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Abstract. In view of physical applications (especially to “QCD Sum Rules”),
the following problem, pertaining to analytic extrapolation techniques, is
studied. We are considering “amplitudes,” which are (real) analytic functions
in the complex plane cut along I"=[sy, 00). A model F(s) of the amplitude
is given through the values of F(s) on some interval y = [s,,s,] (with s; <)
and the values of its discontinuity on I". These values are approximate, and
arc supplemented by prescribed error channels, measured in L*-norm (both
on I' and y). Investigating the compatibility between these data leads to an
extremum problem which is solved up to a point where numerical methods
can be implemented.

I. Introduction

Analytic extrapolation has been widely used in elementary particle theory to convey
information between space-like and time-like domains of various amplitudes. In
quantum chromodynamics (QCD) for instance, perturbation expansions, together
with the inclusion of some non-perturbative effects, allow us to approximate the
two-point functions of hadronic currents in the distant, space-like region in terms
of a few parameters (the values of the so-called “condensates”). On the other hand,
the discontinuity of these amplitudes in the time-like region is related to more
directly measurable quantities. Although analyticity strongly correlates the values
of the amplitudes in these two regions, the errors affecting both types of “data”
make the correlation much looser. Any procedure aimed to build up acceptable
amplitudes must take account of these errors in a reasonable way.

Several methods, generically called “QCD sum rules” have been devised to
deal with this problem [1]. Most of them include the “theoretical errors” in the
space-like region only at a qualitative level, and/or need (explicit or implicit)
assumptions on the derivatives of the amplitudes. The application of fully controlled
analytic extrapolation techniques should remedy these defects. As a matter of fact,
a method of this sort has been already proposed, in which the error channels in
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the space-like region are defined through L2-norms [2]. Although this approach
is quite satisfactory from the mathematical point of view, it involves weight
functions devoided of a clear physical meaning (this is especially manifest in the
fact that these weight functions are not invariant against conformal transformations
of the energy variable).

We have argued [3] that a fully unbiased treatment should rely on i) a well
defined model of the errors, both in the space-like and the time-like ranges, ii) an
intrinsic (conformally invariant) definition of the error channels, implying the usc
of L*-norms. The aim of the present paper is to study the mathematical aspects
of this problem. Clearly, our results may be useful in various circumstances.
Applications to “QCD sum rules” will be presented elsewhere [4].

Let us now describe our purpose more explicitly. We are considering a set of
admissible amplitudes F(s) expressed in terms of some (squared energy) variable
5. By “admissible”, it is meant that

1) F(s) has the usual analyticity properties of a two-point function: it is a real
analytic function in the complex s-plane cut along the time-like interval I =[5, 20),

i) the asymptotic behaviour of F(s) is restricted, fixing the number of
subtractions in the dispersion relation between F(s) and f(s) = Im F(s + i0)|

A “theoretical” model F,(s) for the amplitude is given in some space-like interval
v =[s,,s;], together with a positive function o,(s) defining the error channel
+0;.(s). We do not exclude “a priori” the case s, = — co. Of course, the functions
Fy(s)and o, (s) have no need to conform to the analyticity properties i) (if s, = — o0,
the behaviour of Fy(s) + o, (s) for real s— — co must however be in agreement
with the asymptotics prescribed in ii)).

Similarly, an “experimental” model f,(s) is given for the imaginary part of the
amplitude on I, together with an allowed error channel + o,(s).

We shall say that thc above data are compatible if there is at least one admissible
amplitude F(s) such that:

[F(s) = Fo(s)| = ap(s) on 7 (L.1)
and
[f(5)—fols)| Sogls) on T. (1.2)

Clearly, to decide about compatibility amounts to find the infimum of the
functional:

sup Lo ot (L3)

in the set of admissible functions F(s) subjected to the constraint (1.2).

It is worth mentioning that a similar problem was considered in ref. [57]. There
however, a constraint of the type (1.2) was imposed on the modulus of F(s), not
on its imaginary part. This made the problem a more difficult one, and a solution
was provided in particular cases only. It turns out that by proceeding here cssentially
in the same spirit, one can “solve” our problem up to a point wherc numerical
mcthods may be implemented. We have first to make sure that the infimum of the
functional (1.3) is attained. This is the main result of Sect. 11 below (to avoid
inessential complications, we first restrict ourselves to the unsubiracted case). in
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Sect. 111, we derive the structural properties of the extremal functions in the case
of a bounded interval y. The imaginary parts of these functions on I are found
to have a rather simple characterization. The extensions to subtracted dispersion
relations and unbounded intervals y (especially relevant to QCD applications) are
discussed in Sect. IV. Although the former extension is very easy, it is not so for
the latter: one then faces the usual difficulties encountered when the data region
in the holomorphy domain and the boundary of this domain are not disconnected
sets. In fact, we shall content ourselves with a strategy to reach the infimum from
below. Some concluding comments are made in Sect. V.

[I. Preliminary Results

We have first to formulate our problem in precise mathematical terms. There are
given:

i) on I'={s,, o0) (with s, > 0): a real (not necessarily continuous) function f(x)
and a continuous function oy(x), strictly positive for x > sy(og(sy) #0 is not
required). It is assumed that:

folx)/xelX(I), (IL.1)
or(x)/xel}(I). (T1.2)
i) Ony=[s,,s, ] (withs, <sgand possibly s, = — c0): a continuous, real function

Fy(y) and a continuous strictly positive function o (y).
Let F be the class of real analytic functions F(s) of the form:

F(S):l?dx S) (seC\T), where ‘-f—g):lg(—'\:)—eL““(F). (I1.3)
T X—S8 o r(x)

One notices that our assumptions (11, 1-2) are sufficient to make full sense of this
definition of # through unsubtracted dispersion relations. One also remarks that
F is a convex subset of the space of holomorphic functions on C\ 7.

We now define the two functionals over 7

yrlF1=1A4(x)|., (the norm is the ess sup-norm on L*(I")), (11.4)

i LET= 1y, (the norm is the sup-norm on C(y)), (11.5)
where /
Ay TS ) FOI=Foly) e
or(x) ar(y)

Let & be the set of points (yg,7;) in B3 such that {FeZ |[yx[F]1=< 7z,
7. [F1< 7.} is not empty. The physical problem is to determine if Z contains
points (yz £ 1,7, £ 1). Clearly, it is enough to construct the “lower boundary”
0% _ of 9, ie. to solve the extremum problem:

7-(0=inf y, [F] (TL7)

Fe7
7rlFl=7
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for all ¥ 20. 02 _ is the graph of the function y_(y). It will be shown below that
the infimum in Eq. (IL.7) is attained.

Our aim is then i) to describe the general properties of the function y_(y) ii)
to describe the structural properties of the extremal functions (i.e. of those F which
saturate the bound y _(x)). To this end, it is convenient to introduce the “discrepancy
function”:

folx)

Dy(y)= Fol )—-—Jd i (11.8)
Then
1 12 ap(x)
Y (y) =—[~ dx———A(x) — Do(y)} (IL9)
GL(y) T 5o X—=Yy

which allows us to consider the functional (I1.5) over % as a functional y;[A] over
L*(I'). The extremum problem (IL.7) is now restated as:
x-()= inf y [A], where . [A]=[¢y().,- (IL.10)

AeL*(I)

(Al.S7
A. The Infimum is Attained
When s, > — o0, [Yy(») ]|, < oo for all A in L*(I'), and y_(y) is a well defined
(finite) function on the whole interval [0, co). This is not necessarily so in the case
s, =—0:x-(x)= oo cannot be excluded “a priori.” We are of course assuming
that the behaviours of Fy(y) and o;(y) when y— — oo are such that there exist
Fe% for which y,[F] < co. This clearly implies that y_(y) is finite on some
(maximal) interval (y,, 00) with 0 <y, < c0.

Proposition 1. Vy >y, the infimum in Eq. (11.10) is attained for a (non-necessarily
unique) function A,e L*(I'):y_(x) = x.[4,]-

Proof. From the definition of y_(y), there is a sequence {4,} in L*(I") with
1Al o < xVn and such that:

lim 7, [4,]=7- (7). (IL11)
This sequence is contained in B, the ball of radius y in L*(I"). Now, according
to the Banach-Alaoglu theorem [6], B, is compact in the weak-* topology of
L*(I'). Since L*(I") is the dual of L!(I"), this means that there exists a subsequence
{4,.} = {4,} and some A, eB, such that:

lim [ dx g(x)A,(x) = | dxg(x)4,(x) YgeL(I). (I1.12)
In particular, the assumption (I1.2) allows us to take g(x)=og(x)/(x —y) in
Eq. (I1.12), as long as yey:

GR(

A, (0)= | dx JR(X Ax) Vyey. (IL13)
So

F— 0 S0

Let ,(y) and ¥, (y) be the functions respectively associated to 4, and A, through
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Eq. (IL9). Then, from Eq. (IL.11):

lim W, (v (x) Vyey (I1.14)
and from Eq. (I1.13):
lim |y, (y) =¥, (MI=0 Vyey (I1.15)

(notice that the latter limit is not necessarily uniform on 7 if this interval is
unbounded).

Hence, taking the hm in [y, (W] = W, W+ 1, (v) — ¥, (»)l, we deduce that:

W,WI=x-(0) Vyey, (11.16)
which yields:
x4, =suply, = x- (0 (11.17)
yey

Since y.[4,]<7z-(x) would contradict the very definition of y_(y), the proof is
completed.
To A, (x) corresponds the extremal function in .7:

j i fo(x) nj dxf’!‘,(f% A, () (IL18)

B. Properties of the Function y_(x)
They essentially reflect the convexity of the set % and of the norms:

Theorem 1. y_(y) is a non-increasing, convex (and thus continuous) function on
(ZOa OO)

Proof. That the function y_(y) is non-increasing is a trivial consequence of the
definition (I1.10), through set inclusion. In order to prove that it is convex, let us
take any y, and y, with y, <y, <y,, together with corresponding saturating
functions A4, (x) and 4, (x):

7-() = 7. [Ad
{“Ai”ooé}fg, (i=1,2). (I1.19)
Consider
7=ip+(1 =Ny, with 0<i<1, (11.20)
and define
A(X)—/A (x) + (1 — A, (x). (T1.21)

If ¥, (y), ¥»(y) and () are respectively constructed from A4, (x), 4,(x) and A(x)
through Eq. (I1.9), then:

Y () =2y () + (1= DY,y (I11.22)
Hence:

2 LAY =100, S 20 e + (U= a e = 22, LA 1+ (1 — Dy, [4,]
SAy- () + (0 =Ar-(12) (I1.23)



54 G. Auberson and G. Mennessier

On the other hand, Eq. (I11.21) implies:
[AL = 20A L, + (=D Al S 270+ (=D =T (I1.24)

Therefore 7_ (7) < 7,.[A], which, together with Eq. (I1.23), entails the announced
convexity property:

PV + (0 =2Ax) = Az () + (1 =27 (1) (I1.25)

Let us add that I (y) may accidentally coincide with the data function F(y)
if this function has itself an analytic continuation in the whole of C\I" and if y is
large enough. In such a case, the function y _(y) will vanish identically above some
critical value of y.

IIL. Properties of the Extremal Functions for a Bounded Interval y

In this section, we need to assume that y is bounded (s, > — o0). Only then we
shall be able to gain detailed information on the extremal functions. What can be
done in the unbounded case will be presented in sub-sect. [V.A. Of course, we are
also assuming that the extremal functions F,(s) under consideration do not identify
with the data function Fy(y) on 7, i.e. that ¥ _(y)>0.

In order to describe conveniently certain properties of F,(s), it is useful to
introduce the number of its “cffective extrema.” This essentially amounts to count
the number of times the continuous function y(y) = [F(y) — Fo(y) 1/ (y) reaches
itsextrema y_(=y_(x)) or —y_ on 7, but counting only for 1 any set of successive
extrema of the same sign (and not excluding the possibility that ¥(y)= + y_ on
a whole subinterval of y). To have a precise counting procedure, let us define two
decreasing sequences {u;} and {v;} in y = [s,,s, ] as follows (Fig. 1):

u; = largest value of y <s, for which [y(y)| = y_:
we set e=(u)/z- (= +£1)

u; = largest value of y <u;_, for which ¢(y)=(—)""ey_
(j=2.3,..). (11L.1)

Yo\ _——"T N T~/ "

\

ne———————
W ——————

S2

c
w

<
w

V2

\
\

T T
| |
| |
| |
| |
| |
| |
| |

Fig. 1. Construction of the sequences {u;}, {v;} and typical graphs of the functions (y) (full linc) and

oY(y) (broken line). Here: number of effective extrema n=3 and &= 1
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v; = smallest value of y = u;, ; for which y/(y) = ( — Yt gy

(j=12..) (111.2)
Evidently:
U <v;Su; V=12, (ITL.3)

(the strict < sign in Eq. (II1.3) follows from the continuity of ¥(y)). Moreover, the
two sequences must be finite. Otherwise, the limit of {u;} would belong to the closed
interval y and would be a point of discontinuity of y(y) (since Y(u;, ;) = — (u;)Vj).

Then, let n be the largest index j for which u; exists (and v, be defined by setting
u,., =S, in Eq. (I11.2)). One observes here that our “compactness” assumptions
s, > — oo and o, (s,) # 0 are essential to guarantee that n is finite. In general, this
property would be lost by relaxing any one of those assumptions.

Definition 1. The number of effective extrema of F,(s) is the integer n>1 just
constructed.
We are now in a position to establish the

Lemma 1. Let y be such that y_(y)#0. Then any function A, solving the
problem (I1.10) obeys the condition:

|A,(x)|=7 aeonl (andthus [A,], =7). (I11.4)

In other words, the discontinuity on /™ of any extremal function F(s) not
identical with the data function saturates its bound almost everywhere.

Proof. Assume Eq. (I11.4) to be wrong. Then 3d > 0 and a set £ < [ with positive
Lebesgue measure p(E) such that:

[A,(x)|£y—d aeon E (TTL.5)

Let n be the number of effective extrema of F(s). Consider the covering of I" by
the intervals of length o = u(E)/2n:

Ji=[sg+ s+ (1+ Do), 1=0,1,2,.... (IT1.6)
Since u(EnJ,;) <, there are at least 2n such intervals, J, , for which y(EnJ, ) > 0.
Pick any n of them with the proviso that there remains no pair ol adjacent ones,
and cxcluding J,. Denote by I, these closed, non-overlapping intervals. Using
WENI)>0, and the compactness of the [,’s, it is readily shown that in each [,
there is a point x, such that
WENx,—n,x,+1n])>0 V>0 (I11.7)
For an appropriate choice of index assignment:
5o <Xy <X, <. <X, (our construction implics strict <signs).  (ITL.8)
We also set:
( 1= Do+,
wl=uEnI}), (k=1,..., 1) (I11.9)
Xl(x) = characteristic function of En1}],
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and observe that 0 < u < 29.
Let us now define, for A >0 and any real set {ry,r,,...,r,} with r; =1:
- n ¢
Ax)= A () — Jen 3 & AE) (I11.10)
K1 1 oR(X)
(here: ¢ = + 1 as specified in Eq. (IIL1)). First of all, Eq. (IIL5) implies:
| All, <y as soon as A is small enough. (I11.11)
Next, using A(x) in place of A, (x) in Eq. (IL9) gives:
- re &, X(x)
M=y()———— ) — dx———. (ITL.12)
v / o)) k; MZI{; xX—y

Since for y < s,:

i Xy i
[ dx SEVNE (I11.13)
Xe+N—y Mep X—y X—H—Y

we can rewrite Eq. (ITI.12) as:

R(y)
o L(J’)

W) =P — Y=~ /18[ + 0(}7)} (IL.14)

where
T

Rs)= Y , (IT1.15)

k=1Xp—S

and O(y) is uniform in y over y. In a final step, choose {y,,y,,...,¥,-1} in y s0
thatu; ; <y; <wv;(see Eq. (I11.3)). According to Appendix A, the r,’s in Eq. (II1.15)
can be adjusted in such a way that R(s) has exactly (n — 1) simple zeros at s = y,;.
Moreover, since r; = 1:

(=1YR(y) >0 for y;,,<y<y;

. (ITL.16)
(j=0,1,...,m we set yo =51, Vys1=252)

For # small enough the function dy/(y) has, like R(y), exactly (n — 1) simple zeros
on 7. They are now located at j; = y; + O(x) with:

U <j;j<v; (j=12,...,n—1). (IIT.17)
Using the continuity of /(y) and dy(y) on y, one readily infers from Eqgs. (II1.1-3),
(IT1.14) and (IT1.16—17) that there arc positive v and p such that (see Fig. 1):
== <(=D"lep(y) Sy —v
for yelu;+y,3;1, (I11.18)
0= (=Y "eop(y) < Ap
—r-tvs(=)Y e sy
for yely;,u;l (IIL.19)
—ip = (=) " ed(y) <0
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Choosing 4 < v/p, we deduce:

— o <(=)" ey <y- for yelyii.y)l (j=1....n—1. (I11.20)

Hence | /()| < z_ on the whole interval y, and 7.LA] < 7. This, together with Eq.
(IT1.11), contradicts the fact that F,(s) is an extremal function. Therefore the
hypothesis (II1.5) cannot be true, and the proof is completed.

In fact, any function 4,(x) solving the problem (I1.10) must belong to a much
more restricted class than the one defined by Eq. (I11.4). To show this, let us
introduce a partition of I in two sets I, and I _ defined by:

Iy={xelA,(x)=+7. (I11.21)

Ignoring the trivial (but possible!) cases where u(I",.)=0 or u(I"_) =0, we need
the following

Lemma 2. Suppose that there are p intervals K, =[a;,b;]1 <" subjected to the
conditions:

{ bigawfl (i=12...p— l;bP may be inﬁnite), (111.22)

Jor &=+or—, wK,nI' w1)>0 Vi=1,...,p.
Then

a) p=h
By ifp=niée=—1

(again, n is the number of effective extrema of F(s) and ¢ is defined in Eq. (ITL1)).

Proof. As in the proof of Lemma 1, one proceeds “per absurdo” and uses a
“perturbation” argument based on Appendix A. Therefore, we shall content
ourselves with a very brief sketch. Assume first p>n + 1.

i) If €e =1, one selects the intervals K,...,K, and shows that by a suitable
decrease of |A (x)| on each set K; 1", _+1, [{(y)| can be decreased on the whole
interval y (Eq. (A.3) is used in this step).

i) If ée = — 1, the same procedure works with the intervals K,,..., K, , ;.

In both cases, we run into contradiction. Hence p < n.

When p = n, the argument i) is still valid and leads again to a contradiction. Hence
ge=—1.

Lemmas 1 and 2 allow us to deduce in a fairly simple way the general structure
of the function 4 (x).

Definition 2. A function defined on I will be called a p-step function if it is right
continuous, takes only the values + y and has (p — 1) jumps.

Theorem 2. Let y be such that y_(y)#0 and F,(s) an extremal function with n
effective extrema. Then its imaginary part f,(x)=1ImF (x +io) on I" has the form:

J,(x) = fo(x) + or(x)A,(x), (I11.23)

where A (x) is a m-step function. Moreover:
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m=<n, (I11.24)
i m=ned (s5) <0. (IT1.25)

Proof . Let ¢, (respectively ¢ ) be the smallest value of x = s, for which 4 (x) = + 1
(respectively —y) a.e. on [s,1, | (respectively [so,¢ 7). It is easily deduced from
Lemmas 1 and 2o) that cither t, >0,¢t =0, ort, =0, r_ > 0. We then define a
non-decreasing sequence {¢;} in I” by:

t;=1,>0(&= + ) we can set A (sg) =&y,
t; = smallest value of x = ¢;_, such that A, (x)=&(—) "'y
ae on [t ,t;1(i=23,..) (T11.26)

Applying again Lemmas | and 22), we find that:
>0 Yi=23,... (I11.27)

and that the sequence must stop at some index i =m — 1 with m < n (ie. t,, = ).
This just means that A (x) is a m-step function subjected to the condition (I11.24).
As for the result (I11.25), it immediately follows from Lemma 2p).

IV. Extensions

A. Unbounded Interval

As already mentioned in Sect. III, nothing prevents the number of effective
extrema of F (s) to become infinite when y = (— o0, s, |. More than that, for the
applications we have in mind [3,4], the data functions Fy(y), fo(x) and the error
functions o, (y), og(x) are such that this phenomenon is likely to occur when y is
large enough. In this case, very little can be said about the corresponding function
A (x). In particular, there is no guarantee that it is still a step function (with
possibly an infinite number of jumps). We were even unable to prove that |A (x)]
saturates its bound y a.e. on I (and actually we see no compelling reason for this
to be true in general).

Although we know that the infimum y_ in Eq. (IL.10) is still attained, we are
lacking of a practical procedure to construct it, since we cannot restrict at once
the class of A’s to step functions. Fortunately, a partial way out is provided by
the following fact: y  can be approached arbitrarily close from below by solving
as previously the extremum problem (I1.10) for bounded sub-intervals [s%,s,]
(which involves only step functions A) and letting s go to — co. This results from:

Theorem 3. Consider an arbitrary decreasing sequence {s“'} — — w0 and define:

D= inf #[A], (IV.1)
AelL™(I)
A L=y
where
WA= sup [P (Iv.2)

yey(® =[s(),5]
and W(y) is still given by Eq. (I1.9). Then {3V} is a non-decreasing sequence and
lim 79 =y _.

i—w
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Proof. For all AeL>(I'):
WIATS 7TV AT = 7. [AT=  sup [(y)] (Iv.3)

yey=(— 2,511
by set inclusion. This implies that the sequence {7} is non-decreasing and bounded
from above by y . Thus it has a limit 7**) < y_. One has to show that ) =y _.
Suppose that this is wrong:

<y (IV.4)

From Sect. [I.A, we know that for each i, ¥ is attained for some (step) function
AW, Using again the Banach—Alaoglu theorem, we can assert that a subsequence
{4} = (AW} exists, which converges to some A (with [A™)|, <) in the
weak-# topology of L™(I"). Define yy*(y) and y*“)(y) from A% and A™) as in
Eq. (I1.9). Then, given any yey:
lim Y7 (y) = () (IV.5)
by the weak-x convergence (and noticing that ye; for i, large enough). Now, for
(ir).
yeyn:

WO S A = 79 < ). (1V.6)
Using Eq. (IV.5), we deduce that for any yey:
WoWls 7. (IV.7)

Hence 7, [A™)] < 7 and, according to our assumption (IV.4):
1 [AS T <y, (Iv.8)
which is a contradiction.

B. The Subtracted Case
The extension of our analysis to subtracted amplitudes requires only minor changes
in definitions and proofs. The results remain essentially the same.

Consider the N-subtracted case (N = 1). This means that Egs. (I1.1-2) must be
replaced by:

{fo( x)/xN e LT, (IV.9)

or(x)/xY e LT,
whereas the equations defining the class .7 are now:

N S A P [
F(s)= ’;O Ays" 4+ - i dx o
S~ fi’@) eL(I)

0 r(x)

(IV.10)

Alx) =

(we have fixed the subtraction point at s=0 for pure notational convenience).
Equation (IL.9) for y(y) = [F(y) — Fy(y)]/o,.(y) becomes:

1 N—1
IL(J,'):—(-[ZA,,\"Jrn\jUd R(X)})A(\')—Do(yq (IV.11)
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with

N o X
Do(}’)‘_‘Fo(J’)’“LJ.dX'NfOL, (1V.12)
T X (x—y)
so that the functional y, [F] = [[}/(y)ll., now appears as a functional y, [4, A7 over
L*(I') x R¥ (with A =(A4,,A,,...,Ay_,)eR"). The extremum problem (I1.10) is
changed into:

7-(= inf yx.[A4, 4] (IV.13)

4l <z

AerM
We are assuming consistency of the data, that is: y_(x) < oo for y larger than some
%o = 0. Again, given x> y,, the infimum (IV.13) is attained for some function
A, (y)eL*(I') and some subtraction constants ZX. This is established by modifying
the proof of Proposition 1 as follows. Since y > y,, there is a F©®eZ such
that | ©(y)]|, =K < co. Then y_(y) <K and one is allowed to include the
supplementary constraint [|(y) |, < K in the right-hand side of Eq. (IV.13). From
Eq. (IV.11), this constraint implies:

Sy Y % el
n=0 "

éKUL()’)‘F—n*deX 5

+|Do(y)| Vyeyp. (IV.14)
xY(x —y)

Hence, by assigning to y N arbitrary (but distinct) values z;e7:

N-1
Y Azl <C, i=1,...,N, (IV.15)
n=0

where the C,’s depend only on y. Eq. (IV.15) reads as well:
|4 Z)<C, i=1,...,N, (IV.16)

where the N vectors z;=(1,z;,...,zY ') are linearly independent. From this, one

readily deduces that 4 is contained in some ball of finite radius R,. Therefore, Eq.
(IV.13) can be rewritten as:

- (= inf y.[A4, 4]. (Iv.17)
iEh,
The proof then proceeds exactly as in Sect. IL.A, by noticing that the set
{AeL*() || All, Sy} % (AeRV||R| < R,} is compact in the product topology
of L*(I") x RY (the topology of L™(I") being still taken in the weak-* sense).

The existence of saturating function 4, (x) and subtraction constants A . being
now established, it is easily checked that Theorem 1 and Theorem 2 (up to Eq.
(I11.24)) keep unchanged. As for Theorem 3, it still holds with obvious alterations
in the definition (IV.1-2) of #1.

Of course, our contention that allowing for subtractions is rather trivial at the
purely mathematical level does not mean that it is harmless in numerical
applications. The occurrence of the extra parameters 4; in Egs. (IV.11-13) may
lead to noticeable difficulties in actual minimization procedures.
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V. Conclusions

We have defined the compatibility of “space-like and time-like data” by introducing
L* norms. The answer to the question of compatibility then amounts to finding
the infimum of some functional, which defines a curve in R? (the lower boundary
02 _ of the allowed region & for the two error parameters yg, ;). We have shown
that the infimum was attained indeed, and we have derived several structural
properties of the extremal functions.

The infimum problem then is reduced to a minimization over a finite number of
variables (the abscissas of the jumps of the step function A, defined in Theorem 2).
In the generic case, only a small number of jumps are involved in the low y; region
of the boundary 0% _, which is then easily computed.

Finally, let us notice that, although our proofs rely heavily on the properties
of rational functions, we suspect that our main results hold not only for the Cauchy
kernel, but also for more general ones.

Appendix A
Let be given two set of distinct, real numbers {y,;}/Z{ and {x,};-, ordered as:
Vo <o <Py <P <X <Xy < oo <X, (A.1)

We assert that there are n (uniquely defined) numbers r, =1, ¥, #0 (k=2,...,n)
such that the function

n rk
R(s) = A2
©=X (A2)
has exactly (n — 1) simple zeros, located at s=y, (i=1,...,n— 1). Moreover:
(=D >0 (k=1,...,n). (A.3)
Indeed, given the y;’s, the r,’s for 2 < k < n are obtained by solving the linear system:
n 1 1
— = — , i=1,...,n—1, (A4)
k=2 X = Vi X1~ Vi
The determinant D of this system is:
D=(_1)("_1)(n_2)/2 n (xk-xl)(yi_yj) / (k= ») (A.5)
2Rkl Fagken,

(an easy consequence of the fact that D must vanish for x, = x; and for y, = y;).
As D #0, the existence and uniqueness of the r,’s is insured. Furthermore

ra=— (g=2,...,n), (A.6)

where D, is obtained from D (up to a sign) by the substitution x,—x, in the

right-hand side of Eq. (A.5). Again D, #0, so that r, # 0.
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Since R(s) = N(s) / [T (xx—s), where N(s) is a polynomial of degree (n— 1),
| k=1

the (n—1) y/s necessarily exhaust the set of zeros of R(s). This statement also
implies that the signs of the r,’s must alternate. Hence Eq. (A.3).
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