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Abstract We derive an explicit representation for p-adic Feynman and
Koba-Nielsen amplitudes and we briefly outline the connection between the
scalar models of p»adic quantum field theory and Dyson's hierarchical models.

lo Introduction

As we have shown previously (see [1], submitted to "Theoretical and Mathematical
Physics" in May 1987), the scalar models of the field theory over the p-adic field
Qp are the natural continuous analogs of Dyson's hierarchical models (see [2-5]).
More precisely, the discretization of the field theory over Qp on the hierarchical
lattice of p-adic numbers with zero integer part is a model of Dyson's type. The
traditional methods of quantum field theory such as Feynman diagrams, renormal-
ization theory and Wilson's renormalization group have analogs in the p-adic case.
The main results of [1] are briefly outlined in Sect. 2.

On the other hand, there has been recently some interest on the possibility of
a p-adic formulation of string theory (see [5-12]).

All this explains our interest in the Feynman amplitudes over the p-adic field.
The remarkable feature of p-adic models is the exact representation of Feynman
and string scattering amplitudes as a sum of elementary functions. Namely, let us
consider a general Feynman amplitude over Qp in coordinate representation,

F(xv;veVcxι) = $ Π IK---V l!f ̂  Π dxv, (1.1)

where the integral taken over Q{

p

]m[p is a fixed prime number, Qp is a p-adic
field, || -1|^ is a p-adic norm (further on, the sign p will be omitted), F e x t (Fint) is a
set of external (internal) vertices, a(v,v')eC for each pair veVextu F i n ί, t /eF e x t u Vint

(we identify a pair (υ, υ') with (ι/, υ)\ dx is a Haar measure on Qp, normalized such
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that

J dx=l. (1.2)

Every given vector of external variables x = {xv;veVext)eQlpen{ generates on 7e x t

a hierarchy Ax. We recall (see, for example [4,12]) that a hierarchy i o n a finite
set 7 is a family of subsets of 7, such that VeA, {υ}eA for every veV, and for
each pair VeA\ VeA either V'nV = 0 or V c 7", or V" c V. For every VeA
we denote by τ(V) the minimal set in A, which contains V\ but does not coincide
with V (we assume V φ 7). In the following we shall consider only hierarchies
such as

\<\K(V)\^p, VeA', (1.3)

where

K{V) = {V"eA\τ{V) = V'}, (1.4)

A' = {VeA\\ V'\ > 1}. (1.5)

In our case, the hierarchy Ax on 7e x t is defined as

*v - χv II < min || xv - xυ. \\ >. (1.6)

Note, that for every A on 7e x t there exists xeβ^ e x t l such that Ax = 4̂.
Let

î  (x) = J ^ ' 2 x ~ (1.7)
[0, otherwise'

Then

F{X) = YJFA{X\ (1.8)

where the sum goes over all hierarchies on 7ext.
Let y4x = ̂ 4. The main result of Sect. 3 is the following:

FΛ(X)= Σ Π C(V,I)m2ix\\xΌ-xAλ(yΛ (1.9)

where the sum taken over all partitions of F i n t, indexed by the elements of A':

= {I{V)9VeAf}9 I(V')nI(V") = 0, if V ΦV% ( [j 1{V') )= Vint9

\VeA' J

(1.10)

X α(F(/)) + |/(F)|, (1.11)
V'eKiV)

= ί IJ / ( F Π u K (1.12)

^ = ί Π n^-^' ir^ Π ( Π ιι^-^ιr(y'κ'(



p-Adic Feynman and String Amplitudes 37

Integral (1.13) taken over Q]I

P

[V)[ {αΓ5 K'eK(K)} is an arbitrary set of p-adic
numbers, such that \\uv, - av>, || = 1, if V φ V" (coefficient C(VJ) does not depend
on the choice of α = {αF, V'eK{V)}. Here we use the notations

a(W9W')= Σ Φ>»')> W9W'czVcxiuVint9 (1.14)
veW,v'eW

a{W) = a(W,W). (1.15)

We see that the integral representation for C(VJ) is a generalization of the integral
representation of string scattering amplitude in the Koba-Nielsen form.

Let

*W Π ii^-Λ'ir^ππn^-αiir^0^, (i.iβ)
v,v'eV veVi = O

where 0 ̂  k < p, α = {αί9 i = 0,..., k) is an arbitrary set of p-adic numbers, such
that ||α t — otj || = 1, if i #7, F is a finite set, α(ι;,y')eC for each pair veV, v'eV (we
identify (1;, υ') with (y7,^)). In Sect. 4 we prove that the calculation of this integral
can be reduced to that of the following one:

F2= ί Π \\y»-yAa(υ υΊ Π dyv, (1.17)
\yv\<\ v,v'eV veV\{v0}

υeV\{v0}

where yVo = 0. We shall prove that

the sum taken over all hierarchies A on V.

2. P-Adic Scalar Models and Dyson's Hierarchical Models

Let a generalized random field P(φ) on the Qp be given, i.e. a system of probability
distributions P{(φ, / J , . . . ,(φ, /m)} with the usual conditions of accordance. Here
f. =fi(χ)i i= 1,... ? m are arbitrary test functions in the space S(QP). S(QP) is a space
of locally piece-wise finite complex-valued functions on Qp (see [15]).

We define the scaling operator

P(n\\ι-iam<Pά (2-1)

where a is a real number, 1 ̂  a ̂  2,

and P( II /I | |1 ~(α/2)ΦA) ̂ s a generalized random field with probability distributions

A generalized random field is scaling invariant if

Ra

λP(φ) = P(φ) (2.2)

for all λeQp. A generalized random field is called translation invariant if
P(φ(x)) = P(φ{x + a)) for any aeQp.
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It is easy to see that a generalized gaussian random field with zero mean
and binary correlation function

<φ(Xι)9 φ ( x 2 ) ) = c o n s t || x x - x 2 \\a~2 (2.3)

is a scaling and translation invariant random field.
By Θp we denote the set of all /?-adic numbers with zero integer part. If

x=f>(p', 0£at<p-l (2.4)
i = n

is a p-adic number, then {x} denotes its fraction part

{x} = Σ aiP

ι, (2.5)
i-n

~/Jp — jΛt( l/p, Λ — \x] | . V̂  °;

^ p has a natural hierarchical structure, which consists from all sets of the type

The discretization of a generalized random field φ on $)p is defined as a random
field ξ on Θp such that

where χ7.(χ) = χ(χ—j), χ(χ) is the characteristic function of the ball Zp =
{xeQp: \\x\\ ^ 1}. The following operations on a random field ξ = {ξpje@p} are
defined by the formulae

:i, l U H ^ l , (2.9)

( 2 1 0 )

If a generalized random field φ is a translation and scaling invariant, then its
discretization is invariant relative to actions th ie3)p and ra

λ, \\ λ \\ > 1. The gaussian
scaling and translation invariant random field on Qp also may be defined by the
hamiltonian

Ho — 2 \ IIx ~ y II ~aφ{x)φ{y)dxdy. (2.11)

One can show that the discretization of the random field with the hamiltonian
(2.11) is a gaussian random field on Q)p with the hamiltonian

Ho=~Σ d&Miζp (2-12)

where

l-a 1 l J • ( 2 1 3 )

-γ^~, otherwise

Note that the hamiltonian Ho is the hamiltonian of the gaussian Dyson hierarchical

model.
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Further we shall have to deal with the hamiltonians in momentum representa-
tion. A hamiltonian in the ball Ω= {kεQp: \\k\\ g R} is an expression of the form

H(σ)=Σ f/i#1,...,U* + ' + U Π 4 Λ (2.14)
m = 1 Ωm i = 0

A formal hamiltonian is a formal series in ε

H = H0 + εH1+ε2H2 + ..., (2.15)

whose coefficients are finite-particle hamiltonians of the type (2.14). In what follows
the coefficient Ho will be fixed:

H0 = \\\\k\Γι\σ{k)\2dk. (2.16)

Wilson's renormalization transformation, as in a real case, is defined by the formula

Ra

shλH = In <exp(/??//(σ0 + σ,))}^^ (2.17)

where (Ra

λH)(σ) == H(\\ λ\\~al2σ(λ~x)) is a hamiltonian of the random field in the
ball λΩ, σ(k) is a configuration in the ball λΩ, σ(k) = σo(k) + σ f̂c), σo(k) = χΩ(k)σ(k),
σi(k) = (Xλπ(k) — Xn{k))v{k), Xn(k) is a characteristic function of the ball Ω, and the
average taken with respect to the gaussian measure μidσγ) with zero mean and
binary correlation function

iσ^σ^K)> = δ(k + k')(χλΩ(k) - χΩ(k))\\k\\1 ~\ (2.18)

The branch of gaussian fixed points of Wilson's renormalization group is
determined by the hamiltonian Ho = H0(a). An investigation of the spectrum of
the differential of the renormalization group on this branch shows that a0 — f is
the bifurcation point. One can try to construct a new branch of non-gaussian fixed
points as power series in the deviation of the parameter a from the bifurcation
value a0. As in the real case, (see [16]), we seek a solution in the class of projection
hamiltonians, in the form

H = H(σ, ε) = In <exp{u(ε)φ*(σQ + σ,)} >μ ( d σ i ), (2.19)

where

φ\σ) = ̂ (k, + • + kΛ) f [ σikύdk* (2.20)
i = 1

σ0 is a configuration in the ball Ω, and the average taken with respect to the
gaussian measure with binary correlation function

θ. (2.21)

The only quantity which is not defined here is u(ε), which we assume to be a formal
power series in ε:

u(ε) = £ ufiK (2.22)
i = 1

In the computation of a projection hamiltonian divergences appear. Namely, in
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φ 4 theory with the propagator

( 1 - * « ( * ) ) II * I Γ ( 1 / 2 ) ~ β (2-23)

the diagrams with two and four external lines have poles when ε -+ 0. The theory
of analytic renormalization analogous to the real case exists in the p-adic case.
One can show that

σ0 + σj}} μ(dσι)

n<exp{w(φ4(σ0 + σ1)}>μ(dfri), (2.24)

where A.R. denotes the analytic renormalization with minimal subtractions,

β(u) = εu+ f cnu\ (2.25)
n = 2

and the coefficients cn for n ^ 2 do not depend on c.
The renormalization projection hamiltonian A.R.ln<exp(w(ε)φ4)>μ(d(Tl) is invari-

ant under the action of the renormalization group, if

j8(u) = 0. (2.26)

This equation has two solutions in the formal power in ε. The solution u = 0
corresponds to a gaussian fixed point. A nontrivial non-gaussian solution is
obtained from the solution of

ε+ £ cy-^O. (2.27)
n = 2

It is easy to check that c2 Φ 0 and therefore Eq. (2.27) is indeed solvable. This
solution is a p-adic field-theoretical description of the non-trivial solution in
Dyson's hierarchical model, which was investigated in [2-5].

3. Feynman Amplitudes in Coordinate Representation

First of all we shall prove that Ax, defined by (1.6) with the function

mx{V) = ma.x\\xυ-xv,\\ (3.1)
veV
v'eV

on it, is an indexed hierarchy. We recall that an indexed hierarchy on V is a pair
(A, m), where A denotes a given hierarchy on V and m is a positive function on A,
satisfying the following conditions:

1) m(V) - 0 if and only if \V'\ = 1,

2) if V cz V\ then m(V) < m{V").

In addition to these conditions we shall consider the functions m(V) for which

m(V) = pn{V\ n(V)eZ (3.2)

for every VeA.
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It suffices to show that if V'eAx, V"eAx and F Ή K V 0 , then V c V" or
V"aV. In fact, let xeV nV\ yeV'\V\ zsV"\V. From the definition of V
II ^ — ̂  II < II y ~ z II follows and hence, from the ultrametricity of the p-adic norm
|| y — z || = II x — z II, but this contradicts the definition of V".

It is easy to see that for every indexed hierarchy (A,m) on Kext there exists
x = (xv,veVex{) such that (Ax,mx) = (A9m). To every indexed hierarchy (A,m)
corresponds a family of sets {@(V,m), VeA}, where

®(V,m) = {yeQp:m(V) £ \\y- xv\\ < m(τ(V)\\/veV}. (3.3)

Weput/w(τ(7ext))=oo.
Let φ\A^> P/

exl be any function such that φ(V)eV for every VEA.

Lemma 1. 1) If VEA, VeA, Va V\ VφV and ye@{V,m), yeQ){V\m). then

2) If VnV = 0, VEA, VEA and V" is a minimal set in A, containing VKJV\
yeS){V,m\ y'e2(V\m\ then

\\y'-y\\=m{V"\

3) {^(Km); VeA} is a partition of Qp.

Proof Let yE@(V,m), y'e@{V\m\ V c V, V / V.
Then

|| 3; - xφ{V) II < m(τ(V)) ̂  m(F) ^ || / - xφ{V) ||,

and therefore | | .y-/ | | = \\y' - xφiV)\\ If VnV = 0, ye@(V,m)9 y'eΘ{V\m\ then

II j ; - xφiV) II < m(τ(V)) ̂  m{V") = || xφ{V) - xφ{VΊ \\,

II y'-xψ{VΊ II <m(τ(V'))Sm(V"\
and hence

\\y'-χφiv)\\ = \\y-y'\\=m(V")

Let V Φ V and yE3>(V,m)n@>{Vr

9m). lϊVczV',VΦ V, then

m(V)^\\y-xφiV)\\<m(τ(V))^\\y-xφ{V)l

but this contradicts the first part of the lemma. If Vn V" = 0 , then

II xφ(V) ~ χ

φ(v) II < m a x ( || y - x φ { V ) \\,\\y- x φ { V Ί \\) < m{V"\

At last

VeA

Lemma 1 is proved.
Everywhere below we have used the next notations: av = (a(υ, υ'))v^γ is a matrix,

bv = (b(v))veV is a vector,

a(V9V')= Σ a(v,vf), (3.4)
veV,v'eV
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a(V) = a(V, V), a,y' — (a(υ, V'))veV is a vector, a(v9t/)eC,b'(v)eC for every υeV.υ'eV.

Let rur2 be real numbers, GO ^ r2 > rx ^ 0. Denote by

f(r1,r2;ar,bv) = J Π I I ^ - W I Γ ^ Π WΓ^JV (3-5)

Lemma 2O

/(r l 5 r2; ακ, bv) = X /(r 1 ? oo; aVι, bVί)f{0, r2; aVl, bV2 + a£2) (3.6)

the sum goes over all partitions {Vί9 V2) of V.

Proof. We prove this lemma by induction with respect to the number of elements

of V. For I V\ = 1 this formula is checked directly:

ί 1 1 ^ 1 1 ^ = I \\y\\bdy+ 1 \ \ y \ \ b d y + j \\y\\bdy

(we used j ||j/fdy = O).

Note that

f(rur2; av, bv) =/(0, r2; ακ, bκ) - £ /(0, r2; % 1 ? bVl)f{ru r2; αKz, έ>F2 + α ^ ) .

(3.7)

Applying the assumption of induction to f(rι,r2;aVl,bV2 + α^), we have

,/(r l 5 r 2 ;a v ,b v ) =/(0,r 2;α κ,ft κ) - ^

- Σ f(r1^;aV2,bV2 + a^2)mr2;aV3,bV3 + av'l + av:i)l (3.8)

where V3 = V\(VX u K2). By denoting V^=Vι\j V2 and changing the order of the
summation, we get

/(r l 5 r2; av, bv) =/(0, r2; αF, hκ) - X

•/(rl5 oo; αKz, bK 2 + a£2)/(0, r2; αF3, feK3 + α^) ) V. (3.9)

But

X /(0,r1;aK l,bKJ/(r1,cx);flK 2,&K 2 + fl^)=/(0,oo;^4,bK4) = 0, (3.10)

and hence

X /(0,r^ay^byjftr^ oo;% 2 ? b F 2 + 4 2 ) = - / ( r l 9 oc;αK4,6F4)? (3.11)

where the summation is over Vλ φ 0 , Kt cz F 4 . Therefore,

/ f r i^ 2 ; flF?^F) =f(ri,r2; dv,bv) + X /(r 1 ? oo;αK 4,bF 4)/(0,r2;αF 3,feF 3 -I- aγ

v%

V 2 ^ 0 (3.12)
K3 = V\V4. Lemma 2 is proved.
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Theorem 1. Let Av = A. Then

F(χ)=Σ l\C(V,I)max \\xv-~xv,\\^v '\ (3.13)

where

I(A)VeA' vsV
v'eV

l Π \\y^yAφ'αΊ Π Π lly»-MΓ> κ 'α ) )^ . (3.14)
v',veI(V) υeI(V)\V'eK(V) J

{αv.,VΈK(V)} is an arbitrary set of p-adic numbers, such that | |ακ, — ακ»|| = 1 if
V'ΦV" [for example, α = {av,\ F'eK(F)} = {0,1,..., \K(V)\ - 1}). C(VJ) do not
depend on the choice of a. For the other notations see Sect. 1.

Proof. Let AX = A and φ'.A->VQXt is any function such that φ(V)eV,VeA. Let
T(A) = {T(V\ VEA} is a partition of Kint, indexed by elements of A. Denote by

9iv,τ,x)= J Π \\yv-y,A\a(v vΊ Π \\yv-χ<nv)\\aiv V(T))dyv, (3.15)
yre£f{V,mx)

v>v>eT(Vϊ veT(V)
veT(V)

where V{T) = l [j T{V) \UV.
\ V cz V /

From Lemma 1 it is easy to derive that

F(x)=Σ Π diV, T,x)mx(Vfv τ\ (3.16)
T(A) VeA'

where the sum goes over all partitions of Vint, indexed by elements of A,

s{V,T)= X α ( η T ) u Γ ( F ) , Γ ( Γ ) u T ( Π ) . (3.17)
VΎ"eK(V)

V φ V"

According to Lemma 2

g(V, T, x) = £ /(m(K), oo; aTιiV)9 av

τ

{\
Tι(V)uT2(V) = T(V)

(3.18)
the sum goes over all partitions (T^V), T2(V)) of T(V).

As /(0, oo βκ, bκ) = 0 for any av, bv, we may write

w = Σ Π ( Σ / w n «; «Γl(n> βίίίl-
/ U ) K l ' ( (J r 2 ( 7 ' ) ) C / Γ 1 ( F ) = /(K)

x{V)siVJ\ (3.19)

where the sum goes over all partitions of VinV indexed by elements of A', the internal
sum taken over all partitions of

) = ( (J W ( )

(3.20)
\V"eK(V)
V'ΨV"



44 E. Y. Lerner and M. D. Missarov

As

U {yeQp- II y ~ **<n II < ™(V)}) u {yeQp: II j ; - χφ ( K ) \\^m(V)} = Qp, (3.21)
K'eX(K) /

we get

•ίί Π Ily.-ΛΊI"^ Π ( Π l!^-^,ir(^(/)))rfyA (3.22)

Performing a change of variables,

J '^y.P"", veI(V), (3.23)

α^Vif"". *"εK(tO. (3.24)

where | |p"| | = mx(V), we obtain

F ( x ) = Σ Π C f K U W F ) ^ ' " , (3.25)
7 U ) K A '

- Λ i r ' ^ Π ( Π !iy 1 )-ακΊr ι"</))V)', (3 2 6 )

(3.27)

Note that || OLV. - ακ» || = 1 for each pair V, V"eK{V) V φ V\ In the next section
we shall see that C(V,I,oc) does not depend on the choice of α.

Note also that C(VJ) is a Feynman amplitude of the contracted graph

Here Gv is a graph with the set of vertices V(I). To each external vertice {V} of
this contracted graph we must assign an external variable av,.

λ(V,I) also has a simple geometrical description.

4. The Calculation of Coefficients C( V, I) and String Amplitudes
in the Koba-Nielsen Form

Let us consider an integral

* W Π \\yv-y^\a(v'D)

v,v'eV v\ /

where l g f e ^ p — 1 , ||α f — α ; || = 1 if iΦj. This integral is a generalization of
Koba-Nielsen amplitude (some examples of this amplitude were calculated in
[10, 11]).

We introduce the next partition of Qp:

(4-2)

(4.3)
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where J = {0, l , . . . ,p — l}\{(αf — α0) modp,ϊ = 0,...,fc}. As | J | = p — k— 1, it is
convenient to renumerate the family @j, jeJ by ί = fc + 1,...,p — 1. Finally,

% = {yeβj,: II y - oί01| > 1}. (4.4)

As above, it is easy to show that {@b i = 0,..., p] is a partition of Qp. Therefore

*Ί = Σ Π ί Π \\yB-yvTlΏ υΊn\\yv-*ι\\'"{υ)dyv

- p1 ί Π i i^-^ir^Π^

. f Π \\yv-yV'\\a{v'vΊ Π \\yv-ao\fi=obι<v)+Φ'ΛVp)dyυ. (4.5)

But for i = 0,..., fc,

f Π I I ^ - ^ Ί Γ ^ ' ^ Π II 3^~αi II bi(υ)dj>t;
J f, v' e F i veV i

= ί Π ί l^-^t ' Γ ^ 7 Π Wyv-Xill^dyr, (4.6)
J v,v'eVi veVi

'veVi

for i = fc + 1,... ,p — 1

ί Π I I ^ - J V I Γ ^ ' ^ } ^ j Π \\yv-yv'\\a(v'vΊdyv, (4.7)

'veV- ' JGF ;

and

I Π ll^-ivir^Π ll^-αoii^ ^'^"-^^,,
yve® v,v'eVp veVp
ιe Vp

— J 2_j if y υ — yv' (I I I /f 3̂ t̂  Π̂ ^̂ ι = o iv ' 'dyv. (4.8)
.VV< 1 y.υ'eΓp veVp
'veVp

In the last reduction we used the change of variables yυ-+{l/yv-oίQ), veV .
Therefore, we may rewrite

P
F ^ Σ Π9(avi9bd, (4.9)

where

g{av.9bj= f Π \\yv-yv\\a{v'vΊΠ\\yv\\bιiv)dyv, (4.10)

ΞVh i = k+l,...,p-l9 (4.11)

\
^ ftf(t;) + α(ϋ, V) + 2) , D G K Γ (4.12)
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So, we must calculate the integral of the type

Fi(av)= J Π \\yv-yv\\a{v'vΊ Π *yv> (*-i3)
\yv<<\ v,v'eV veV\{vΌ]

veV\{v0)

where v0 is a fixed element of V, yVo = 0, a(v, v')eC for every pair (y, v') (we identify
each pair (v,v') with (i/,i;)), ίz(i;,i;) = 0 for every veV (in our case V\{v0} = Kt ?

α(i;,y0) = bi{v\ / = 0, l,...,p).

Lemma 3* Lβί (/I, m) foe an indexed hierarchy on V, and

| ) o t h ; r w i s e , (4 i4)

where y = {yυ,veV}, yVo = 0. T/ierc

Proof of Lemma 3. Let T be a tree with the set of vertices K and the set of lines
L={l = (φ(V'),φ(V")\φ{V')ϊφ{V")\V'eA, V"eK{V')}. Here φ:A-*V is any
function such that φ(V')eV for every V'eA, φ(V) = v0. To each line l = (φ(Vf),
φ{V")) we assign a variable 5; = ^ ( K Ί - yφiVΊ. Then for every yυ = Sh+Sl2 +
- + St., where {/1?...,/; } is a path joining i; with υ0. It is clear that jacobian of
this change of variables is equal to 1. And moreover, (Ay9 my) = (A, m) if and only if

1) || St II = m(V) = pn{VΊ for every / = (φ(V% φ{V")\ V'eA', V"εK{V'\
2) Shp

n{VΊmoάpΦSl2p
niVΊmoάp for each pair l1=(φ(Vf)9φ{V1))9

'l φ{V2)\ V'eA', V.eKiV'X V2eK(V% Vx Φ V2.l φ{V2)\ VeA, V.eKiVX V2eK(V% Vx Φ V
Using

(4.16)

r = 1,2,... ,p — 1, we obtain the formula (4.15).

Theorem 2. Lei α(Γ) + | V'\ - 1 > 0 for every V c K? | F | > 1.

ί/ίβ sum goes over all hierarchies A on V.

Proof

9(av)= Σ ί Π \\yv-yv4a(v'vl)XA,n(yv,veV\{v0}) Π dyυ, (4.18)
(A/n) :m(K)<l ^ . ^ ' e K i'eF\{ι.'O}

where the sum taken over all indexed hierarchies on V, such that m(V) < 1. Note
that this sum is equal to the double sum

Σ Σ ί Π \\y,,-yV'\\φ'υΊXΛjyv;vev\{v0}) π *yv, (4.19)
A m:n(V)<0 v,v'eV VGV\{V{)}
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where the external sum goes over all hierarchies on V and the internal sum goes
over all set of integer numbers {n{V'\ V'eA'}, n(V')eZ, m(V) = pn(v'\ n{V) < n{τ{V'))
for every V'εA' and n(V) < 0.

Let

a'{V') = a{Vf)- X a{V"\ V'eA'. (4.20)
V"eK(V)

Obviously, that

v.v'eV V'εA'

Note that if β > 0, then

Όmβ

n<m P

Using (4.21) and Lemma 3, we obtain

{/,s ] (p— 1)!

<P-\K{V)\)\

~ } Λ vkV (P- \κ(V')\)\pi"") - 1 ι J

Here we used that

β(V')= X (a'{V") + \K{V")\-\)>0. (4.23)
[/" c V', V'ΈA'

As

X αXI/")-^^), (4.24)
I-"'- V'.V'cΛ'

X (I/C(K"| — 1) = I K'| — 1, (4.25)

we have

β(V) - a{V) + I VI - 1 > 0, Γ c F (4.26)

by the assumption of the theorem. Finally we get

1 ίr\ 1 \!
_ , s . I I/I -L 1^—ι T—r l \P W - . (4.27)

The theorem is proved.
This last formula defines also an analytic continuation of F2(cιv) from the

domian (4.29) to the whole complex plane as a meromorphic function of a(υ, v'\
V\V'GV.
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