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P-Adic Feynman and String Amplitudes
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Abstract. We derive an explicit representation for p-adic Feynman and
Koba—Nielsen amplitudes and we bricfly outline the connection between the
scalar models of p-adic quantum field theory and Dyson’s hierarchical models.

1. Introduction

As we have shown previously (see [ 1], submitted to “Theorctical and Mathematical
Physics” in May 1987), the scalar models of the field theory over the p-adic field
Q, are the natural continuous analogs of Dyson’s hierarchical models (see [2—-5]).
More precisely, the discretization of the field theory over Q, on the hierarchical
lattice of p-adic numbers with zero integer part is a model of Dyson’s type. The
traditional methods of quantum field theory such as Feynman diagrams, renormal-
ization theory and Wilson’s renormalization group have analogs in the p-adic case.
The main results of [1] are briefly outlined in Sect. 2.

On the other hand, there has been recently some interest on the possibility of
a p-adic formulation of string theory (see [5-12]).

All this explains our interest in the Feynman amplitudes over the p-adic field.
The remarkable feature of p-adic models is the exact representation of Feynman
and string scattering amplitudes as a sum of elementary functions. Namely, let us
consider a general Feynman amplitude over @, in coordinate representation,

Flx,veVy) = I [ x, = x4 1T dx,, (1.1)

0,0’ €VextUVint veVint
where the integral taken over Q). p is a fixed prime number, Qp is a p-adic
field, ||-1|, is a p-adic norm (further on, the sign p will be omltted) i Vi) 18 2
set of external (internal) vertices, a(v, v")eC for each pair ve VU Vip, V'E Ve U Ving
(we identify a pair (v, ') with (¢, v)), dx is a Haar measure on Q,, normalized such
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that
[ dx=1. (1.2)

Ixl =1

Every given vector of external variables x = (x,;veV,,)eQ) = generates on V,,
a hierarchy A,. We recall (see, for example [4, 12]) that a hierarchy A4 on a finite
set V is a family of subsets of V, such that VeAd, {v}eA for every veV, and for
each pair V'eA', V'eAeither V' nV'=Zor V' < V", or V' < V'. For every V'e A
we denote by (V') the minimal set in A, which contains ¥, but does not coincide
with ¥’ (we assume V' # V). In the following we shall consider only hierarchies
such as

L<|K(V)[=p, V'ed, (1.3)
where
K(V)y={V"eAlx(V")=V"}, (1.4)
A ={V'eAd|V'|>1}. (1.5)
In our case, the hierarchy 4, on V,,, is defined as
A, = {Vc Vegmax || x, —x, | < min | x, — x| } (1.6)
lf ’ee‘l// v'e ‘U/i:i\ 14

Note, that for every A on V,,, there exists xeQ)*' such that A, = 4.
Let ’

F(x), ifA,=4
F  (x)= 1.
alx) {0, otherwise (.7
Then
F(x) = ;FA(X)7 (1.8)
where the sum goes over all hierarchies on V,,,.
Let A, = A. The main result of Sect. 3 is the following:
Fux)= Y [] C(V,max|x,—x, """, (1.9)
I(A)VeA’ veV

v'eV

where the sum taken over all partitions of V,,,, indexed by the elements of A’

I(A)={I(V),Ved), IV)nI(VY=g, if V' £V, ( U I(V’)>= Vi

(1.10)
MV D) = a(V(I)) — » ZK(V) a(V'()) + [1(V)], (L.11)
V(I)=< U I(V')>u v, (1.12)

Cv.n=f T[] lye—puel ] ( [ I]yrotVfIi“‘”’V'“”)dy- (1.13)

v,v'el(V) vel(V) \V'eK(V)
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Integral (1.13) taken over QI {a,.,V'eK(V)} is an arbitrary set of p-adic
numbers, such that |[o,. —ay. || =1, if V' # V" (coefficient C(V, I) does not depend
on the choice of o = {uay, V'eK(V)}. Here we use the notations

a(W, W’y = Z a,v), W, W' <V, L Vi (1.14)
veW,v' eW’
a(W) = a(W, W). (1.15)

We see that the integral representation for C(V, ) is a generalization of the integral
representation of string scattering amplitude in the Koba—Nielsen form.
Let

j n “yv Yo Ha(vv)n H ”yu—a Ha(vl)dyv (116)

v, eV veV i=0

where 0 <k <p, a={0,i=0,...,k} is an arbitrary set of p-adic numbers, such
that |lo; — ;|| =1, if i#j, Vis a finite set, a(v,v")eC for each pair veV, v'eV (we
identify (v,v") with (v/,v)). In Sect. 4 we prove that the calculation of this integral
can be reduced to that of the following one:

Fr= [ I Ive—yel“ T dy, (1.17)

EREI Y eV

0 AT
veV\{vg}

veVi[vg}

where y,, = 0. We shall prove that
, 1 (p— 1!
F =p i : 1.18
Jlay)=p ;Vg/p’””'”'bl (0 — KV ( )

the sum taken over all hierarchies 4 on V.

2. P-Adic Scalar Models and Dyson’s Hierarchical Models

Let a generalized random field P(¢) on the Q, be given, i.e. a system of probability
distributions P{ ((p, f1)s-. (@, f,)} with the usual conditions of accordance. Here
fi=/f{x),i=1,...,mare arbitrary test functions in the space S(Q,). S(Q,) is a space
of locally piece-wise finite complex-valued functions on Q, (see [15]).

We define the scaling operator

RGP(@) = P(| A" ~“?g,), 2.1
where a is a real number, 1 £a <2, ieQ,,
(@1, /) = (@(2x), f(x)),
and P(||4]]' "@?¢,) is a generalized random ficld with probability distributions
P2 g5 £ (AP0, £}
A generalized random field is scaling invariant if
R; P(¢) = P(o) 22

for all 1eQ,. A generalized random field is called translation invariant if
P(p(x)) = P(@(x + a)) for any aeQ,,.
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It is easy to see that a generalized gaussian random field with zero mean
and binary correlation function

{lxy), @lx;)) = const | xy — x5 [*72 (2.3)
is a scaling and translation invariant random field.
By 7, we denote the set of all p-adic numbers with zero integer part. If

oL

x=) ap, 0<a,<p-—1 (2.4)

i=n

is a p-adic number, then {x} denotes its {raction part

I

1

{xjp=2 ap'. (2.5)
Y,={xeQ,x={x}}. (2.6)

%, has a natural hierarchical structure, which consists from all scts of the type
Vi=i{xez,|Ip"x—i| <1}, i€eZ, n=012.... 2.7

The discretization of a generalized random field ¢ on Z,, is defined as a random
field ¢ on 7, such that

C=15=(0. 7)) j€D,}, (2.8)

where y;(x) = x(x —j), x(x) is the characteristic function of the ball Z,=
{xeQ,: [ x| = 1}. The following operations on a random field ¢ ={¢,jeZ,} are
defined by the formulae

-Gl Y& ldlz L (2.9)

il lltmef/p
i¢=C 0 €9, (2.10)
If a generalized random field ¢ is a translation and scaling invariant, then its
discretization is invariant relative to actions t;,ieZ, and r}, | A > 1. The gaussian
scaling and translation invariant random field on Q, also may be defined by the
hamiltonian

Ho=3{llx =yl “p(x)(y)dxdy. (2.11)

One can show that the discretization of the random field with the hamiltonian
(2.11) is a gaussian random field on %, with the hamiltonian

~ 1 .
H0:2 Y. di)EC), .
where !
li—jl=  ifisj (2.13)
dij=qp“=p'"" otherwise
L—pt=e’

Note that the hamiltonian H is the hamiltonian of the gaussian Dyson hierarchical
model.
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Further we shall have to deal with the hamiltonians in momentum representa-
tion. A hamiltonian in the ball 2= {keQ,:|/k| <R} is an expression of the form

n k
H(o)= ), f By koltky + -+ k )]—[ a(k;)dk;. (2.14)
m=1 Qm i=0
A formal hamiltonian is a formal series in ¢
H=Hy,+e¢H, +eHy+..., (2.15)

whose coefficients are finite-particle hamiltonians of the type (2.14). In what follows
the coefficient H, will be fixed:

HO=%£\|kli“‘l|a(k)]2¢lk. (2.16)

Wilson’s renormalization transformation, as in a real case, is defined by the formula
R, H=1In{exp(REH (0 + 61)) ) udsy) (2.17)

where (R$H)(0) = H(|| 4] "“?c¢(4™ ")) is a hamiltonian of the random field in the

ball 202, o(k)is a conﬁguratlon in the ball 1, a(k) = o(k) + 0,(k), oo(k) = 1 o(k)a(k),
o1(k) = (7, olk) — x o(k))o(k), 7 o(k) is a characteristic function of the ball £, and the
average taken with respect to the gaussian measure u(do,) with zero mean and
binary correlation function

Co,(Kay(K) ) = ok + k') (x; alk) = 7o) 1k |1~ (2.18)

The branch of gaussian fixed points of Wilson’s renormalization group is
determined by the hamiltonian H, = H,(a). An investigation of the spectrum of
the differential of the renormalization group on this branch shows that a, =3 is
the bifurcation point. One can try to construct a new branch of non-gaussian fixed
points as power series in the deviation of the parameter a from the bifurcation
value a,. As in the real case, (see [16]), we seek a solution in the class of projection
hamiltonians, in the form

H = H(o,&) = In {exp {u(e)0*(0¢ + 0 1)} D uger)s (2.19)

where

:]A

= {0k, + - ko) [] ok, (2.20)

\ |

1

g, 1s a configuration in the ball €2, and the average taken with respect to the
gaussian measure with binary correlation function

(o1 (k)a(k') )= ok + k)1 =y ok)) [ k[T =06k + K)(1 — 7 otk) 1k | =27 (2.21)

The only quantity which is not defined here is u(e), which we assume to be a formal
power series in &

we)= Y upl (222)

In the computation of a projection hamiltonian divergences appear. Namely, in
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¢* theory with the propagator
(L= xok) k]~ V27 (2.23)

the diagrams with two and four external lines have poles when ¢ — 0. The theory
of analytic renormalization analogous to the real case exists in the p-adic case.
One can show that

R% ;AR In{exp {u(©)9* (0o + 01)} D uaer)
d
=exp (Tﬂ(”)éﬂ>A‘R'ln (exp{u(e)p*(oy+ a,)} D utdar) (2.24)

where A.R. denotes the analytic renormalization with minimal subtractions,
t=2In{4},

By =cut Y el (2.25)
n=2

and the coefficients ¢, for n =2 do not depend on ¢.
The renormalization projection hamiltonian A.R.In{exp(u(e)Q4) ) 4o, 18 invari-
ant under the action of the renormalization group, if

Bu) =0. (2.26)

This equation has two solutions in the formal power in ¢ The solution u=0
corresponds to a gaussian fixed point. A nontrivial non-gaussian solution is
obtained from the solution of

e+ Y, cu' 1 =0. (2.27)
n=2

It is easy to check that ¢, #0 and therefore Eq. (2.27) is indeed solvable. This
solution is a p-adic field-theoretical description of the non-trivial solution in
Dyson’s hierarchical model, which was investigated in [2-5].

3. Feynman Amplitudes in Coordinate Representation
First of all we shall prove that A4,, defined by (1.6) with the function

m(V) = max | x, — X, || (3.1
veV
v'eV

on it, is an indexed hierarchy. We recall that an indexed hierarchy on V is a pair
(4, m), where 4 denotes a given hierarchy on V and m is a positive function on 4,
satisfying the following conditions:

1) m(V')=0 if and only if [V'|=1,
2) if V< V”, then m(V') <m(V").

In addition to these conditions we shall consider the functions m(V) for which

m(V)=p"", n(V)eZ (3.2)
for every VeA.
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It suffices to show that if V'eA,, V"eA, and V'n V" # &, then V' < V" or
V"< V' In fact, let xeV'n V", yeV\V", ze V'\V'. From the definition of V’
Ix —yll<|ly—z]| follows and hence, from the ultrametricity of the p-adic norm
ly =zl =1 x—z|, but this contradicts the definition of V".

It 1s easy to see that for every indexed hierarchy (4,m) on V,,, there exists
X =(x,,0eV,,) such that (A,,m,)=(A4A,m). To every indexed hierarchy (4,m)
corresponds a family of sets {2(V,m), Ve A}, where

DWV,m)={yeQ, m(V)< |y —x,|l <m(x(V)),VveV}. (3.3)

We put m(t(Vey,)) = oo.
Let ¢: 4 —V,,, be any function such that ¢(V)eV for every VeA.

Lemma 1. 1) If Ved, V'ed, VeV, V£V and ye D (V,m), ye2(V', m). then

[V =yl=1y—=xmll
DI VAV =g, VeA, V'ed and V" is a minimal set in A, containing VOV,
yea(V,m), ye2(V',m), then
Iy =yl =mv").
3) {2(V,m); Ve A} is a partition of Q.

Proof. Let yeQ(V,m), yeD(V',m), V<V, V#V.
Then

[y = xpan | <m(V)) =m(V') = [V — x0),
and therefore |y —y'[| =V = x, 0 |l. W VAV =&, yeD(V,m), yeZ(V’', m), then
Iy — Xpv) [ <mz(V)sm(V")=| Xov) — X I,
1Y = Xg | <m(x(V')) < m(V"),
and hence
[V = Xpall = Iy =yl =m(V").
Let V#V and ye2(V.m)n (V' ,m). f V< V', V # V', then
mV)< ||y — x,mll < m((V)) <y — Xow s
but this contradicts the first part of the lemma. If VN V" = ¢, then
[ Xovy) — Xo) | <max(]ly— Xow) iy — Xo) ) <m(V").

At last
U 2v,m)=0Q,.

Ved
Lemma 1 is proved.
Everywhere below we have used the next notations: a, = (a(v, v'))%.5) is a matrix,
by = (b(v)),ey is a vector,
aV,vy= % av), (3.4)

veV,v'eV’
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aVy=a(V,V), ai = (a(v, V'), is a vector, a(v,v')eC, b'(v)eC for every veV, v'eV.
Let r,, 7, be real numbers, oo =r, >r; = 0. Denote by

f(i'1, rysQy, bV) = j n I Vo — Vo “a(v,v’) H I yvﬂb(”)dyu. (35)
S ol <rpawev v,v'el veV
Lemma 2.
frursayby)= % frnoiay,by ) fOrsan,by, +ay)  (36)
ViulV,=V

where the sum goes over all partitions (V,V,) of V.

Proof. We prove this lemma by induction with respect to the number of elements
of V. For | V| =1 this formula is checked directly:

[ yltdy=" [ dyltdy+ | lyltdy+ [ lyl*dy

rpElyi<ry rpSlyi<ry Lyli<ry ry <y
= | lyltdy+ | lyl*dy
yi<ry ri=lyl

(we used Qj I yllbdy = 0).

Note tﬁat
S, rpsay,by)=f(0,ry;a,,by)— Z .f(09r1;anbV])f.(rlr"Z;GVZSbVZ—‘Laz;)’
VicVV, + &
(3.7)
Applying the assumption of induction to f(ry,r,;ay,. by, +ay'), we have
Srisrasap,by) = f(0,ry;ay,by) — 2 (f(oaﬁ;av,»bvl)
VsV Vi #&
© Y flrooiay, by, +ap) (0,15 ay . by + ayt 4 ap?)), (3.8)

VoS Vv,

where V5 = V\(V, U V,). By denoting V, = V, UV, and changing the order of the
summation, we get

Slrisrysay,by)=f(0,r5;ay,by) — Z {( Z fO,r;ay,,,by))

VeV V2@ U\ V eV vy 20
Sy, 005ay,,by, +ab) f(0,r5 ay by, + al? )} (3.9)
But
Y SO, r;ay, by ) [, wiay, by, +apt) = (0,005a,,,b,,) =0, (3.10)
VieVa
and hence
Z f(oarl;anbVl).f(rls C’C;an sz_'_a}jé):_f(rlax;aV_w bV4)9 (311)
ViEVaV A8

where the summation is over V,; # ¢, V; < V,. Therefore,
f("la Fysdy,by) :f(’"u rysay,by) + Z .f("ly 0O dy,, bm)f(O, Fo,dys, bm + a¥§)>

VoS VVy# &
(3.12)
Vy=V\V,. Lemma 2 is proved.
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Theorem 1. Let A, = A. Then

F=Y, [T C0nmax|x;— x, |, (3.13)
I(A)Ved velV
v'elV
where
cv.np={ 1] lyo=yo 0" 1] < [1 Iy —ay,||“‘“"”“”dyv>, (3.14)
v, vel(V) vel(V) \V'eK(V)
{oy, V'€eK(V)} is an arbitrary set of p-adic numbers, such that ||o,. — oy || =1 if

V'# V" (for example, o= {0y, V'eK(V)} ={0,1,...,|K(V)| = 1}). C(V,I) do not
depend on the choice of a. For the other notations see Sect. 1.

Proof. Let A, = A4 and ¢: 4 -V, is any function such that ¢(V)eV,VeA. Let
T(A)={T(V),VeA} is a partition of V;,, indexed by elements of 4. Denote by

g(I/’ T; x) = j ,H “ Vo — ‘Vv’ HIZ(U,U') n “ Yo — ti(V) “ll(U,V(T))dym (3 1 5)

yuevﬁ/f/n;x) v,v'eT(V) veT(V)
ve

where V(T):< U T(V’))UV.

VeV
From Lemma 1 it is easy to derive that
Fx)= 3% [ gV, Txm (vy"", (3.16)
TA)Ved

where the sum goes over all partitions of V;,,, indexed by elements of A4,

lﬂl’

sV, Ty = Y aV(T)YoT(V), V(T)uT(V")). (3.17)

VVreK(V)
M

According to Lemma 2

gVTx)= 5 V), 05,00 @) SO.mEV g afhTT),
T(V)yo T2V)=TF)

(3.18)
the sum goes over all partitions (T,(V), T,(V)) of T(V).
As f(0, 2c;ay,by) =0 for any a,, b,, we may write
Fy=3 ] ( 2 Jm(V), 0; ar, ), a5
HA Vel \((J Ty DUT,(V)=1(¥)
V'eK(V)
H FO,m(V); A,y aIV;((Il)))>mx( V)S(V’I)z (3.19)
V'eK(V)

where the sum goes over all partitions of V,,,,, indexed by elements of 4’, the internal
sum taken over all partitions of

I(V):( U TZ(V’)>UT1(V), V() = <U1(V)

V'eK(V) Viev

sWoh= Y a(V(,v'(v)). (3.20)

V' . V"eK(V)
Vigve
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As
(V,y(y) {,VEQp5 ly— Xow < m(V)})u {yer3 lly— Xow) | = m(V)} = Qp’ (3.21)

we get

(j H(V) “ yv - yu’ Ha(v,v') n ( l_[ || yu - x(p(V’) ||a(v,V(I))>dyv>. (322)

veI(V) \ V'eK(V)

Performing a change of variables,

Yo=Yy " vel(V), (3.23)
ay = X,unp ", V'EK(V), (3.24)
where || p"|| = m(V), we obtain
Fx)= Y, [ CO4Lam (V)70 (3.25)
I(A)VeA’
CV,Lo)y={ T[] lys—=yue " ]] < I1 Ilyv—~0<Vf||“‘”‘V'(“’>dy, (3.26)
v,v'el(V) vel(V) \V'eK(V)
MV, =a(V(ID)— . aV'd)+ V). (3.27)
V'eK(V)

Note that [|a,. —ay. || =1 for each pair V', V"eK(V) V' # V". In the next section
we shall see that C(V, I, «) does not depend on the choice of .
Note also that C(V,I) is a Feynman amplitude of the contracted graph

GV|{G,,,,V'eK(V)}-

Here Gy, is a graph with the set of vertices V(I). To each external vertice {V'} of
this contracted graph we must assign an external variable oy
MV, 1) also has a simple geometrical description.

4. The Calculation of Coefficients C(V, ) and String Amplitudes
in the Koba—Nielsen Form

Let us consider an integral
k
Fo=[ 11 Iye—yol® 1 ( [Ty —o Il““”)dyu, (4.1)
v,v'eV veV \i=0

where 1 Sk<p—1, |o;—a;| =1 if i#; This integral is a generalization of
Koba—Nielsen amplitude (some examples of this amplitude were calculated in
[10, 11]).

We introduce the next partition of Q,:

P, ={yeQ, ly—ull <1}, i=0,1,...,k (4.2)
D;={yeQ,: ly—aoll=1,(y —ap)mod p=j}, jeJ. (4.3)
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where J={0,1,...,p—1}]\{(; —a,) modp,i=0,...,k}. As |J|=p—k—1, it is
convenient to renumerate the farmly 9;,jed by i= k +1,...,p— 1. Finally,

(4.4)

D,={yeQ, lly — ool >1}.
As above, it is easy to show that {Z,,i=0,...,p} is a partition of Q,. Therefore

v 1O ] e =2l dy,

Flz Z Iz_[ HV”)’L“ )’ e

5. vv'e
Ul oVi=V e]j '

n J. H Hyv—-yv “a(vv)ndyv

j= k+1)e5,vv j veV ;
EV

T eyl 1] = |EobOaT ) gy - (4.5)
¥ 5’2 ey
UEI
But for i =0,... k,
I H s =y f4 ﬂ Iy = o, @ dy,
v,)eﬂvve i veV;
vel;
= HV‘ Yo =y 47 I‘l [y, — o (7 dy,, (4.6)
EV‘L‘UE‘I/T-I
fori=k+1,...,p—1
FOoTr ve=woll@dy, = [ TT Iye— v 140 dy,, 4.7)
ypez; LU'EVS Ipli<l v,v'eV;
veV; veV;
and
| H o=yl 1 [y — ot || H=0r H ) gy,
,59 v,v'eV veVp
zEVp
= [ > vyl [T, iz g, (4.8)

yw<lopv'eVy,
veVp

In the last reduction we used the change of variables Vo= (Uy, — o), veV,

Therefore, we may rewrite

F, = Z Hg(av,b) 4.9)
Uz OV V
where
dlay,by= | T1 Nve= vl ] 1y, "y, (4.10)
! :
b{v)=0, veV, i=k+1,....p—1, 4.11)
Vv (4.12)

P

k
(Z v) + a(v, V)+2)> vE
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So, we must calculate the integral of the type

Folap)= | I lpe—pe 1 TT dye, (4.13)
yp <1 DVEV veV\{ro}
veV {vo}
where v, is a fixed element of V, y,, =0, a(v,v")eC for every pair (v, v') (we identify
each pair (v,0') with (¢/,v)), a(v,v) =0 for every velV (in our case V\{v,} =V,
av,ve)=byv), i=0,1,...,p).

Lemma 3. Let (A,m) be an indexed hierarchy on V, and

L if (A,.m,) = (4,m)
0, otherwise ’

XA,m(yu;DGV\{UO}): { (414)

where y = {y.veV}, y, =0. Then

(V) (p 1))
Lam\Ves VE VA v ! d e <A¥‘—> (n - o (41 5)
j[A. (} o )(»el'I—(["o'» y VEL’ p (p - |K(V)|)?

Proof of Lemma 3. Let T be a tree with the set of vertices V' and the set of lines
L={l=(V),o(V"), (V) # oV V'ed, V'eK(V)}. Here ¢p:A—V is any
function such that (V" )eV’ for every V'eA, o(V)=1v,. To each line [ = (o(V"),
o(V")) we assign a variable §,= Yoy = Yo Then for every y, =S8, + 8, +
-+ S, , where {l,..., j} is a path joining v with v,. It is clear that jacobian of
thls change of variables is equal to 1. And moreover, (4,,m,) = (4, m) if and only if

D 1Sl = m(V') = p"¥" for every [ = (o(V'), p(V"), V'ed', V'eK(V").
2) S, p"" " mod p ;«é S,p"" mod p for cach pair [, = (p(V'), (V})),

L =(pV), p(V,)), V'eA, VieK(V'), V,eK(V'), V| #V,.
Using

[ ds= m). (4.16)
p

s =m(V’)
sp"(V )modp =r

r=1,2,...,p— 1, we obtain the formula (4.15).
Theorem 2. Let a(V')+|V'|— 1> 0 for every V' <V, |V'| > 1. Then

1 (1!

Pty =0 3 L e kv @1
the sum goes over all hierarchies A on V.
Proof.
gay=" 3 T I D=yl amlvsveV\{vo}) [T dy, (4.18)

(Amym(V)y<1 V.U eV velV\{rg)
where the sum taken over all indexed hierarchies on V, such that m(V) < 1. Note
that this sum is equal to the double sum

Z Z j n “ Yo = Vv Hu(v‘v,)XA‘m(yv; ve V\{UO}) n dyv’ (419)

A jp(vy<o  vv'eV [ ARENY
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where the external sum goes over dl] hierdrchies on V and the internal sum goes

over all set of integer numbers {n(V'), V'e A'}, n(VYe Z,m(V') = p"¥, n(V") < n(z(V"))
for every V'e A’ and n(V) < 0.
Let
aVy=aV)y— Y a(V"). VeA. (4.20)
V'eK(V'")

Obviously, that
ﬂ H yv - yr’ Ha(lf’v,)ZA,m(yn; ve V\{UO}) = ﬂ 'n(V/)a,(V/)XA,m(yv; ve V\{UO} )

v,v'elV Vied'

Note that if >0, then

m[)'
> p —»—; 4.21)
n<m
Using (4.21) and Lemma 3, we obtain
‘ - 1!
)n(l (@' (V') + | K(V \+I|p' IK(V) (p
S ! - KO
o K(V)I+1, (p—1! I 407
2L (p— KO/ 1 (422
Here we used that
BVy= % (d(V)+ KV —1)>0. (4.23)
VeV Vied
As
Yo d(Vy=aV), 4.24)
VeVt
Y. (K =1 =11, (4.25)
Ve ViVed
we have
PV Y=aV)+|V'|—-1>0, V'V (4.26)
by the assumption of the theorem. Finally we get
1 (p— 1! .
=p " : : o 427
= e Sk a0

The theorem is proved.

This last formula defines also an analytic continuation of F,(ay,) from the
domian (4.29) to the whole complex plane as a meromorphic function of a(v, v'),
v, eV.
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