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Abstract. Differential geometry and topology of principal loop bundles (bundles
of loop groups over loop spaces) are investigated. String structures, defined as
bundle extensions corresponding to the central extension of the structure group,
do not always exist. Various methods for deriving the obstruction to the
existence of string structures are discussed.

1. Introduction

Recently, Killingback [1] introduced a notion of string structure and suggested that
it should play a similar role in defining the Dirac-Ramond operator on the loop
space, LM, of a compact riemannian manifold, M, as the spin structure does in the
case of the usual Dirac operator on M.

For a principal fibre bundle, LP, over LM, with a structure loop group, LG, the
string structure is defined as a bundle extension of LP to LP, whose structure group
is the central extension of LG. In cases which are interesting in applications to string
theory the bundles on the loop space are obtained from some bundles over the space
itself, for example, from the spin bundle of M or some G bundle which corresponds
to the background gauge fields on M. It has been also observed in [1] that in such
cases the topological conditions, which one derives by requiring that a string
structure exists, are similar to those that guarantee the anomaly cancellation in the
two-dimensional chiral supersymmetric σ-model on M, coupled to gauge and
gravitational backgrounds. This turns out to be quite natural once one realizes the
role of the supersymmetric σ-models in defining the Dirac-type operators [2-6]. For
example, it is known that the usual Dirac operator corresponds to the supersymme-
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try charge in the Hubert space of a one-dimensional chiral supersymmetric σ-model
(supersymmetric particle) [3]. In this case the absence of anomalies, from the point
of view of canonical quantization, means that one can construct a Hubert space for
the quantized system as the space of sections of some vector bundle associated with
the spin bundle on M. In other words the absence of anomalies is equivalent to M
being a spin manifold [7,2].

This argument can be generalized to one dimension higher [1,6]. Upon
quantization the supersymmetry charge of the two-dimensional σ-model will define
the Dirac operator on the loop space. If the chiral fermions in the σ-model are
coupled to some gauge bundle with the structure group, G, the resulting Dirac-
Ramond operator will naturally be coupled to the bundle over the loop space whose
structure group is LG. It is reasonable to require that the matter fields on which this
operator will act should transform under the unitary representation of the structure
group. In the case of the Dirac operator, one enlarges the structure group from SΌ(n)
to Spin(n) to allow for half-integer spin representations. Here, in the case of the
Dirac-Ramond operator, one has to enlarge the structure group LG to a central
extension since LG has only projective unitary representations [8].

The obstruction to the existence of a string structure on loop bundles is the
vanishing of a certain cohomology class, A, in H3(LM, Z). As already pointed out in
[1], this class can be related to the class, λ, in H4(M, Z) which is responsible for the
anomalies in the σ-model [9,2,10]. However, although the vanishing of λ implies
that A is trivial, the opposite does not need to hold, and, in fact, examples when it
happens are known [11].

When M is an orientable riemannian spin-manifold, one can define spinors on
LM by using a projective spin representation of an infinite-dimensional orthogonal
group [12]. The existence of such spinors on LM is a stronger requirement than ours
and will not be discussed here.

The purpose of this paper is to provide various derivations of the condition for
the existence of string structures. Since A is an element in the integer cohomology of
LM, in general, it may have a torsion part. However, when there is no torsion, it can
be expressed in terms of differential forms on the loop space. This is different from
the case of spin structures where the obstruction, the second Stiefel-Whitney class in
H2(M, Z2), can never be written using the de Rham cohomology of M. Thus in the
free case (no torsion component in A) one should be able to prove the existence of a
string structure by studying whether a gauge field on LM with a gauge group LG can
be "embedded" into a gauge field with the structure group LG. The mechanism of
how this works is that the resulting gauge field with the gauge group LG also has
components with values in the [/(I) part of the Lie algebra of LG, and these can be
used to construct explicitly a 2-form H on LM such that A = dH. An obvious virtue
of this derivation is that it is explicit and that one needs almost nothing beyond
elementary properties of gauge fields. A drawback is that it does not capture the
torsion phenomena and is more lengthy than an "abstract" topological proof.
Indeed the problem of extending structure groups of fibre bundles is rather standard
in mathematical literature and can be related to obstruction thory. In our case once
one accepts the classification theorem for principal fibre bundles, the derivation of
the condition for the existence of string structures is remarkably straightforward.
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The paper is organized as follows. Section 2 contains a brief development of the
calculus of differential forms on loop spaces and a discussion of the relation between
the cohomology of the loop space and the cohomology of the space itself. In Sect. 3
we gather information about extensions of groups, in particular of loop groups, and
discuss the definition of a string structure for a loop bundle. In Sect. 4 we present an
explicit derivation of the obstruction using gauge fields on the loop space. For
technical reasons we assume here that M is 2-connected, that is, πx(M) = π2(M) = 0.
The general case is discussed in Sect. 5 using more powerful methods of obstruction
theory. In Sect. 6 we collect a handful of typical examples, mostly of bundles over
homogenous spaces, in which the existence of string structure can be verified
directly. Finally in Appendix A we recall standard facts about the calculation of
homotopy groups of loop spaces and fibre bundles, and in Appendix B we describe
an explicit construction of line bundles.

2. Differential Geometry of Loop Spaces

2.1. General Definitions. Let X be a finite-dimensional smooth manifold and LX
the corresponding loop space. Points in LX are smooth maps y: S * —• X. The tangent
space, TγLX, to LX at y is the space of sections of the vector bundle y* TX over S1. A
tangent vector ξeTγLX, which as usual can be considered as an infinitesimal
deformation of the loop y, is a loop of vectors ξ(ή, teS1, such that ξ(t)eTγ{t)X. A
ft-form ω at y is defined as a n-linear antisymmetric map from TγLX x x TγLX
into R. The tangent and cotangent bundles over LX are obtained by taking
(J TγLX and (J Γ*LX, respectively. Vector fields and differential forms

γeLX γeLX

are then sections of the corresponding bundles. Our approach will be rather formal
and for that reason we will not discuss in detail the problem of defining the proper
smooth structure on LX and on bundles over it. An interested reader is referred
to the mathematical literature, for example, [13,14].

22. DiffS1 Action on LX. On LX there is a natural action of DifTS1, the group of the
diffeomorphisms of the circle, given by

y^>φ*y, φeΌittS1, yeLX. (1)

The Lie algebra of DiffS1 can be identified with the space of smooth vector fields
on S1. For a given smooth function f(i) on the circle, we will denote the
corresponding generator of DifK1 by L(f)=fd/dt and the fundamental vector
field on LX at y, which corresponds to the above action, by L(f)y. In terms of the
canonical tangent vector yeTγLX given by a loop of vectors tangent to the loop
7, y(t) = dy(t)/dt, we can express the latter as L(f)y(t) =f(ήy(t). Note that the vector
field y itself corresponds to the generator L(l) of the subgroup of constant rotations
along the circle.

2.3. Loop Forms on LX. Let ω be a differential form of degree n on X. It is
convenient to introduce a corresponding n-ϊovm ώ on LX, with values in LR, which
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at yeLX is defined by

ώ(y;ξu..., ξn)(t) = ω(y(ί); £i(0, , ξ«(t)% £1, , ξneTyLX. (2)

This generalizes to forms ω which take values in some vector space V and gives
forms ώ with values in LV. We will refer to ώ as a loop form corresponding to ω.

For a loop form ώ we define its derivative dώ/dt as

Similarly the integral jώ, which maps ώ into an R-valued (or more generally
F-valued) form on LX is defined by

(ϊώ)(ξi9...9ξn)= $ dtώ{ξu...,ξn){t).

Both the derivative and the integral are defined for any forms on LX provided they
take values in some loop space of a vector space. An obvious property is J d/dt = 0.
Since d/dt and j are linear operators in the space of values of loop forms, they
commute with the usual operations of the differential calculus of forms such as the
exterior derivative, d, and the contraction with a vector field ξ, iξ, which are defined
on LX. Consequently they also commute with the Lie derivative along ξ, which, as
usual, is defined as

<?ξ=diξ+iξd.

From the definition (2) and the action of DiffS1 in (1) we deduce that loop forms
are DiffS1 equivariant in the following sense:

Here the operator on the left-hand side is the Lie derivative along the funda-
mental vector field L(f) on LX, and L(f) on the right-hand side is the differential
operator f(ήd/dt in LR.
2.4. Local Forms and the Evaluation Map. Another important operation is the
averaged evaluation map, E, which sends n-forms on X into (n — l)-forms on LX. It is
defined by

Eω = jiγCύ,

or more explicitly

{t\ξ1{t\...,ξn_ι{t)). (3)

Notice that the form Eω is obtained as follows. First we use the evaluation map
e S1 x LX^>X, e{t,γ) = y(t) to pull back ω from X to e*ω on S1 x LX and then
integrate it over the fibre S1. The forms on LX which are in the image of E will be
called local.

All local forms are DiffS1 invariant. This follows from the manifest reparametriz-
ation invariance of the integral in (3) that defines E. Tnίinitesimally we have

SeUf)E = 0. (4)
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An obvious remark is that, since not all forms on LX are DiffS1 invariant, there exist
forms which are not local.

An important property of E is

Ed= - dE. (5)

Proof.

dEω = d f i.ώ = f dί.ώ = f [ i f , — i,d~\ώ = f — ώ — f i,,dco = 0 — Edω.

This shows that closed forms on X are mapped by E into closed forms on LX.
Therefore, the complex of closed local forms on LX is a subcomplex of closed forms
on LX, and E induces a map from the de Rham cohomology of X into the de Rham
cohomology of LX.

Consider the following example. If ω is a 1-form on X, then Eω is a function on
LX whose value on loop y is given by the line integral of ω

Eω(y) — j ω .
y

This generalizes to higher-degree forms as follows. Let cn be a n-chain in LX. Then
e(βι x cn) is a (π + l)-dimensional submanifold in X (possibly with singular points).
For a (n + l)-form ω in X we have

\Eω= J ω. (6)

The pairing between forms and chains defined in (6) can be extended to singular
chains and cochains (one must simply replace the integrals by abstract pairings), and
defines an extension of the averaged evaluation map E to singular cohomology.

2.5. Relation Between the Cohomology of X and LX. To understand the relation
between the existence of a string structure and the absence of anomalies in the
corresponding σ-model we must know the precise relation between the cohomology
of X and LX and, in particular, whether £, as a map from Hn(X, *) into Hn~ί(LX, *),
is injective. We do not know the complete answer to this question. If X is a simple
compact Lie group G, then it can be shown that E is an isomorphism between
cohomologies of G and LG [8].

From the duality between homology and cohomology, the question whether
E is injective is the same as whether Hn(X, *) is generated by cycles cn which are
of the form e(Sι x c ^ J . This happens, for example, if all cn's are homologous to
homotopy spheres. In such a case we can use an explicit cover of Sn with loops
which intersect each other only at the north pole (the set of such loops is
topologically 5""1) to construct the corresponding cycle in LX. We can apply this
observation to the case when X is simply connected. Let us recall that for simply
connected X the Hurewicz theorem [15] guarantees that the first nontrivial
homology group Hk(X, Z) is isomorphic to πk(X), and that the next one, Hk+1(X, Z),
is generated by the image of πk+1(X). Therefore, we can conclude that whenever
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πx(X) = 0, E is an isomorphism in the first dimension where homology is nontrivial
and becomes an injection in one dimension higher.

3. Loop Groups, Loop Bundles and String Structures

3.1. Loop Groups. The loop group, LG, of a finite-dimensional Lie group, G, is
defined [8] as a group of smooth maps from S1 into G with the pointwise
multiplication, i.e., (g1g2)(ή:=gΛήg2(tX 9i^02eLG, teS1. The Lie algebra of LG
can be identified with the space of loops in Lie G with the commutator

lξ,ri(t) = lξ(t),Φn, ξ,ηeUeLG, teS1.

LG is an infinite-dimensional group and can be given a structure of a smooth
Hubert manifold. An important property of loop groups is that the exponent map
Exp: Lie LG^LG is locally a homeomorphism. This is not always true for any
infinite dimensional group and the notable example when Exp is not a homeomor-
phism is DifFS1 [14]. From the practical point of view a nice exponential map
means that we can check a lot of properties at the level of the Lie algebra and
then generalize them to the level of the group. In fact, to a large extent differential
geometry involving loop groups can be done in a similar way as with finite-
dimensional groups [16]. We will make use of this in Sect. 4.

3.2. Group Extensions. We say that a group H is an extension of a group H if
there exists a homomorphism φ from H onto H. Thus to define an extension we
must specify the pair: group H and epimorphism φ.

Any extension defines a principal fibration

ker φ = N -+ H

k
H-H/N

in which H is the total space, H is the base and N — ker φ a H is the structure group.
We will consider two classes of extensions, group coverings and abelian central

extensions.

3.2.1. Group Coverings. This is the case when N is a discrete group. The exact
homotopy sequence for the fibration (A.I)1 gives

π1(H)/π1(H) = N.

An important example of a group covering is the universal covering of the group
H which is defined by the condition that H is simply connected. In this case
π1(H) = N.

3.2.2. Abelian Central Extensions. In this case N is an abelian group and the group

1 See Appendix A
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multiplication in H, which, at least locally, is a product space H x JV, is of the form

(ft, n)'(h', ή) = (ftft', c(h9 h')nri)9 ft, h'eH, n9 rieN, (7)

where c( , ) is a cocycle. In general c must be considered as a section of some
bundle; however, if H is globally a product H x JV, then c is a function,
c:H x H^N.ln order that (7) defines a group multiplication, c must satisfy cocycle
conditions, which in the product case can be written explicitly as

(i) c(l9h) = c(h9l)=l9

(ii) c(ft, h'h")c(hf, ft") = c(h9 h')c{hh\ ft").

Note that locally φ(ft, n) = ft and JV is a subgroup in the center of H.

3.3. Central Extensions of Loop Groups. In the following we assume that G is
simple and simply connected.

3.3.1. General Definitions. We wish to describe briefly an important class of central
extensions of LG by U(l). For a more detailed discussion and proofs, the standard
reference is [8].

On the level of Lie algebras a 1/(1) extension LG of LG can be written as
Lie LG = LieLGΘR with the Lie bracket

, α,j8eR,
where

is a cocycle on Lie LG. The cocycle condition for the group multiplication as given
in (7) implies that

ω(lξ,ηlζ) + ω(lη9ζlξ) + ω(lζ9ξlη) = O, ξ,η,ζeLkLG. (9)

However, as we will see later not all cocycles on Lie LG can be obtained from
some cocycle in LG.

All the cocycles, and thus all central extensions of Lie LG, are completely
determined by the choice of a symmetric invariant form < , > in Lie G.

The Lie algebra cocycle ω can also be considered as a left-invariant 2-form on
LG,

ω(g;dLgξ,dLgη) = ω(ξ,η), geLG, ξ,ηeLic LG. (JO)

From the cocycle condition (9) it follows that this form is closed and thus defines
a cohomology class in H2(LG,R).

The fundamental theorem is that the extension of Lie LG defined by ω can be
integrated to an extension of Lie groups if and only if the cohomology class of
ω/2π is integral, i.e., ω integrated over any closed 2-cycle gives a multiple of 2π.

3.3.2. Explicit Construction of the 1/(1) Central Extension of LG. The Lie group
(if it exists) corresponding to Lie LG is a U{\) bundle over LG and ω/2π represents
the first Chern class of this bundle. Since LG is a simply connected space (A.2), ω
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determines this bundle completely. The situation here is analogous to finite
dimensions. Using the construction described in Appendix B we can give the
following explicit representation for LG [8]. One considers the set of triples
[0,J(gr),M], where geLG, l(g) is a path in LG from the unit element of LG to g9

and ueU(l). In this set one can define an equivalence relation which identifies
ίgJ(g),u] with [#',/'(#'), u'] if and only if g = g' (i.e., g(t) = g'(t) for all t) and
u = Δ{l'*l~1)tΐ. Here ί'*/"1 denotes a closed path in LG obtained by going first
along ΐ and then back along I, and

where σ is an arbitrary surface in LG bounded by f*/"1. As a set LG is then the
set of all triples divided by the relation we have just discussed. The group
multiplication in LG is

It is straightforward to verify that this is well defined with respect to the equivalence
relation. The projection on the first entry in [ , , ] is the homomorphism φ onto
LG whose kernel is the center (7(1).

3.33. Basic Central Extension when G is Simple. When G is simple all the 1/(1)
central extensions of LG can easily be classified. Since G is simple, all bilinear
invariant forms on Lie G are proportional (all bi-invariant metrics on G are
proportional), and there exists a smallest one for which ω/2π is integral. This
form is called basic and is explicitly given by

where < , >G is the Killing form and nG is the dual Coxeter number [17]. The
corresponding central extension LG has two important properties [8]:

(i) It is universal in the sense that any central extension & of LG by an abelian
group N can be obtained from it by specifying a homomorphism p:U(\)-+N.
Then i = LG xm)N9 where we identify pairs of the form (g,k) ~ (§a, p(<x~ ^k),
geLG, αe ί/(l) c LG and keN.^
(ii) LG is 2-connected, i.e., π^LG) = π2(LG) = 0.

The second property easily follows from the homotopy sequence for the fibration
LG(LG, 1/(1)), (A.4). It is convenient to think about the basic central extension
LG as the 1/(1) bundle on LG with the "lowest monopole charge."

3.3.4. Central Extensions with G Semi-Simple. When G is not simple, but instead
has several simple factors, G = GX x ••• xG n , there also exists a basic central
extension which is universal, but it is an extension by a π-dimensional torus rather
than a single (7(1) [8]. In the context of string theory the extensions of non-simple
groups that one considers are extensions by a single U(l) with a cocycle of the form

ω((ξl9. , ξn\ Oh,...,rin)) = Σ. Mico^iti*nι)> ξt, ^eLie LGh (11)
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where ω ( l ) are the basic cocycles in Lie LGh and m{ are integers. These extensions
can be obtained from the basic one by choosing p:C/(l)w—> U(l) of the form

3.3.5. Relation Between H2(LG) and H3(G). As we already mentioned in Sect. 2.5,
the averaged evaluation map E is an isomorphism between cohomology groups
of G and LG. The generator of H3(G) is represented by an invariant 3-form σ
given by

^2 (12)

The image of σ in LG under £ is a 2-form Eσ on LG given by

= f*Λσ(dL,_^(ί), ξ(t),φ))
0

However, Eσ is neither left nor right invariant. It is nevertheless cohomologous
(as it should be) to the left-invariant basic form ω in LG defined in (10). The precise
relation between ω and Eσ is [18]

^-ω = Eσ + dβ, (13)
2π

where the 1-form β is given by

β(g;dLgξ)= - ~ 2 f dtidL^gitMiΦ. (14)

3.3.6. Central Extensions when G is not Semi-Simple. When G is not semi-simple,
all the central extensions by 1/(1) can also be classified. However, it is much more
complicated than in the simply connected case [8]. Firstly, the loop group LG is
not connected, and extensions of the connected component do not necessarily
extend to the extension of the whole group. Secondly, the connected component
of the identity, LG0, is not simply connected and, as a result, ί/(l) bundles over
it are not completely determined by the curvature 2-form, i.e., by the cocycle in
the Lie algebra.

3.4. Loop Bundles. Let P(M, G, π) be a principal fibre bundle with total space P,
base M, structure group G, and projection π:P->M. The corresponding loop
bundle, LP(LM, LG, πL), is obtained by considering the space of loops in P. If p
is a loop in P, then πL(p) = π°p is a loop in M. It is obvious that any two loops
in P that project onto the same loop in M are related by an element in LG. The
action of LG on LP is free and we conclude that LP is a principal LG-bundle
over LM.

The action of DiffS1 on LP as a loop space (see Sect. 2.2) defines a lift of the
action on the base, LM, and is an action of a group of twisted automorphism of
the bundle LP in the sense that

= Φ(p)Φ(g) pεLP, g^LG, φeDiffS1. (15)

Note that usually an automorphism ψ would act by φ(pg) — ψ(p)g.
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3.5. String Structures in Loop Bundles. Let LP(LM, LG) be a principal loop bundle
and LG a £/(l)-central extension of LG with the projection φ:LG-+LG. We will
say that LP(LM,LG) admits a string structure [1] if there exists a principal bundle
LP(LM,LG), with base LM and the structure group LG, together with a map
Φ.LP^LP such that Φ(pg) = Φ(p)φ(g), for all peLP and geLG. More precisely
we require the following diagram to be commutative:

LP x LG • LP πL

jφ(x)φ \φ Nι LM

LPxLG > LP <

Remarks.
1. The notion of string structure is relative to the bundle LP and the extension
LG. It can be defined for any LG bundle, not necessarily a loop bundle. Most of
our discussions and, in particular the existence conditions that will be described
in Sects. 4 and 5, are valid in the general case. If G is simple, we will usually take
LG to be the basic central extension. For non-simple groups we may also consider
string structures corresponding to more general toroidal extensions of LG.
2. We will say that a bundle P(M, G) has a string structure if its loop bundle has
one, and that a spin manifold M admits a string structure if its spin bundle does.
The latter is in analogy with the similar convention for spin structures.
3. The right action of U(l) a LG on LP gives it a structure of a U(l) bundle over
LP. This bundle, when considered over the fibres of LP(LM, LG), is isomorphic
with the bundle LG(LG, U(l)). We will make frequent use of this observation.

4. Gauge fields on Loop Spaces and the Existence of String Structure

In this section we assume that πf(M) = 0, i: ^ 2 and πf(G) = 0, i: ^ 1.

4.1. Gauge Fields as Principal Connections. Let P(M, G) be a principal fibre bundle
with a principal connection A. We recall that A is a Lie G valued 1-form on the
total space P which satisfies [19]

' ^ _ p p d \f*a

(16)
(i) A(ξp) = ξ,

(ii) R*A = Adg-1A, geG,

where ξp is the fundamental vector at peP corresponding to ξ, and Rg is the right
action of G on P.

The curvature 2-form, F, is obtained by

and satisfies

(ii) VfΛdg-'F. ( Π )

Finally, let us recall that in order to obtain the description of the gauge field
more familiar to physicists, one must choose a set of local trivializations of the
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bundle P, which consists of covering {^α} of M with open sets together with local
sections σ α :^ α ->P such that π°σα = id. The gauge potential A(a) on the open set
ΰlίa is then obtained by pulling back A from P onto ^ α , namely A{a) = σ*A. Local
sections are related by σα(x) = σβ(x)gaβ(x), xe(Wan^/β, where gaβ:^βn^β^G are
the transition functions. Properties in (16) and (17) then imply the familiar trans-
formation laws for gauge potentials and field strengths.

4.2. Chern-Simons Forms on P and LP. The fibres of P can be identified (up to
the choice of the origin) with the group G. Thus on each fibre there is a third
cohomology class corresponding to the cohomology class of G discussed in Sect.
3.3.5. The form which represents this cohomology class on the fibre can be specified
by its values on fundamental vector fields and will be called σ. We can choose,
for example,

σ(ξl9ξ29ξ3) = σ(ξl9ξ29ξ3)9 ξuξ2,ξ3eLkG, (18)

where the right-hand-side is given by (12).
It is standard that, using a connection A, one can extend σ as a Chern-Simons

form [20] ω3 to the total space of the bundle

Here the product < , > of Lie algebra-valued forms should be understood as follows.
Let Tt be the generators of Lie G. Then (A,F} = Ai Λ Fj{ Ti9 Γ,-), and similarly
for the second term.

Using (16) and (17) for A and F, it is easy to check that ω3 restricted to the
fibre indeed reproduces σ. Moreover, dω3 is a basic form, that is, there exists a
4-form λ on M such that

dω3 = π*λ. (20)

To show this, one must check that ίξdω3 = 0, which follows from (i) of (16), and that
J£ζdω3 = 0, which follows from (16), (17) and ad-invariance of the form σ in Lie G.
Note that λ is necessarily a closed form and thus represents a cohomology class of
the base, which is called a transgression of the cohomology class of the fibre
represented by σ. In our case we can choose λ = — (l/8π2)<F,F>. When G is
Spin(n), λ = — \pu where p1 is the Pontrjagin class.

Let LP(LM, LG) be the loop bundle obtained from P(M, G) as described in Sect.
3.4. Consider the 2-form Eω3 on LP. Using (5) and (20) we find

dEω3 = - Edω3 = - Eπ*λ = - πfEλ. (21)

The 2-form Eω3 is equal to Eσ when evaluated on fundamental vectors at peLP.
Thus upon restriction to the fibres of LP, Eω3 represents the cohomology class of the
form ω on LG that was used in Sect. 3.3.1 to define the central extension LG. In the
case of LG we had (l/2π)ω = Eσ + dβ. Here we will show that one can introduce a
2-form Ψ2 whose restriction to the fibre is exactly equal to the form ω, and
(l/2π) Ψ2 = Eω3 + dT9 where Y is some 1-form on LP. To achieve this we use the
natural connection in LP given by the loop form A, where A is some connection form
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in P. Using (16) and (17) it is easy to check that the following form defined on LP.

satisfies Ψ2(ξp, ήp) = ω(ξ, η).
We saw in Sect. 3.3.5 that on LG the form ω was cohomologous to Eσ. Let us

show that the same holds for their extensions to LP. Consider a 1-form, Γ, on LP,

^ J (23)
oπ

Let us show that

^-Ψ2 = Eω3 + dT. (24)
2π

The proof is an elementary use of formulae from Sect. 2. We shall write it out in some
detail to point out the importance of A being a loop form on LP. We have

From (20), (21) and (24) we obtain

dΨ2 d(Eω3 + dT) πfEλ. (25)
2π

Remark. On LP, Eω3 is explicitly given by

^ ^ Ά yeLP. (26)

Notice that the right hand side of this expression is well defined if we replace A
by any connection si in LP. This defines a form on LP which we will call ω2. In the
same way forms Ψ2 and T can be defined for any connection si in LP. Moreover, we
can define ω2, Ψ2 and T for any LG bundle over LM, without assuming that it comes
from some G bundle over M, provided it admits a lift of the Sι action on the base to
the twisted group of automorphisms (3.4). In this case we simply replace γ in (22), (23)
and (26) by the fundamental vector field of the S1 -action. Then one can check that
dΨ2 is a basic form, that is

~dΨ2=-π*Λ, (27)
In

where A (not to be confused with λ) is a closed form on LM. However, in this more
general situation one cannot prove that, for any connection si, Ψ2 is cohomologous
to ω2. This can be seen from our explicit calculation after (24) in which we used the
fact that the connection A was DiffS^-equivariant in the sense of Sect. 2.3. In order
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that the relation (l/2π) Ψ2 = ω 2 + dβ holds for an arbitrary connection s/ we must
restrict the class of allowed connections to those which are given by S1 equivariant
forms, that is, they satisfy

For such forms one can also show that the cohomology class of A does not depend
on the choice of the equivariant connection used to define it. We can thus consider
(l/2π) Ψ2 as a generalization of the "Chern-Simons" forms to loop bundles, and A is
then the generalization of the Pontrjagin class. Of course, when the LG bundle
comes from some G bundle, A is cohomologous to Eλ.

4.3. Existence of String Structure. We will now discuss in the framework of gauge
fields on LM the existence of string structure for the bundle P{M, G). First we will
prove that the vanishing of A is a necessary condition for the existence of a string
structure. The strategy is as follows. Assuming that an extension LP exists, we extend
the gauge field in LP to some gauge field in LP. Then we use the ί/(l) component of
this gauge field to construct explicitly a 2-form H in LM such that dH = A. We will
first discuss the case where G is simple and LG is the basic central extension.

Let LP(LM, LG) be an extension of LP(LM, LG) which defines a string structure
of the bundle P(M, G). As we discussed before, LP can also be viewed as a 1/(1)
bundle, LP(LP, (7(1)), over LP that is isomorphic with the central extension
LG(LG, 1/(1)) over the fibres of LP.

Corresponding to the decomposition of the Lie algebra of LG, Lie LG =
LieLGΘR, there is a decomposition of any principal connection ,^/in LP into its
LG and (7(1) parts. Let s/= (s/,Θ). A natural question that arises is whether it is
possible to combine arbitrary connections J / in LP(LM, LG) and θ in LP(LP, U(l))
in such a way that they form a connection J / in LP(LM, LG). In general the answer is
negative, since in order to be part of a connection in LP(LP,LG), θ cannot be
arbitrary along the fibres of LP. In fact, from the infinitesimal form of (ii) in (16) and
the commutation relations of Lie LG, we find that

J5P|0= -lξ,s/]mi)= -ω(ξ,s/)9 (28)

where ξ is the fundamental vector field in LP corresponding to the generator
ξeLie LG a Lie LG. However, one can check that this condition is not only
necessary but also sufficient to define a principal connection stf in LP.

One can also prove that an arbitrary connection s& in LP can be extended (in
many ways) to LP, i.e., that it is possible to construct a 1-form θ on LP which satisfies
condition (28). The argument is very similar to the one that is used to construct a
gauge field in an arbitrary bundle out of local trivializations and a subordinate
partition of unity (see, e.g. [21]).

Let s/ = (jtf, θ) be an extension of s/. We will choose J / to be S1-equivariant, for
example stf = A. Using the properties in Sect. 4.1 and the fact that (7(1) is in the
center of LG, we can easily verify that θ defines a principal connection in the 1/(1)
bundle LP(LP, (7(1)). Moreover jtf vanishes on the (7(1) fundamental vectors, and is
invariant along the (7(1) fibres. Thus it goes to the quotient LP/(7(1), which is just
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LP, and defines a principal connection in LP(LM, LG). Similarly, the curvature, Θ,
of the 1/(1) connection is a basic 2-form on LP and can be viewed as a 2-form on LP.
Note that although dθ is cohomologically trivial on LP, Θ is never trivial as a
cohomology class on LP. This is because the bundle LP(LP, V(\)) is always
nontrivial, and Θ/2π represents its Chern class. In what follows we will show
that Ψ2 + Θ is a basic form on the total space of the bundle LP(LM,LG) and that
the 2-form on LM which is determined by it is precisely the one that trivializes A.

In LP the curvature 2-form, Ω, of j^Γcan be decomposed into its LG and U(l)
parts

, (29)

(30)

As for dθ, all the curvature components in the above equations can be considered as
well-defined forms on LP.

To prove that the 2-form Ψ2 + Θ on LP is basic, we must show that for any
fundamental vector field ξ with ξe Lie LG

i~ξ(Ψ2 + Θ) = 0, (31)

&ξ(Ψ2 + Θ) = 0. (32)

To verify the first condition we observe that Ωu{1) vanishes on fundamental vectors
of Lie LG. Thus from (29) ί~ξΘ = - ω(ξ, si) while, from (22), i~ξΨ2 = + ω(ξ, si). As
for the second condition, using (31) and (27) we have

£?~ξ{Ψ2 + Θ) = {i~ξd + di~)(Ψ2 + Θ) = i~ξdΨ2 = - i~ξπ*(2πA) = 0.

This shows that there exists a unique 2-form H on LM such that

Ψ2 + Θ=-π*(2πH). (33)

However, since Θ is closed we also have

fA d{Ψ Θ) d*H tdH

which implies that in fact A = dH. This concludes our proof that the vanishing of
Λ( = Eλ) in cohomology of LM is a necessary condition for the existence of a string
structure.

To prove that the vanishing of A = Eλ is also a sufficient condition for the
existence of a string structure we will use the explicit construction of U(l) bundles
over simply connected spaces which is described in Appendix B. First we show that
the vanishing of A allows one to introduce a closed integral form θ/2π on LP,
which when restricted to the fibres is equal to — ω/2π. Then we construct the total
space of LP as a (7(1) bundle over LP (with &/2π being its Chern class). Finally, we
exhibit a free LG action on LP and prove that LP is a string structure for P(M, G).

It is in this part of the proof that we need to assume that M is 2-connected.
From the homotopy exact sequence for P(M, G) we then find nt(P) = 0, ί = 0,1,2
(see, Example 2 in Appendix A). Then for the corresponding loop bundle we have
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πι(LP) = 0, ΐ = 0,1. Thus any curvature 2-form of a [/(l)-bundle over LP determines
this bundle completely.

From the discussion in Sect. 2 we know that if M is 2-connected then E is an
injection from f/4(M, R) into H3(LM,R). Thus, from the vanishing of Eλ in the
cohomology of LM we deduce that there exists a 3-form honM such that λ = dh. Let
si = A and Ψ2 be the corresponding Chern-Simons form on LP. Then

θ = - Ψ2 + π*E{2πh)

is a closed 2-form on LP which, on the fibres, is equal to — ω. Comparing with (33)
it is clear that θ looks very much like Θ. However, in order to prove that θ can
be considered as a curvature form of some £/(l)-bundle we still need to show that
&/2π represents an integral cohomology class in LP.

To prove that 0/2π is integral we observe that it can also be written as

— θ = - E(ω3 - π*h) - dT, (34)
2π

where Y is given by (23). On the other hand the 3-form h on M is only determined up
to the addition of an exact form. It is standard in the theory of Chern-Simons forms
[20] that for λ = dh one can use this freedom to adjust h such that the closed 3-form
ω 3 — π*h represents an integral cohomology class in LP. The image of this form by E
is also an integral form, which by (34) is cohomologous to — θ/2π.

We can now use the construction from Appendix B and apply it to LP with
the closed, integral form θ/2π. The total space of the resulting ί/f l)-bundle LP can be
represented by equivalence classes of triples [/?, liPOtP), α], where peLP, l(po p) is a path
in LP from a fixed base point p0 to p and αe (7(1). The precise form of the equivalence
relation is given in Appendix B.

A similar method was used in Sect. 3 to construct the central extension of the
loop group. We can now put both of them together and show that LP is in fact
an LG bundle. Let p = \_p, liP0tP), α] and g = [g, l(g\ u] represent points in LP and
LG, respectively. Consider the following expression:

[p, liP0tP), α] [g, l{g), u] = [pg, liP0ίP)*pl(g\ αw], (35)

where pl(g) is a path in the fibre of LP from p to pg. It is not difficult to convince
oneself that the equivalence class of the element on the right-hand side depends
only on the equivalence classes of the factors on the left-hand side and thus (35)
defines an action of LG on LP. In fact this action is free and gives to LP a
structure of a LG-bundle over LM. In this bundle we have following projections:

^> πL(p)eLM

From this diagram it is almost obvious that LP together with the projection Φ define
a string structure. This completes the proof that the vanishing of Eλ is also a
sufficient condition for the existence of a string structure.

4.4. Nonequίvalent String Structures. A natural question that arises is to what
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extent a string structure LP is determined by LP and LG. If we think about
LP as a £/(l)-bundle over LP, then the choice of the central extension LG fixes
this bundle over the fibres of LP; however, there remains a freedom in extending
this bundle from the fibres to the total space LP. One can easily enumerate all
nonequivalent extensions. Let LP(ί) and LP{2) be two string structures with
the corresponding Ό(\) curvatures (9 ( 1 ) and <9(2), respectively. By subtracting
Eqs. (31) and (32) with Θ=Θ{1) from the same equations with Θ = Θ(2), we
obtain

which shows that Θ ( 1 ) — Θ ( 2 ) is a basic form on LP. Thus

where H12 is a 2-form on LM. Since (9 ( 1 ) and Θ ( 2 ) are closed and integral forms
on LP, H12 is a closed and integral form on LM, i.e., it defines an element in
H2(LM, Z). Before we conclude that nonequivalent string structures are para-
metrized by 7f2(LM,Z), we must check that πf:H2(LM,Z)^H2(LP,Z) is an
injection. When M is 2-connected this can be deduced as follows:

(i) from the long homotopy exact sequence for the fibration LP(LM,LG) we
find that {πL)^:π2(LP)-*π2(LM) is a surjection (because π^LG) = 0);
(ii) from the Hurewicz theorem (i) implies that (πL)% is a surjection from
H2(LP, Z) onto H2(LM, Z);
(iii) by duality π£:H2(LM,Z)-+H2(LP,Z) is an injection. Therefore non-
equivalent string structures are parametrized by H2(LM, Z).

This concludes our discussion of the existence of string structures in the free
case.

4.5. Generalizations. The above discussion can be straightforwardly generalized
to the case where G = Gλ x ••• x Gn. Let ω = Y^m^{i\ m^eZ, be the cocycle that

^ i

defines LG. A gauge field in LP can be decomposed into components ja/(ι),
i=l,...,n, where j / ( ί ) is the projection of stf onto LieLGt. Let Ψ{

2\ ί=l,...,n,
be 2-forms obtained by substituting in (22) A with J / ( I ) . Then the only
modification which is needed to extend the previous discussion to this more
general case is to substitute everywhere Ψ2 by Σ mi Ψψ- The result is that the

necessary and sufficient condition for the existence of a string structure
corresponding to the cocycle ω is

λ® - 0 in H\LM, R).
i=ί

5. Existence of String Structures and Obstruction Theory

5.1. Extension of the Structure Group of a Principal Fibre Bundle. Our
discussion here will closely follow ref. [22]. Let (H, φ) be an extension of the
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group H in the sense of Sect. 3.2 and P(X, H) a principal //-bundle over some
space X. We say that this bundle admits a H extension if there exists a principal
bundle P(X, H) and a bundle map Φ.P-+P such that Φ(ph) = Φ(β)φ(h).

The existence of such extensions can be studied using the classification
theorem for principal fibre bundles [23]. This theorem says that for any group
G there exists a universal principal G-bundle EG(BG, G) whose total space EG

is contractible. Its base BG is then called a classifying space for principal
G-bundles and enjoys the following property: any principal G-bundle P is
obtained as a pullback of f*{EG\ where fP is a map from X to BG. The map

fP is called the classifying map of the bundle P. Moreover, any two maps fP and
f'p which are homotopic lead to isomorphic bundles P, P' and vice-versa.

5.1.1. Relation Between BH and /?#. For a given group the classifying space is
determined only up to homotopy equivalence. In the case we want to study this gives
us the freedom of choosing the classifying spaces B^ and BH such that they form a
fibration

whose fibre is the classifying space of N = ker φ. Since this property is less known
we recall briefly its proof.

The first observation is that since iVcH, it acts freely on E$, and we may
therefore consider the quotient E$/N. Thus E^ is also a principal JV-bundle over
Efi/N and, since E$ is contractible by hypothesis, BN = E$/N is a classifying
space for N-principal bundles. The second observation is that BN is a //-principal
bundle over B^. Indeed, starting with E^, we may build the associated bundle
Efj x χH/N, which is a H/N-bundle over B$. Since this associated bundle is
nothing else but E$/N itself, the conclusion stems from the fact that H is isomorphic
with H/N. The third observation is that we can build a space B'^ which has the
same homotopy type as B^ and which can be fibrated over BH with fibres BN.
We construct it as the bundle B'β = EHx HBN, associated with EH(BH, H) by using
the //-action on BN(B^H). The fact that B'^ has the same homotopy type as
Bβ can be seen formally by noticing that, locally,

B't~BNxBH^ E^/N x EH/H - E^/H xEH^Bnx EH,

where EH is contractible. Since classification of principal bundles is a homotopy
classification [23], we can forget the difference between B^ and B'^ and use the
latter as a classifying space for //-principal bundles (from now on we will write
Bfi rather than B'$).

The only thing to remember is that whenever we have an exact sequence

we may both consider H as a principal TV-bundle over H and B^ as a /?N-bundle
over BH (of course, the latter is not a principal bundle!). We will denote by p the
projection B^->BH.
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5.1.2. Condition for the Extension of the Structure Group. In order to extend
P(X,H) to P(X,H), it is necessary and sufficient to find a classifying map fp
from X to Bfi making the following diagram commutative:

Such a map fp can be considered as a section of the bundle f*(Bg), with
base X and fibre BN obtained by pulling back B^{BH, BN) along fP.

Finding a global section in a given bundle with base X and fibre F is of course
not always possible, and this is the subject of the obstruction theory [24]. The
idea is to build the section explicitly by using a simplicial decomposition of X:
there is no problem at the level of 0-simplices but when πo(F) Φ 0, there is a
potential problem at the level of 1-simplices; one can prove that the obstruction
lies in H1(X,π0(F)). If a lift of the 1-skeleton can be constructed, one tries to
extend it to the 2-skeleton, and so on. In general, in order to extend the section
from the n-skeleton to the (n + l)-skeleton, one finds an obstruction in

In the present case F = BN, and we find a sequence of obstructions given by
classes in H^X,^

5.1.3. Example: Spin Structures. As a particular example of these techniques,
let us consider the case where H = SO(ή), H = Spin (n) and N = Z 2 . Using πk(BN) =
7rfc-i(iV) we find that the only nontrivial homotopy group of BZi is πί(BZ2) =
π o(Z 2) = Z 2 . The only possible obstruction is therefore an element vv2 in
H2(M, Z2), and we recover the usual condition for the existence of spin structures.

5.2. Obstruction to String Structures. We now apply the preceding techniques to
the case of t/(l)-extensions of principal loop bundles. Then N, H and H are replaced
by [/(I), LG and LG respectively. The possible obstructions lie a priori in
Hn(LM, πn__!(BU{υ)). Since πn _ t (BU(1 )) = πn _ 2(U( 1)) and the only nontrivial homo-
topy group of Sι is π1(ί/(l)) = Z, we see that the only possible obstruction for a
string structure is a particular class in H3(LM, Z).

We must now identify this obstruction explicitly. Actually this has already been
done, at least for some cases, in Sect. 4. We remind the reader that we introduced
a map E (the composition of evaluation map and integration over the fibre S1)
going from H\M) to Hk~1(LM). We saw that the obstruction could be written as
Eλ. We will see that, in general, λ is an element of H4(M, Z) and is actually a
characteristic class since it comes from // 4(5G, Z) via the classifying map. Indeed
we have the following picture:

where fL is the classifying map of LP(LM, LG) and fL the classifying map of
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LP(LM, LG). We know (cf. A.5) that H3(BLG, Z) = Z and H3(BLΦ Z) - 0; therefore
the obstruction is the characteristic class obtained by pulling back (via fL) the
generator of the third cohomology of BLG. One can convince oneself that BLG can
be identified with the space of loops LBG of BG, but H3(LBG) ~ H\BG\ a property
which can be proved by using the evaluation map S1 x LBG^>BG and integrating
over the fibre (notice that H\BG) is the smallest cohomology group of BG when
G is semi-simple since H\BG) ~ H3(G)). We have the following diagram

H3(LM,Z) Δ

The obstruction can therefore be written as EλeH3(LM, Z), where λeH*(M, Z) is
a characteristic class.

In the case where P is the spin bundle, λ is actually the integer class \pu

where px is the Pontrjagin class of the tangent bundle.
Notice that Eλ = 0 does not necessarily imply 2 = 0. We discussed this already

in Sect. 2.
Finally, we would like to remark that there is actually a faster—but more

abstract-way to arrive at the same conclusion. This method was used in [1]. The
idea is to consider the exact sequence

0—> (7(1 )-^LG-^LG >0

and the associated cohomology sequence

, (7(1)) ̂ H\LM,LG))^>H\LM,LG)^->H2{LM, (7(1)).

It happens that such a sequence is meaningful, at least in the lowest degrees,
although LG and LG are not abelian [25]. Moreover, the bundles LP and LP
can be considered as elements of H1(LM,LG) and H1(LM,LG), respectively.
Therefore,

such that φsrs(LP) = L P ] o [ L P e k e r δ s | e ] ,

i.e., δ^(LP) = H2(LM, (7(1)) = 0. Hence the obstruction is equal to δ^(LP) and lies in
H2(LM, (7(1)), which, by the universal coefficient theorem [21], can be related to
H3(LM, Z). The same homological argument tells us that if LP1 and LP2 are two
nonequivalent lifts, we obtain φJLPι) = φ^(LP2) yielding φ^(LPι—LP2) = 0,
i.e., LPί - LP2ei*H1(LM, (7(1)). Then LP2 = LP, + i^(β), where βeH\LM, t/(l)),
and we find that nonequivalent lifts are parametrized by elements oϊHι(LM, (7(1)).
This, in turn, can be related to H2(LM, Z), cf. Sect. 4.4.

6. Examples

6.1. String Structures on Coset Spaces G/H. Let us assume for simplicity that both
G and H are simply connected, and that G is simple while H = H1 x ••• x Hn is,
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in general, a product of n simple factors.
On any coset space G/H we have a canonical //-bundle

G/H

whose total space is the group G itself. The corresponding loop bundle is

LH-±-+ LG

L(G/H)

Let LG be the basic central extension of LG. The induced bundle ifLG over LH
defines a central extension of LH associated with the cocycle.

n

ωG = Σ m$uH\
i=l

where ωHι is the basic cocycle on LHt and m^eZ is the embedding index2 of Ht

in G. It is obvious that for this particular central extension of L//, LG defines a
corresponding string structure in the bundle LG(L(G/H), LH).

With our assumptions G/H, is a 2-connected space and therefore always a spin
manifold. We can also consider the existence of a string structure for the spin
bundle S(G///, Spin(d)), d = dim (G) — dim (//). This bundle reduces to the canonical
//-bundle G and we have

S(G/H9 Spin (d)) - G(G/ίΓ, H) x HSpin (d),

where the right-hand side consists of equivalence classes \_{gh9 p(h~1)s)']9 geG,
seSpin (d), heH and p:H -• Spin (d) is the embedding i ία the isotropy representation
of //. The corresponding loop bundle is isomorphic to LG(L(G/H)9 LH) x LH

L Spin (d), where we use the embedding pL:LH -»L Spin (d) induced by p. Note also
that the total space of the bundle LG is a subspace of the total space of the loop
bundle LS. Thus a string structure (if it exists) in the loop bundle LS corresponding
to the central extension LSρin(d) induces a [/(l)-bundle over the total space of
the bundle LG and its Chern-class (up to a factor of 2π) restricted to the fibre LH
is represented by the cocycle ωp on Lie LH given by

where mP are the indices of Ht in Spin (d) by the embedding p.
Since G is simple, H2(LG, Z) is one-dimensional. Therefore, even though the

space of nonequivalent cocycles on Lie LH is w-dimensional, there is only a 1-
dimensional subspace of those which correspond to £/(l)-bundles over LH that

2 The embedding index is mί = {nHJnG)(cι(Ad G)/c1 (Ad //,)), where nG and nHi are the dual Coxeter
numbers of G and Hv respectively, and rx(r) is the second index of the representation r of Ht defined
by Tr(ίβίft) = — c ^ r ) ^ , with ta being the generators of H, in the representation r
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can be extended over LG. Using this observation we can deduce that the spin
bundle on G/H has a string structure if and only if the cocycles ωG and ωp on LH
satisfy ωp = mωG, where m is some integer.

Remark. Since G/H is 2-connected, we find that the above relation is a condition
for the Pontrjagin class of G/H to vanish.

Example 1. Spheres Sn

Since Sn = Spin(n + 1)/Spin(rc), the canonical and the spin bundle coincide and
there is no problem with defining a string structure. This of course agrees with
the well-known fact that p^S") = 0.

Example 2. Quaternionic projective spaces HPn

Quaternionic projective space HPn = Sp(n + 1)/Sp(l) x Sp(rc) is a ^-dimen-
sional spin manifold. For the canonical Sp(l) x Sp(n) bundle we find ω S p ( π + 1 ) =

ωsP(i) + ωsP(«)? w h i l e for t h e s p m bundle we get ωp = nω S p ( 1 ) + ωS p ( π ), which shows
that ωp is proportional to ωS p (" + 1 ) only for n = 1 and this is the only case where
one can define a string structure for the spin bundle of HPn. Once more this agrees
with px{HPn) Φ 0, n ^ 2 [26], while, for n = 1, HP1 = S4, and this case reduces to the
previous example. Notice, however, that Sp(n + 1), considered as a principal bundle
over HPn always admits a string structure.

Remark. Real projective spaces RPn are not simply connected. On the other hand
complex projective spaces CPn admit a spin structure only for n odd. Since the
total Pontrjagin class is p(CPn) = (1 — x)n + 1, where x is a generator in dimension
2, px(CPn) Φ 0 except for n = 1. However, CP1 = S2, so this example is rather trivial.

6.2. String Structures in Hopf Bundles. Consider S£/(2)-principal bundles of the
form

SU(2)-+S*n + 3

i n ^ l .
HP"

They correspond to the nontrivial S£/(2)-instanton on HPn with k=ί, and it is
well-known that the second Chern-class is nontrivial. Thus these bundles cannot
admit a string structure. This can also be checked explicitly as follows. The total
space of the corresponding loop bundle, LS4n + 3, n ^ 1, is 2-connected which implies
that any £/(l)-bundle over it is trivial. This excludes the existence of a string
structure since it would lead to a trivial £/(l)-bundle over the fibres LSU(2) (cf.
Remark 3 in Sect. 3.5).

Appendix A. Homotopy Groups of Loop Spaces and Loop Groups

A.I. Long Exact Homotopy Sequence of a Fibratίon. The basic tool in computing
the homotopy groups of a fibration

F > E

I
B
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is the long exact sequence of homotopy groups [21],

Here i^ and π# are the homomorphisms between homotopy groups induced, respec-
tively, by the inclusion of the fibre F in the total space E and the projection onto
the base M. The extent to which the fibration is not a product is measured by the
homomorphism δ% called the "homotopy-holonomy" operator.

Example 1. Universal G-bundle EG(BGi G).
Since EG is contractible, all the homotopy groups of EG vanish. Then one obtains

the well known relations

πk(G) = πk+1(BG).

Example 2. P{M, G) a principal bundle, and G a simply connected Lie group.
Since G is a Lie group, we must have πt (G) = 0, i ^ 2, and the long exact

homotopy sequence implies that

= π£(P), i = 0,l,2.

In particular, if M is 2-connected, the total space P is 2-connected as well.

A.2. Homotopy Groups of a Loop Space. The loop space LX can be viewed as a
fibration

ΩX-^LX

X

where ΩX is the space of based loops at xoeX, i is the natural inclusion and π
is the projection onto the origin of the loop. It is a standard fact3 in topology
that πk(ΩX) = πk+ί(X). Since any closed sphere in X can be lifted to LX, for
example as a sphere of constant loops, the δ% map is trivial. Therefore the homotopy
sequence can be truncated after each 5%, so that we get

^ ^πk(X)^ 0

where i^ is one to one while π^ is onto. Consequently,

πk(LX)/πk(X) = πk + 1(X).

In particular, if X is 2-connected, LX is simply connected.

3 As a matter of fact this can also be shown by considering the homotopy sequence associated with the

fibration of the space, PX, of paths in X with fibre ΩX and base X



String Structures on Loop Bundles 375

A3. Homotopy Groups of LG. Since the loop group LG is topologically a product
LG ~ G x ΩG, the homotopy groups factorize [21],

πk(LG) = πk(G) x πk(ΩG) = πk(G) x πk+1(G).

If G is a simply connected simple Lie group, this implies no(LG) = πλ{LG) = 0 and
τr2(LG) = π3(G) = Z.

A.4. Homotopy Groups of LG. Consider the case where G is simple and simply
connected. Since LG is a (7(l)-bundle over LG and πfc(ϊ7(l)) = 0, fc > 1, we must have

πk(LG) = πk(LG\ k^3.

For fc ^ 2 the homotopy sequence becomes

Here δ^ is given by evaluating the Chern class of LG on the generator of
π2(LG). If LG is the basic central extension, δ^ is an isomorphism and we get π^LG)
= π2{LG) = 0. For higher extensions associated with cocycles mω, meZ, we find that
π^LG) = Z/mZ and π2(LG) = 0.

A5. Homotopy Groups and (co)homology Groups of BG,BLG and BιG. Let G
simple and simply connected, and LG the basic central extension. Then, from A.I
and A.4, we have

πi(BG) = 0 f ^ 3 , π 4(£G) = Z,

The Hurewicz theorem for a ^-connected space X (q ^ 1) reads

π.(X) = H t (X, Z) for i^tf + 1.

On the other hand the universal coefficient theorem gives

H\X, Z) - Ht(X, R) ® Tt _ i (X),

where T^^X) is the torsion part of H^X, Z). Henceforth we find

//'(5 f G, Z) = 0 Ϊ ̂  3.

Appendix B. £/(l)-Bundles on Simply Connected Spaces

On a simply connected space X a closed 2-form ω, such that ω/2π represents an
integer cohomology class in H2(X, R), defines, up to an isomorphism, a principal
(7(1) fibre bundle P over X. Reciprocally, such a £/(l)-bundle determines the
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cohomology class of ω. Although this property is well-known, we prefer to recall its
proof here, since some of the ingredients entering the derivation play an important
role in Sect. 4.

In order to establish the above correspondence, we first fix a base point xoeX
and consider the set of triples

& = {[x, ί(xo,χ)> <*]; xoeX> l{XOtX) a path in X from x0 to x, αel/(l)}

along with the equivalence relation

[x, Z(τ), α] ~ [x', Z'(τ), α'] iff x = x' and α ' ^ / ' * / " 1 ) ^

where

where σ(ΐ * Z~*) is any surface in X whose boundary is a closed loop ΐ * Z~1 obtained
by going first along path Γ and then back along Z.

Remark. The integrality condition for ω/2π implies that the phase A(l'*l~^) does
not depend on the choice of σ(ΐ * l~ 1 ). Such a surface always exists since X is simply
connected.

To show that 0>j ~ is a ί/(l)-bundle, we exhibit a projection π onto the base and a
free 17(1) action along the fibres. They are defined as follows:

π([x,/(χ0,χ),α]) = x,

Rβiίx, hXOtX),«]) = [x, /(JCOfJφ αj8], J8 in [/(I).

It is obvious that these definitions do not depend on the representative of an
equivalence class in 0*. By choosing a local cover in the space of paths in X that
originate at x0 one can also exhibit an explicit local trivialization of 0/ ~.

Finally we describe a connection θ in 0>l~ whose curvature is equal to ω. The
easiest way to define such a θ is to give an explicit prescription for the parallel
transport in ^ / ~ . Let l(xX) be a path in X and [x, Z(xoJC), α] a point in ^ / ~ which we
want to parallely transport along l{XtXΎ The result is [x', 1{XiX>)*l(XOtX), α], where the
path Z(x '̂) * Z(JCo>JC) from x 0 to x' is obtained by the usual composition of the path
hχo,χ) w ^ n hχ,χ') ^ n c e more one can check that this does not depend on the
representative in the equivalence class and defines the correct connection θ.

Remarks.
1. This representation of line bundles using equivalence classes of paths and phases
is particularly convenient if we want to study explicit lifts of the action of some
symmetry group, S, on the base, to the total space of the bundle. In the present case S
is DifK1 and its action has the following properties: (1) the point x0 is a fixed point of
the S action, (2) ω is S invariant. In such a situation an explicit lift is given by

six, hxo,x), α] = [sx, sl(wh α], seS,

where sliX0fX){τ) = s(liXOtX){τ)) is the image of the p a t h Z ( X o ? x ) under s.

2. The previous construction of the 17(1) bundle can also be described as follows. Let

PX0X be the space of based paths in X, i.e., the space of paths Z: [0,1] -• X with origin
x0,1(0) = x0. Let ΩXoX be the space of based loops in X which carries a natural group
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structure. Then, the mapπ P^X-^X associating a path with its endpoint is a
bundle projection. Indeed, if / and Γ are two paths with the same endpoint, then
Ϊ^Γ1 is a closed loop with origin x0, hence an element of ΩXoX. We may consider
PXoX as a principal bundle over X with structure group ΩXoX, and π being the
projection. Let us show that a closed 2-form ω on X, such that ω/2π represents an
integer cohomology class, determines, up to an isomorphism, a principal U(l)-
bundle P over X.

Consider the action of the group ΩXoX on (7(1) defined by α' = (κ )α, where
KEΩXQX and Δ(κ) = Qxp(—i J ω), with σ(κ ) being any 2-surface in X such that

σ(κ)

dσ = κ and α, α'e£/(l). Using this action, we build the associated bundle P —
PXoX x ΔU(1) by identifying (/, α) with (lκ, Δ^'1)^). P is a bundle with base X and
fibre 1/(1). There is no longer any ΩXQX action on P (since we have divided by this
action!), but there is a free right U(l) action defined by [/, ot]β = [/, α/?]. This proves
that P is a 1/(1) principal bundle.
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