysis to subtracted amplitudes requires only minor changes
in definitions and proofs. The results remain essentially the same.

Consider the Λ/-subtracted case (N ̂  1). This means that Eqs. (II. 1-2) must be
replaced by:

xy^smn

R(x)lxN+ίeLι(n

whereas the equations defining the class ,Ψ are now:

(we have fixed the subtraction point at s — 0 for pure notational convenience).
Equation (II.9) for φ(y) = [F(y) — F0(y)^\/σL(y) becomes:

(IV.ll)



60 G. Auberson and G. Mennessier

with

π S

J

O x N ( x - y)

so that the functional χ L [F] = || φ(y) || ̂  now appears as a functional χL[/4, A] over
^ ( Γ ) x RN (with A = (AQ,Al9...,AN^1)eUN). The extremum problem (11.10) is
changed into:

X-(X)= inf Z L C ^ U ] . (ΪV.13)

We are assuming consistency of the data, that is: χ_ (χ) < oo for χ larger than some
χ o ^ 0 . Again, given χ>χ0, the infimum (IV. 13) is attained for some function
ΔχiχjeL^iΓ) and some subtraction constants Aχ. This is established by modifying
the proof of Proposition 1 as follows. Since χ>χ0, there is a F{0)e^ such
that \\\jj{0){y)\\ao = K<co, Then χ_(χ)^K and one is allowed to include the
supplementary constraint || φ(y) \\ ^ rg K in the right-hand side of Eq. (IV. 13). From
Eq. (IV. 11), this constraint implies:

N- 1

Σ
n = 0

Hence, by assigning to y N arbitrary (but distinct) values zfey:

+\D0(y)\ Vyeγ. (IV. 14)

J V - 1

ΣΛ
0

(IV. 15)

where the Q's depend only on χ. Eq. (IV. 15) reads as well:

\A%\£Ci9 i = l , . . . , N , (IV.16)

where the N vectors %= ( l ,z ί ? . . . ,z f - 1 ) are linearly independent. From this, one
readily deduces that A is contained in some ball of finite radius Rχ. Therefore, Eq.
(IV. 13) can be rewritten as:

X-(X)= inf XLLΔ,Al (IV.17)
II £11 oo ^ z
\\A\\£Rχ

The proof then proceeds exactly as in Sect. II.A, by noticing that the set
{A eL^iΓ) 11| Δ || ̂  S x} x {AeUN 11| K || ^ Rχ} is compact in the product topology
of U°(Γ) x UN (the topology of L°°(Γ) being still taken in the weak-* sense).

The existence of saturating function Δχ(x) and subtraction constants Aχ being
now established, it is easily checked that Theorem 1 and Theorem 2 (up to Eq.
(III.24)) keep unchanged. As for Theorem 3, it still holds with obvious alterations
in the definition (IV. 1-2) of χ(!}.

Of course, our contention that allowing for subtractions is rather trivial at the
purely mathematical level does not mean that it is harmless in numerical
applications. The occurrence of the extra parameters Ai in Eqs. (IV.ll—13) may
lead to noticeable difficulties in actual minimization procedures.
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V. Conclusions

We have defined the compatibility of "space-like and time-like data" by introducing
Π° norms. The answer to the question of compatibility then amounts to finding
the infimum of some functional, which defines a curve in IR + (the lower boundary
dQ)_ of the allowed region Q) for the two error parameters χR,χL) We have shown
that the infimum was attained indeed, and we have derived several structural
properties of the extremal functions.

The infimum problem then is reduced to a minimization over a ίinite number of
variables (the abscissas of the jumps of the step function Δχ defined in Theorem 2).
In the generic case, only a small number of jumps are involved in the low χL region
of the boundary d^_, which is then easily computed.

Finally, let us notice that, although our proofs rely heavily on the properties
of rational functions, we suspect that our main results hold not only for the Cauchy
kernel, but also for more general ones.

Appendix A

Let be given two set of distinct, real numbers {y^Zl and {xk}l = 1 ordered as:

J^n-1 <•• ' < 3̂ 2 < y i < * l < * 2 < • ' • < * « • (A.I)

We assert that there are n (uniquely defined) numbers rί = l, rkφ0 (k = 2,..., ή)
such that the function

t^L (A 2)
k=ι Xk — S

has exactly (n — 1) simple zeros, located at s = y{ (i = 1,..., n — 1). Moreover:

( - l ) k + 1 r Λ > 0 ( f c = l , . . . , n ) . (A.3)

Indeed, given the y/s, the rks for 2^k^n are obtained by solving the linear system:

Σ — — r k = — , i = l , . . . , n - l , (A.4)

The determinant D of this system is:

β = (_!)(»-D(»-2)/2 γi iχk_χι)iyi_yj)l γi iXk_y.} ( A.5 )
2^k<l^n I 2^k^n

(an easy consequence of the fact that D must vanish for xk = xι and for yt = y^).
As D φ 0, the existence and uniqueness of the rks is insured. Furthermore

rq = ^- fe = 2,...,n), (A.6)

where Dq is obtained from D (up to a sign) by the substitution xq^Xi in the

right-hand side of Eq. (A.5). Again Dq Φ 0, so that rq Φ 0.
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Since R(s) = N(s) / |~] (xk — s), where JV(s) is a polynomial of degree (n— 1),
/ k = ί

the (n— 1) j ^ 's necessarily exhaust the set of zeros of R(s). This statement also
implies that the signs of the rfc's must alternate. Hence Eq. (A3).
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