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Perturbations of Gibbs Semigroups
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Abstract. We present the analytic perturbation theory for Gibbs semigroups in
the case when perturbations of generators are relatively bounded. Analyticity
with respect to perturbation and semigroup parameters in the Tr-norm
topology is proved and the corresponding domains are described.

1. Introduction

Let Gp(§) be the Banach space of compact operators on a separable Hubert space
ξ> which have the finite || ||p-norm

= Σ
n=l

Here λn = μn(\A\\ where μn(|>4|) is a nth (taking into account degeneracy) eigenvalue

of the operator \A\=]/AA*. The Banach spaces {Gp(S)}^=ι are *-ideals in the
space of all bounded operators Jίf(§) and (^(ί)) (trace-class) C G2(§) (Hίlbert-
Schmidt operators) C ... CG^S}) (compact operators) C = (̂§), see e.g. [1] or
[2,VL6].

In quantum statistical mechanics one faces strongly continuous one-
parametric semigroups of self-adjoint operators G: R+u{0}^^f(§) which have
the property that G : R+ ->Gι($). They are naturally created by the density matrix
Qxp(-βH) for a finite system with the Hamiltonian H and temperature β~ 1 eR+
and got the name of the Gibbs semigroups [3-5]. But if we want to make an analytic
continuation in the "interaction constant" then the operator H becomes non-self-
adjoint. Its numerical range θ(H) = {(Hψ,ψ): ψεD(H), \\ψ\\ = 1} belongs to the
sector 5ς(Ω) = {ze<C:|arg(z-y)|^Ω<π/2} and G(f) = exp(-ί#)e=Kι(δ) for
f elRl^see e.g. [6, 7]. This was the reason for the following general definition.

Definition 1.1 [5]. A strongly continuous semigroup G(t) in a separable Hubert
space § is called a Gibbs semigroup if G:1R.ί

+-^^ί(§).
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Remark 1.1. From the continuity of multiplication \AnBn

 P-+AB if An—>A

(strongly) and Bn-^^B for 1 ̂ p< oo [8, 9]; and the fact that (E^) is *-ideal in

J2?($) one gets the || Hi-continuity of the Gibbs semigroup G(t) on R+.
By the Hille-Yosida-Phillips theorem [9, X.8] each strongly continuous

semigroup V(ί) is related to a closed operator T (semigroup generator) with a
dense domain D(T), i.e., V(t)=VT(i) = Qxp( — tT). The corresponding properties of
the generator T can be formulated using the resolvent Rζ(T) = (ζ— T)"1 and the
resolvent set P(T) = {CeC:#ζ(T)e^?(<r>)}. Therefore, the study of semigroups is
mainly connected with properties of their generators, the central question being
the problem of stability and perturbation theory.

Let Gτ(t) be a Gibbs semigroup with the generator T. The aim of the present
paper is to develop a perturbation theory for the Gibbs semigroups. More
precisely, we shall describe perturbations U for which Gλ(t) = Gτ + λu(f) is still the
Gibbs semigroup || ^-analytic with respect to the parameters {λ,t}.

In Sect. 2 we study U from the Hille-Phillips perturbation class ^0. This case
has been earlier considered in refs. 3, 4. Here we simplify their proofs considerably
and show that ^0 consists of the operators U which are Γ-bounded with the
relative T-bound b = 0. In this case the semigroup Gλ(ί) is || Hi-analytic on the
parameter λ in the whole complex plane (C.

In Sects. 3 and 4 we consider perturbations with b > 0. The || || i-analyticity in
the parameter λ requires that b < 1 (class ̂ ). Then the domain of || || i-analyticity
of the Gibbs semigroup Gλ(z) has the form Cb x Sλt b. Here Cb = {z e C: z\< (2b) ~1}
and Sλtb is sector in the right half-plane (C+ = {ze(C:Rez>0}:

For perturbations from class ^0 one correspondingly gets that a domain of the
|| || i-analyticity of Gλ(z) has the form (C x <C+.

Section 5 contains the concluding remarks and formulations of some other
results of the Gibbs semigroup theory.

2. Perturbations from Class ̂ 0

The standard perturbation theory for strongly continuous semigroups has been
developed by Hills and Phillips [11, XIII] for perturbations from class ̂ 0.

Definition 2.1. A closed operator U belongs to the class ̂ 0 of perturbations for the
generator T of the semigroup Gτ(t) if the domain D(U)2 U GΓ(ί)£> and

ί>0

dί| |C7G τ(ί) | |<oo. (2.1)

We show that the Gibbs semigroups are stable with respect to perturbations
U e 0>09 the corresponding perturbation series converges in the || || ί-topology and
defines a Gibbs semigroup.
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Theorem 2.1. Let Gτ(t) be a self-adjoint Gibbs semigroup with the generator Γ^ — α.
// the operator U e ̂ 0, then the series

= Σ ^Sπ(0 (2-2)
n = 0

WZί/l

Sπ = 0(f)=Gτ(t), SB a ι(t)=-ίdτG7<ί-τ)t7S1 1_1(τ), (2.3)

(i) converges uniformly on t from any compact KclRi and on λ from any disc
CcC in the \\ \\ ^topology

(ii) defines the Gibbs semigroup Gλ(t) with the generator Hλ=T + λU which is
the || || i-holomorphic function of the parameter λ for any fixed ί>0.

Proof, (i) The operator U is T-bounded and (^(g) is *-ideal in ^(ξ>\ Then, UGT(t)
= [t/JRζ(T)] [(C-T)Gτ(ί)] eG^δ) for £>0 and CeP(Γ). Together with condition
(2.1) this implies that for £>0 the operator Sn(t) can be represented as the rc-fold
|| H i -convergent Bochner integral:

ί t t
Sn(t)= J dτl $ dτ2... j dτπχ^(τ0,τ1? ...,τj

0 0 0

Here χί,(τθ'τι> - - > τ n) is the characteristic function of the set sτ ;^0; ; = 0, !,...,«:

1^ τ, = t > . From the above representation one gets

^ J dτ, . . . } dτnχ'n(τ0, τ1; . . ., τn) \\ GT(τ0) UG^τJ... UGT(τn)\\ , . (2.4)
0 0

Now we can use the Ginibre-Gruber inequality [12]:

n

Π AM
I n \ Γ / " M

d Π K l l Tr η Σ x, , (2.5)
\ί=o J L v=o /J

where F(x) is an arbitrary Gibbs semigroup and /l;e Jz?(§), i = 0,1, ...,n. To this
end we introduce A0 = GΓ(τ0/2), A^UG ^τJΊ) for i^l and the functions ήf(t)
= ||GΓ(ί)|| =expαί and p(t) = lc/GT(ί)||. Then, using (2.4) and (2.5) one gets

||Sπ(£)||1^2"(^*p*...*p)(ί/2)TrGτ(ί/2),

where * denotes convolution operation. From condition (2.1) it follows that for

any #>0 there is ε>0 small enough, that J dt\\UGT(t)\\ =y£<(2R)~1. Then, for
o

0<ί^2ε series (2.2) converges in the || l^-topology uniformly on λ from disc
CR = [z e (C: \z\ < R} and on t from any compact K C (0,2e]. In addition, from (2.2)
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one gets that

and that the operator-valued function ^λ(t) satisfies the equation (Duhamel
formula [10,X.9]):

Gτ(t] -λdτGτ(t-τ} U^λ(τ] . (2.8)
o

From Eq. (2.8) according to the standard arguments (see e.g. [13, XI]) it follows
that for 0 rg t ̂  2ε the function 3Fλ(t) is a strongly continuous semigroup with the
generator Hλ=T + λU. Now we can extend the definition of 3Fλ(i) for t^2ε by
putting

&λ(t-nε) (2.9)

f l)ε. From the representation (2.9) and estimates (2.6), (2.7) one gets
the uniform || ^-convergence of series (2.2) for t from any compact KclRΛ and
for λ e CR for a disc of an arbitrary radius R.

(ii) The || || 1 -convergence of (2.2) implies that the semigroup tFλ(t) for ί > 0 and
Λ e C is a Gibbs semigroup, i.e. e^Λ(ί) = Gλ(ί)6ει(δ)5 which is || l^-continuous on
R+ by Remark 1.1. Moreover, by construction of the series (2.2) the Gibbs
semigroup Gλ(t) is || l^-holomorphic for /le(C if ί>0. Π

Corollary 2.1. Let the operator U be symmetric. Then, the semigroup Gλ(f) is the self-
adjoint Gibbs semigroup for t>0 and /iGlR 1. On the other hand, as it follows from
the proof of Theorem 2.1 the statements (i) and (ii) hold if one substitutes the self-
adjointness of the semigroup Gτ(t) with the generator T^i — α by a more general
condition of its quasi-boundedness: ||GΓ(ί)|| ^Mexpαf, i.e. Gτ(t)<E&(M,a).

Corollary 2.2. Let £^C(C and for any λeS> the operator U(λ) from the family
{U(λ)}λe@ has the following properties:

(a) The operator U(λ) is T-bounded: \\U(λ)ιp\\ <,a\\ιp\\+b \\Tip\\, ψeD(T), and
the function λ^U(λ)Gτ(t) is \\ - \\-analytic for ί>0;

(b) $ d t s u p \ \ U ( λ ) G j ( t ) \ \ « x ) .
0 λ&SD

Then, the operator-valued function Gτ + U(λ}(t) constructed by iterations of Eq. (2.8) is
a Gibbs semigroup which is \\ - ^-analytic for λe£$(t>0).

Note that conditions defining the perturbation class ^0 are too severe. The
next statement says that this class does not cover even perturbations arising in the
quantum statistical mechanics [14,15].

Theorem 2.2. Let Gτ(t) be a strongly continuous quasi-bounded semigroup with the
generator T. If the operator U E &0, then it is T-bounded with the relative bound 5 = 0.

Proof. By the closedness of the operator U and the property: D(U)^. (j Gτ(t)ξ> we
ί>0

get that l/GΓ(ί)eJS?(S)for ί>0 and \\UGT(t)\\ ^ ||l/GΓ(ί = l)||Mexp[α(ί-l)] for
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ί> 1. Consequently, for an arbitrary small ε>0 one can find ξ>a large enough
that

0
dtexp(-ξt)UGτ(t)ιp (2.10)

Simultaneously for the semigroup Gτ(t) and for any ζ from the resolvent set P( — T)
one gets:

00

0

This relation together with estimate (2.10) and the closedness of U gives that
(C+Γ)">eD((7) for i p e ξ ) and \\Uφ\\ ^εξ\\φ\\ + ε\\Tφ\\ for φεD(T), i.e.,
b = 0. Π

The paper [7] is an attempt to develop a perturbation theory for the Gibbs
semigroups when b>0. But it contains an error in the proof of the || l^-analyticity
of the semigroup Gλ(i) on the parameter λ and in the estimate of the domain of its
|| Hj-analyticity on the parameter t in the continuation into the half-plane C+.
Below, in Sects. 3 and 4, these errors will be corrected.

3. Perturbations from Class ̂

As it follows from the above discussion a class of Gibbs semigroups which are
stable with respect to perturbations from the class ^0 contains all quasi-bounded
Gibbs semigroups 3$(M, α). We show that extension of the perturbations to the class
&b (operators which are relatively bounded by the generator with b > 0) implies
reduction of stable semigroups to the holomorphic Gibbs semigroups 3tf(ω, α) with
generators having the following property: Kζ(T)e(£p(§) for ζeP(T) and some
p<oo. It is the class of semigroups that one encounters in quantum statistical
mechanics [14-17].

Theorem 3.1. Let Gτ(t) be a self-adjoint Gibbs semigroup with the generator T^ — α.
Then, it admits an analytic continuation to the \\ ^-holomorphic in the half-plane
(C+ Gibbs semigroup GΓ(z) e Jf (π/2, α).

00

Proof. Using the spectral representation Gτ(t) = J dEξ(T) exρ( — tξ) one can check

that GΓ(ί>0)<r>cD(T). Therefore, the operator ΓGτ(f)e J^($) for ί>0. Conse-
quently, the semigroup Gτ(ί>0) is strongly differentiable. By the Remark 1.1 this
property can be lifted up to || | ^differentiability

|| I I 1-dtGT(t)= II . I K - lim U- [Gτ(ί/2 + zl)-GΓ(ί/2)]j Gτ(ί/2)
Δ^O (_Δ }

In the same way one gets for ί > 0 that
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Then, due to the estimate \\TGT(f)\\ ^ max {ί~ \aexpai}, we obtain

||<5«Gτ(ί)|ί ! g ί|TGτ(ί/2«)||" ||Gτ(ί/2)|| , ̂ (2n)"Γ" |!GT(f/2)|| 1 .

Hence, the semigroup Gτ(ί) can be continued from R+ to the disc
C( = {ze(C+ : z — t\<t/2e} via the j ! ||t -convergent series

The union of these discs |J Ct is the sector
f > 0

in which one can continue the Gibbs semigroup Gτ(t) from R+ by the || ||r
convergent power series. For a further || || 1 -analytic continuation from the sector

to the half-plane (C+ one has to take into account that Gτ(z = t
$)for z e C C a n d || \\l-dzGT(z) = (-T)GT(z)E£ί(ξ>). D

Definition 3.1. The closed operator U belongs to the ^^-class perturbations of the
generator Tfor a strongly continuous semigroup GT(t) if D(U) 3 D(T) and C / i s a T-
bounded operator with a relative boundary b < 1 :

\\Uip\\ ^a\\ιp\\+b \\Tip\\, ψeD(T). (3.1)

Remark 3.1. If, in addition, the operator T is self-adjoint and semibounded from
below and the operator U is symmetric, then by the Kato-Rellich theorem
[1 0, X.2], [1 3, V, Sect. 4] the algebraic sum H = T + U with D(H) = D(T) is the self-
adjoint operator and H^ — α' = — α — max(α/(l — b); α + fc|α|).

Therefore, the operator H is a generator of a strongly continuous (differenti-
able for f>0) self-adjoint semigroup VH(t). From the same arguments as in
Theorem 3.1 it can be extended to the || | -analytic in C+ semigroup VH(z). If the
operator T is a generator of a Gibbs semigroup, then from Remark 3.1 and the
Weyl min-max principle (see e.g. [18, XIII. 1]) it follows that the spectrum of the
operator H is a pure point and μn(H)^a + (l—b)μn(T) for n^\ large enough.
Hence Vn(t) is a Gibbs semigroup: VH(t) = GH(t), and by Theorem 3.1 one gets that
GH(z) e ffl (π/2, α'). Therefore, we have proved the following statement:

Theorem 3.2. Let Gτ(t) be a self-adjoint quasi-bounded Gibbs semigroup. Let
perturbation U e^ and be a symmetric operator. Then the operator H= T+ U is a
generator of the quasi-bounded self-adjoint Gibbs semigroup GH(f) which can be
extended to the \\ - \\ Γholomorphic semigroup GH(z)E34f(π/2,af).

Remark 3.2. Thus, self-adjoint Gibbs semigroups are stable with respect to
perturbations from the class ̂ . Moreover, the conditions D(U)^D(T) and b<\
can be relaxed. Indeed, one can require that the perturbation U=U* be semi-
bounded from below and the algebraic sum H = T+ U be essentially self-adjoint
on the domain D(T)nD(U). These conditions allow us to use the Golden-
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Thompson inequality [18, XIII.17]

659

which says that the closure (T+ l/)~ = H is a generator of the self-adjoint, semi-
bounded Gibbs semigroup G#(ί)

But as above (see Sect. 2), we would like in addition to stability of the self-
adjoint Gibbs semigroups to study the analytic properties of the semigroup G;(z)
on the parameter λ e (C for perturbations λ U e ̂ . Therefore, instead of the spectral
representation for constructing the semigroup G;(z) one has to exploit the
Dunford-Taylor formula (see e.g. [2, VII] or [13, XI, Sect. 1.6]):

Zπi
(3.2)

The right-hand side of (3.2) is the || || -convergent Bochner integral with a
positively oriented contour ΓcP(Hλ) with the spectrum of Hλ contained within Γ.
Formula (3.2) connects the properties of the semigroup GΓ(z) with that for a
nonperturbed semigroup GΓ(z) by means of the resolvent
Hλ=

Theorem 3.3. LetT=T*^~ α. Then for any λ E Cb = (z e (C : \z\ < (26) ~ 1 } formula
(3.2) defines the semigroup Gλ(z) which is strongly analytic on the parameter z in the

sector Sλtb = {ze<C+: |argz| < ω = arctg(|/l -2\λ\b/\λ\ b)}.

Proof. First of all we have to note that for λ = 0 formula (3.2) gives the same result as
Theorem 3.1. The line of reasoning is the following. For the operator T the
resolvent set is P(T)={<C\[ — α, +00)}. Therefore, for any zeC+ the contour
Γ = Γ0 can be chosen in such a way that RezReC>ImzIm£ for Re£->oo (Fig. 1),
i.e. the right-hand side of (3.2) is the || || -convergent Bochner integral. To verify
that this integral defines a strongly holomorphic semigroup with the generator T

Fig. 1
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in the half-plane (C+, one has to use the Cauchy theorem and differentiation under
the integral (3.2). Now let perturbation U e^>

1. Then, the operator Hλ = Γ+λU is
well-defined as an algebraic sum and is closed on the domain D(Hλ) = D(T) if
| A | b < l . The appropriate resolvent set P(Hλ) is defined by the condition
\λ\ \\URζ(T)\\<ί corresponding to the convergence of the Neumann series for

(λURζ(T)γ. (3.3)

Note that taking into account inequality (3.1) and the structure of the set P(T) one
gets

< 3
+ b, Reζ<-α

+b\ 1 +
(3.4)

Then, from inequality (3.4) we obtain that the resolvent set P(Hλ) contains as a
subset

a\λ\
ct\>ρλ = \-b\λ\'

\λ\b

Reζ<-α
(3.5)

Therefore, the contour Γ in the integral (3.2) can be chosen in P(Hλ), e.g. Γ = Γλtb,
see Fig. 1. Then, the integral convergence condition (Rez Re£ > Imz Imζ for £-> oo)
defines a sector Sλtb, where the semigroup Gλ(z) is strongly analytic in z, see Fig. 2:

S,b= zeC + :
Imz

Re; \λ\b
(3.6)

The semigroup and analytic properties of the function z->Gλ(z) can be verified
similarly to the case λ = 0. From (3.5) and (3.6) one gets that Gλ(z)eJ^(ω9cc'(λ)),

Fig. 2
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where α'(λ)^α + a\λ\/(\ -b\λ\) and ω = a.τctg(]/l-2\λ\b/\λ\b\ see Fig. 2. Π

Remark 3.3. If the operator T is a generator of the Gibbs semigroup GT(f) and
perturbation 17 e^ then the perturbed semigroup GΓ(ί) for λeCb should not
necessarily be Gibbsian. One needs supplementary conditions either on the
operator λU (see Theorem 3.2 and Remark 3.2) or on the generator T. The latter
will be considered in the next section.

4. Gibbs Semigroups with /^-Generators

Let an unperturbed semigroup Gτ(t) be the Gibbs semigroup. For perturbations
from the class ^0 this guarantees that the semigroup Gλ(t) for λ e C will also be
Gibbsian. Theorem 3.2 ensures the same for the semigroup Gτ + u(t) if the operator
U E&! and is symmetric. Remark 3.2 makes clear the price one needs to pay for
getting rid of the condition: U e 3Pγ. But as before the symmetricity of the operator
U is essential. Since for perturbation λ U with complex parameter λ this property is
violated, we start with conditions ensuring the stability of Gibbs semigroups with
respect to these perturbations, see Remark 3.3.

Definition 4.1. We say that a self-adjoint Gibbs semigroup has p-generator T if for
some £0eP(T) the resolvent Rζo(T)e^p(ξ)) for some finite p^l, see [7].

Remark 4.1. Let Tσ(ΛN)= Γ £ ( — zjf/2m)1 be the kinetic-energy operator of TV
[l^i^N Jσ

particles enclosed in a bounded vessel A ClRd. Here σ fixes a boundary condition
on dA corresponding to a self-adjoint extension of symmetric operator T(ΛN).
Then one gets: /yΓσ(Λ")) G<£P($) for p^f N d and arbitrary ζ0eP(Tσ(AN)).

Theorem 4.1. Let a self-adjoint operator T^ — α be a p-generator of the strongly
continuous semigroup Gτ(t). Then, it is a \\ - ^-analytic in C+ Gibbs semigroup. If
the operator t/e^ l5 then a perturbed semigroup Gλ(z) is also a Gibbs semigroup
which is || ^-analytic on z in the sector Sλb (3.6) for any Λ,eC b

<(2bΓ1}.

Proof. For each ζeP(T) one gets: Rζ(T) = Rζo(T) + (ζ0-ζ)Rζ(T)Rζo(T). Thus, for
an arbitrary ζeP(T) the resolvent Λζ(Γ)6Cp(δ) and the integral (3.2) along the
path Γ0 (Fig. 1) is the || Up-convergent Bochner integral defining a semigroup
Gτ(t) e (£p(§) for t > 0. Then, the semigroup Gτ(t) = [Gτ(t/p)]p e G^φ) and its || || r
analyticity : Gτ(z) e J^(π/2, α), can be verified in the same way as in Theorem 3.1. To
estimate the || ||p-norm of the operator Gλ(z) we use the expansion (3.3) and
formula (3.2) for the case when the contour Γ = Γλ b (Fig. 1)

J |dC|exp[-(ReCRez-ImCImz)]
rλ>b

j _
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Then, by Theorem 3.3 the right-hand side of (4.1) is bounded for zeSλ>b and
\λ\<(2b)~ΐ, see (3.5) and (3.6). Consequently, the semigroup
Gλ(z) = [Gλ(z/p)~\p e(£ι(§) and its || l^-analyticity on z in the sector
$λ,b : Gχ(z) E J^(ω, ct!(λ}} can be checked in the similar way as in Theorem 3.3. Π

Now we have to prove the || l^-analyticity of the semigroup Gλ(z) on the
parameter Λ e C f c = {ζe(C: \ζ\<(2b)~1} when zeSλιb (3.6). As a first step we prove
the || ||p-analyticity.

Lemma 4.1. Let the operator C/e^ and the generator of the semigroup Gτ(z) is a
p-generator. Then, the Gibbs semigroup Gλ(z) is \\ \\p-analytic on the parameter λ in

the disc Cb (i.e. for an arbitrary closed domain 2cCb) if z<= Q Sλtb.
λeSi

Proof. Let r < (2b) ~ * be a fixed number and z e f) Sλ b = Sb(r), see Fig. 2. Then, for
\λ\^r

all λ such that |/| g r one can pick out a common contour Γr b c Π P(Hλ) [see (3.5)
\λ\^r

and Fig. 1] for the family of semigroups {Gλ(z)}\λ\<r which ensures the || ||p-
convergence of the integral (3.2) which can be estimated by (4.1). From the
expansion (3.3) together with inequality (3.4) and estimate

Rζ(Hλ)-Rζ(T) Σ

it follows that for C e Γ r>b the series (3.3) is uniformally convergent for λ: \λ\ ^r, in
the || ||p-norm. Hence, it defines a || ||p-analytic in this disc resolvent Rζ(Hλ).
Therefore, the series (3.3) can be term-by-term integrated by the contour Γr b for
each z£@cSb(r):

1
Gλ(z)= Y λn— f dζexp(-ζz)Rί(T)(URr(T))n. (4.2)

n = o 2πi rr,b

The series in the right-hand side of (4.2) converges uniformly in disc Cb in || ||p-
topology and defines a || ||p-analytic on the λeCb function which coincides with
the Gibbs semigroup Gλ(z). Π

Theorem 4.2. Let all conditions of Lemma 4.1 be satisfied. Then, the Gibbs
semigroup Gλ(z) is \\ ^-analytic on λ in the disc Cb for each ze Q Sλtb.

Proof. By Lemma 4.1 the semigroup Gλ(z) can be represented in the disc Cb as the
|| ||p-convergent Taylor series

oo yji

Here, derivatives on λ have the form

" + 1)Gμ(z). (4.4)



Perturbations of Gibbs Semigroups 663

The contour y belongs to the disc Cb and includes the point μ = 0, e.g. y = γr, where
yr is a circle of the radius r<(2b)~1 centered at the origin. Then, by Theorem 4.1
one gets from (4.4) the following inequality:

)\L = o\\ι^ί- 1 dφr~n sup l^z)^ = n\r~nMr(Z},
2.71 0 \μ\^r

and, as a consequence, the estimate:

Gλ(z)- Σ ~
n = o nl

^ X \λ\nr-"Mr(z). (4.5)
n = N+ 1

The estimate (4.5) implies for each λ e C5 and z e 5A>Z, the existence of the contour yr

CCb such that the series (4.3) is || l^-convergent uniformly in λ: \λ\^r. Π

5. Concluding Remarks

Summarizing we can conclude that for perturbations of the Gibbs semigroups with
the p-generators the mapping

G^. Q x S ̂ MS) (5.1)

is || | |!-analytic on both the parameters if only perturbations from the class ^\ are
involved, see Sects. 3 and 4.

If the relative bound fo^O, then one gets from (5.1) the result of Sect. 2:

GA(z):Cx €+-><£!($). (5.2)

Although in this limit the generators of the unperturbed Gibbs semigroups need
not be /^-generators.

In quantum statistical mechanics the results (5.1) and (5.2) ensure the
analyticity of the partition function

Zκ(Λ,j8) = TrGλ(]8); λeCb, βεSλ,b (5.3)

for a finite volume Λ. This property is a consequence of the || | | } -analyticity of the
function Tr:(E !(§)-»<[!. It is often exploited in applications, e.g. for the proof of
inequalities [15, 16] and of the theorems utilizing the convexity on λ or β [15-17].

The investigation of the Gibbs semigroups has been started in [4] where
perturbation theory for the self-adjoint semigroups and bounded operators
U e <£?(§) has been considered. An attempt to develop a consistent perturbation
theory for unbounded operators U is the intention of [6]. But it contains
inaccuracies which are first of all connected with the incorrect use of the Duhamel
formula for investigation of the || || ̂ analytic properties of the semigroup Gλ(t) on
the parameter λ see also [17, 2.4]. In [3] the perturbation theory for the Gibbs
semigroups has been developed for the operators U e ̂ 0. In the present paper this
class of perturbations is extended to ̂  and the corresponding domains of the
|| || j -analyticity, Cb and Sλtb, are analyzed in detail.

The || \\ ^compactness of the families of Gibbs semigroups was considered in
paper [5]. It is important for statistical mechanics of systems with singular
potentials, see e.g. [14]. In the recent paper [19] the || || x-convergent Trotter-Lie
formula for Gibbs semigroup is discussed.
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