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Abstract. In this paper we consider generalizations in 4 dimensions of the
Einstein-Maxwell equations which typically arise from Kaluza-Klein theories.
We specify conditions such that stationary solutions lead to non-linear
g-models for symmetric spaces. Using both this group theoretic structure and
some properties of harmonic maps we are able to generalize many of the known
existence and uniqueness theorems for black holes in Einstein-Maxwell theory
to this more general setting.

1. Introduction

The advent of Einstein’s non-linear theory of General Relativity seemed to open up
the possibility of finding particle-like solutions of the classical equations of motion
which are singularity free. However work by Serini [ 1], Einstein and Pauli [2], and
Lichnerowicz [ 3] established that if a solution is asymptotically flat, topologically
trivial and globally stationary (i.e. admits an everywhere time-like Killing vector
field) then it must be flat space. In modern parlance one might say that Einstein’s
vacuum theory does not admit strictly stationary “soliton” solutions which are
topologically trivial and without singularities.

In fact Lichernowicz’s argument does extend to topologically non-trivial
solutions of the form X x R, where X is a complete asymptotically flat spacelike
surface with perhaps more than one asymptotic region, but it was necessary for
him to assume that the Killing vector is everywhere time-like. The possibility of
more than one asymptotic region did not appear explicitly in his work, but in view
of the “wormhole” structure of the constant time surfaces of the Schwarzschild
solution discovered by Finstein and Rosen [4] it is evidently necessary to allow for
this case. At the time Finstein and Rosen appeared to believe that they had
obtained a singularity free solution, but as the global structure of the Schwarz-
schild solution became better understood it became clear that there was indeed a
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singularity, but not at the “throat” and not at the partial Cauchy surfaces but in
their future and past. Furthermore the solution is not everywhere static.

During the late 50’s work by the Princeton school [5] provided a better
understanding of the possible topologically non-trivial initial data for Einstein’s
vacuum and Einstein-Maxwell theory, but the time evolution of such data
remained obscure until the study of gravitational collapse in the 60’s and 70’s led to
the realization that:

i) Space-time singularities seemed inevitably to arise during gravitational
collapse but that there singularities appear to be hidden from infinity behind event
horizons, inside what became known as “black holes”.

ii) That the endpoint of the collapse is almost independent of the initial
conditions — the only time independent final states being black hole solutions
which are specified by just a few parameters — the mass and angular momentum in
the vacuum case and in addition the electric and magnetic charges in the Einstein-
Maxwell case.

By the time of the 1972 Les Houches Summer School [6] and certainly by the
time of the Finstein centennial 1979 [7] there existed a chain of theorems and
arguments which almost completely established that the most general asymptoti-
cally flat black hole solutions were either

i) the Kerr-Newman family [8] or

ii) the Papapetrou-Majumdar metrics [9].

Since 1979 there has been no fundamental change in this general picture but a
number of new results have been obtained, the most important of which are

i) the proof of the “Positive Mass Theorem” [10];

ii) the completion by Bunting [11] and Mazur [12] of the programme
initiated by Carter [13] of establishing the uniqueness of the Kerr-Newman
solution amongst axisymmetric stationary solutions with a single horizon;

iii) the extension by Bunting and Masood-Ul-Alaam [14] of the original Israel
theorem [15] to exclude multi-static vacuum black holes.

These papers are notable for the introduction of new techniques. Witten
exploited concepts connected with supergravity, in particular the concept of a
Killing spinor. Bunting and Mazur make use of the harmonic map and non-linear
og-model nature of the stationary field equations. The work of Bunting and
Masood-Ul-Alaam makes essential use of the Positive Mass Theorem [10]. This
theorem also allows a simple extension fo the Serini-Einstein-Pauli-Lichnerowicz
theorem (see [16] and our Theorem 2.8).

The introduction of topological ideas into flat space field theory and in
particular the notions of a “soliton” in the 70’s prompted a reexamination of the
“particle” concept in General Relativity and the extent to which black holes could
be regarded as solitons [17]. Both classically and quantum mechanically a number
of arguments were advanced suggesting that only the extreme Reissner-
Nordstrem black holes (possibly magnetically rather than electrically charged)
could be regarded as solitons. In particular in the absence of conserved vector
charges there are no solitons. This view was strengthened and the links with other
parts of soliton theory made closer with the construction of extended supergravity
models. It was discovered that the charge in the Reissner-Nordstrem solution is a
“central charge” in the sense of supersymmetry and the inequality |Q|<kM is a
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Bogomolny type inequality which is saturated only in the case that the solution
(regarded as a solution of the supersymmetric extension of Einstein-Maxwell
theory)is “supersymmetric”, i.e. admits a Killing spinor [18, 19]. This opens up the
question of the soliton and black hole structure of supergravity theories. It soon
becomes apparent that from the point of view of the purely bosonic fields the
relevant field equations all have a very similar structure which is also shared by
theories obtained by dimensional reduction from higher dimensional gravity
theories with scalar and abelian vector fields. The scalar fields fall into a non-linear
g-model and have a rather simple coupling to the vector fields, the entire model
exhibiting a large amount of on-shell and off-shell (duality type) symmetries.
Further reduction to 3 dimensions increases the symmetry, since by dualization
the vector fields may be replaced by scalar fields, and we obtain 3-dimensional
gravity coupled to a large non-linear g-model.

The symmetries may be used to generate whole families of new solutions from
old ones and as such have been extensively studied [20-23]. It is the purpose of the
present paper to combine the global approach based on uniqueness theorems with
the solution generating technique based on symmetries of the local field equations
to obtain a fairly complete picture of the black hole structure of the wide class of
theories envisaged here.

A further link with soliton concepts was established with the discovery of the
“complete integrability” of the 2-dimensional equations describing stationary,
axially symmetric solutions of Einstein’s vacuum respectively the Einstein-
Maxwell theory [24, 25]. Adaption of the “Inverse Scattering Method” and related
techniques known from classical soliton equations like KdV or Sine-Gordon
provided an effective new tool to produce hitherto unknown families of exact
solutions with a 2-parameter abelian isometry group [26-28]. The extension of
these techniques to the class of theories considered here will be reserved for a
forthcoming publication [29].

The organization of the paper is as follows. In Sect. 2 we describe generalized
Einstein-Maxwell systems in four space-time dimensions as they typically arise in
Kaluza-Klein theories and discuss the concept of stationarity for its solutions. In
Sect. 3 we show how the dimensional reduction to 3 dimensions — relevant for
stationary configurations — leads to non-linear g-models for symmetric spaces
G/H and discuss some group theoretical points connected with their particular
structure. Furthermore we construct the 2-dimensional theories describing
stationary, axially symmetric solutions.

Section 4 is devoted to stationary, spherically symmetric solutions given in
terms of geodesics of G/H. In particular the conditions for these solutions to
represent black holes are analyzed. Section 5 contains the boundary conditions for
general black holes, whereas in Sects. 6 and 7 we generalize known existence and
uniqueness theorems (No Hair theorems etc.) for static respectively rotating black
holes.

In Sect. 8 we try to give a picture of time-independent solutions describing
several black holes in equilibrium. In view of the fact that very little is still known
about these very interesting configurations our discussion remains necessarily
somewhat sketchy.
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Finally in Sect. 9 we list some open problems accumulated in the course of our
attempt to present a comprehensive picture of black holes from Kaluza-Klein
theories.

Appendix A contains fundamentals and notation about non-compact Rieman-
nian and pseudo-Riemannian symmetric spaces. In Appendix B we give a
complete list of non-linear o-models arising from the theories discussed in Sects. 2
and 3 and some examples for the static truncation of such g-models.

2. Description of the 4-Dimensional Theory

Inspired by the experience from Kaluza-Klein respectively extended supergravity
theories we shall study field theories (in 3 4 1 space-time dimensions) with massless
scalar and vector fields coupled to gravity where the scalars form a G/H non-linear
g-model and the field strengths of the vectors transform with some representation
of the global (constant parameter) symmetry group G.

In particular we are interested in stationary solutions, i.e. solutions allowing
for a time-like Killing vector field. For those we obtain, after suitable duality
transformations, a dimensionally reduced theory with scalars coupled to gravity in
3 space dimensions. Sometimes (¢.g. stationary, axisymmetric solutions) it is also
convenient to perform the reduction to 3 dimensions for a space-like Killing vector
field leading to a theory in 2+ 1 space-time dimensions. In the stationary case the
scalar fields of this dimensionally reduced theory are the original scalar fields from
the G/H o-model, two scalar fields from gravity (the norm 4 of the Killing vector
playing the role of a gravitational potential and the twist or NUT potential ) and
two scalars (electric and magnetic potential) from each vector field. It is well known
that the two scalars from gravity form an SL(2)/SO(2) o-model [22]; we are,
however, interested in those cases where the resulting 3 dimensional theory has a
much larger symmetry such that all scalars form one G/H o-model.

The coset space G/H should be a non-compact Riemannian symmetric space
[30],1i.e. G is a non-compact Lie group and H its maximal compact subgroup. (The
trivial case that G=H is compact leads to a trivial o-model with no scalars, but
nevertheless the action of the group G on the vectors is of interest.) Furthermore
the coupling to the vector fields should be such that the resulting energy density
Tyo 1s positive definite. A space-like Killing vector field will then lead to a G/H’
g-model in 2+1 dimensions with G/H' again a non-compact Riemannian
symmetric space. A time-like Killing vector field yields a G/H o-model in 3
dimensions with the same group G, but H is a non-compact version of H' (which
was the maximal compact subgroup of G) such that G/H is a symmetric space
with indefinite metric where the signature of those scalars which arose from vector
fields has been changed.

This situation is illustrated with a few examples in Table 1 (some of them are
the bosonic sector of extended supergravity theories).

2.1. Non-Linear o-Models Coupled to Vector Fields and Gravity

Consider a Lagrangian field theory over a space-time manifold 2 with coordinates
x* and metric g,4(x) and fields with values in a target space @ with coordinates ¢’
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Table 1. Some examples for non-linear g-models in three dimensions

G/H' G/H G/H 3+ 1 dimensional theory
SL(n —i-_g ELL(" +2) GLn)/SO(n) n +4.1 dintlension.al .
SO(n+2) S0(n,2) Einstein gravity with
n Killing vectors
SU22,1) SU22,1) Einstein-Maxwell
T oo uy/u() .
S(U2)x U(1)) S(U1,1)x U(1)) (N =2 supergravity)
S0(8,2) S0(8,2) SO(6) x SO(2,1) .
— —— — —_— N =4 supergravity
SO(8) x SO(2) 50(6,2) x SO(2) S0(6) x SO(2)
S0(8,8) SO(8, 8) SO(6,6) x SO(2,1) N =4 supergravity
SO(8) x SO(8) S0(6,2) x SO(2,6) S0(6) x SO(6) x SO(2) + supersym. Maxwell
(10 dim. supergravity)
Eg(+8/S0(16) Eg(44)/S0*(16) E;4+7/SU(8) N =8 supergravity

(11 dim. supergravity)

and metric 7;; The action for such a non-linear g-model coupled to gravity

Se= ; V/8dx(—3R(x)+1g*(x)0,6'(x)0,F ()7 (H(x)) (2.1)

leads to the field equations
Raﬂ - aa(fiaﬂd_’jfij(@ =0, (2-2)
D*0,$'(x)=0. (2.3)

The solutions of Eq. (2.3) are harmonic maps from 2 (with metric g) to @ (with
metric 7). We are interested in particular in the case where @ is a non-compact
Riemannian symmetric space G/H [30, 31]. Using the notation of Appendix A,
which contains a description of non-linear o-models based on symmetric spaces,
we can rewrite Egs. (2.1-3) in the form [compare Egs. (A6, 7, 11, 13)]

Seim= [ V/2dx(—3R+1g"<T,,Tp))., @.1)
R,y —<JJp»=0, (2.2
DeJ,=0, (2.3)

where J=4M~'0M.

We want to add vector fields to the action (2.1) in such a way that the resulting
field equations are G-invariant if the (abelian) field strengths together with their
duals are transformed with a suitable representation ¢ of G. The situation is
somewhat complicated by the fact that the action of G may involve duality
transformations (e.g. U(1) for Einstein-Maxwell) which transform solutions of the
field equations into solutions but which are not symmetries of the action (“on-
shell” symmetries).
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Let there be a k-dimensional column B, =(B) (I=1, ..., k) of real vector fields

. 1
with field strengths G,;=0,B;—0d,;B, and their duals *G*= v PG,
8
(**G= —G) satisfying Bianchi identities V,*G**=0. The most general gauge
invariant action quadratic in the field strengths is

Sy = [ Vedx(~1 GLu(@)G" A @)*G7)), (2.4)
where p=(y;;) and v=(v,,) are real symmetric matrices depending on the fields ¢*
parametrizing the coset space G/H. This action yields field equations

V(uG* —v*G*)=0, (2.5)

which can be interpreted [32] as Bianchi identities V,* H* =0 for field strengths
H,;=0,Cy—04C, derived from dual potentials C,=(C,;). We now have 2k vector

B
fields 4, = C“ and field strengths F,; = 0,4, — 0,4, satisfying the linear relation

a.

" F,,= YM*F,, (2.6)
wit
_— 71T> = <u+vu“v vty >
Y= , M= R LT, 2.7
<—n 0 o) e ) ey @7

where # is some real k x k matrix and the symmetric matrix M satisfies YMY
= —M ™', The matrix 7 is, of course, quite unnecessary at this point, but will
become useful if we want the group elements P(x)e G parameterizing the coset
space G/H (compare Appendix A) to be represented by triangular matrices. The

equations R
VF F*= —V(YMF*)=0 (2.8)

can be interpreted as field equations and Bianchi identities for either G,; or H ;.
These equations are G-invariant under the transformation

G33:F,3—0(3)F ., (2.9)

provided the real representation ¢ satisfies g(g~')"=Y '¢(g)Y and we can
construct a matrix M(¢) of the form (2.7) depending on the scalars ¢' in such a way
that

Gag:M(p)—a(g ") M(P)ag ). (2.10)
The contribution from S, to the stress tensor
T = —GLuG, +1g,,GTuG»= —LFT MF, = —3FLY*F,  (2.11)

as well as the contribution to the scalar field equations

oSy b OV g o8
5(]§i - VGaﬂ <5¢1 G 56: G l/-Fatﬂ 5¢z F (2.12)

will then be explicitly G-invariant. Since Tgf must be positive for a physically
meaningful theory, the matrix M (and hence u) must be positive definite.
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In order to construct such an M consider a (not necessarily irreducible) 2k
dimensional real matrix representation ¢ of G

0:G25—-5=0(3) (2.13)
such that (g~ 1)"=Y " !gY and
@=X"'G" )Y X=X"17Y" 157X (2.14)

with some positive definite real symmetric matrix X satisfying YXY=—X"".

Given PeG and g(P)=P, we find g(M)=X~'M, where M is the real symmetric
matrix PTXP transforming as required by Egq. (2.10). Furthermore
YMY=—M"", and therefore M has exactly the structure (2.7) with real
symmetric k x k matrices u and v.

Collecting all the terms in the Lagrangian and the field equations describing
the coupling of the gravitational field g, the vector field strengths and their duals
comprised in F,; and the scalars ¢' parametrizing M, we obtain [using Eq. (A.11)]

LO=| (ARG g M 10,M, M0 M) —4G(@)GP —v(§)*G)), (2.15)

Ryp= —4FLNEy+ LV 10,6, M~ 10,0, (2.16)
V(MF*)=0, 2.17)

_ _ 1 =
VM~ 10,M)= — 2—E(F““FZ,,M)p,, (2.18)

[see Eq. (A.8) for the definition of (...), ]. Let us finally remark that these field
equations are scale invariant if we assign scaling dimension one to g,, and zero to
A, and ¢'.

2.2. Stationarity and Staticity

In this article we shall consider only stationary space-times which are asymptoti-
cally flat (or possibly asymptotically Taub-NUT). In addition we require that the
matter fields tend asymptotically to the “classical vacuum” configuration, i.e. the
scalar fields tend to constants and the vector field strengths to zero. A detailed
discussion of the asymptotic conditions for the Einstein-Maxwell theory which
can be readily generalized to our case can be found in [33]. Furthermore we shall
assume that the space-times considered fulfill the standard causality requirements
(compare [34] for a precise formulation).

There are two different definitions of metric stationarity, a weaker and a
stronger notion, which are occasionally confused. Moreover, since in addition to
the metric we are concerned with scalar fields and vector field strengths, there are
many different possible notions of stationarity and staticity. We shall now define
the notions of stationarity and staticity used in this paper. Let us begin with
(‘strict ) metric stationarity.

Definition 2.1 ( Metric Stationarity ). A space-time manifold is said to be stationary
if it admits a Killing vector field K which is time-like near infinity.

Definition 2.2 (Strict Metric Stationarity). A stationary space-time is said to be
strictly stationary if K is everywhere time-like.
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Definition 2.3 (Stationary Configurations). A field configuration is called (strictly)
stationary if the metric is (strictly) stationary and the Lie derivative with respect to
K of the scalar fields and the vector field strengths vanishes.

Even if the Einstein equations hold, it is not necessarily the case that
stationarity of the metric implies stationarity of the configuration. Counter-
examples for scalar fields are given in [35] and for vector fields in [36].

Definition 2.4 (Metric Staticity). A (strictly) stationary space-time is said to be
(strictly) static if the Killing vector field K is hypersurface orthogonal, i.e. if
K. ;K,;=0.

[a; 87> 71

Definition 2.5 (Ricci Tensor Staticity). A stationary space-time is said to have a
static Ricci tensor if KR, ,K;=0.

Remark. It can be shown by purely local arguments that a static metric has a static
Ricci tensor [13]. The converse would require a global “Lichnerowicz type”
argument.

In order to define staticity for the scalar and vector fields it is necessary to
assign each field a time reflection parity such that the action (2.15) is time reflection
invariant. This assignment is in general not unique. Consider, e.g., the Einstein-
Maxwell system: the electromagnetic field F,; is usually considered as temporal
vector field strength F(*), i.e. the magnetic field B,=*F,;K” vanishes for a static
solution; due to the duality invariance of the field equations F,; could as well be
considered as temporal pseudo vector field strength F(™) with the consequence
that a solution would be called static if the electric field E,=F,;K* vanishes.

Definition 2.6 (Strong Staticity). A field configuration consisting of a metric,
temporal scalar fields ¢*’, temporal pseudo scalars ¢, temporal vector field
strengths F**) and temporal pseudo vector field strengths F(™is said to be strongly
static if the metric is static and

1. ¢7)=0,

2. F;K,,=0 and

3. *F(;)K,,=0.

Remark. Given a strongly static field configuration we can obtain by the action
(2.9, 10) of the group G new configurations with a static metric which will in general
not be strongly static.

Definition 2.7 (Static Subgroup of G ). The subgroup G, C G preserving conditions
1, 2 and 3 above will be called the static subgroup of G.

Just as in Maxwell theory stationarity allows the introduction of scalar
potentials, so for a stationary configuration of the type of theory considered we can
introduce time-independent electric and magnetic scalar potentials A,

F,KP=0,4. (2.19)

Note that 4 contains electric and magnetic potentials since F,; comprises both G,
and *G,; [compare Eq. (2.6)]. In a gauge in which the Lie derivative of the vector
potentials 4, vanishes the scalar potentials 4 are the time-components K*A, of the
vector potentials.
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We are now in a position to prove a generalization of the result of Serini,
Einstein, Pauli and Lichnerowicz ruling out non-trivial stationary asymptotically
flat and singularity free configurations.

The mass of any stationary asymptotically flat configuration is given by the
Komar integral

1
= § K¥fx 2.20
m 87I i ap > ( )
where the integral is taken over any space-like 2-sphere at infinity. Similarly the
electric and magnetic charges may be expressed as

0,= ;—n § MF*#ds,,. (2.21)

Stationarity and use of the field equations allows one to derive the identity
K® = —R*K,= —(A"MF*),,. (2.22)

Theorem 2.8 (Generalized  Serini-Einstein-Pauli-Lichnerowicz ~ Theorem). A
stationary solution of Eqs. (2.16-18) with an asymptotically flat globally hyperbolic
space-time X, whose Cauchy surfaces are complete with a single asymptotic region
and for which

(a) 2 is Ricci-flat
or

(b) the Cauchy surfaces are simply connected
is empty Minkowski space.

Proof. To begin with we integrate Maxwell’s Eq. (2.8) over a Cauchy surface and
use Stokes’ theorem to deduce that the charges Q , vanish. If the Cauchy surfaces
and thus X are simply connected the scalar potentials A are globally defined. We
can integrate the identity (2.22) over a Cauchy surface and use Stokes’ theorem
again to obtain the mass m of the space-time. In case (a) the mass vanishes
immediately. In case (b) we get a formula in terms of the charges Q, and the
asymptotic values of the potentials

m= '%AgQA-

Thus in both cases the mass vanishes. Since the stress tensor satisfies the dominant
energy condition we may use the “Positive Mass Theorem” [10] to deduce that
space-time is flat, the scalar fields are constant and the vector field strengths vanish.

Remark. Even in case (a) our theorem is stronger than the original result of
Lichnerowicz [ 3] who assumed strict stationarity. This is possible because we used
a 4-dimensional formulation and the “Positive Mass Theorem”. The result rules
out the existence of ergoregions without black holes or singularities.

Remark. The assumption of simple connectedness in case (b) is in fact quite
reasonable since Gannon [37] has shown that a null-geodesically complete
asymptotically flat space-time cannot have non-simply connected global Cauchy
surfaces.
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3. Dimensional Reduction

In the following we shall consider only stationary respectively stationary,
axisymmetric field configurations. For those it is possible to reformulate the
4-dimensional field theory described in Sect. 2 in terms of fields defined on the 3-
respectively 2-dimensional space of orbits 2 respectively X, of the corresponding
isometry group acting on X. This procedure is quite analogous to the “dimensional
reduction” technique for Kaluza-Klein theories and will be described in the two
subsequent sections.

3.1. Dimensional Reduction from 4 to 3 Dimensions

In this section we shall demonstrate how field configurations allowing one Killing
vector field give rise to a “dimensionally reduced” 3-dimensional field theory. Since
this reduction can be performed irrespective of the signature of the Killing vector
field it can be applied to time-translations as well as axial rotations, but for reasons
of simplicity we shall use the notations for time-translations. In case we want to
explicitly refer to axial rotations we shall indicate this with a prime on the
corresponding field.

For a field configuration allowing a Killing vector field K we can choose a
gauge such that the Lie derivative of the vector potentials B! vanishes and choose
adapted coordinates such that the isometry is just a translation (e.g. K= g) All
the fields G,4, ' and Bf will then depend only on the remaining three coordinates
x? (a=1,2,3) parametrizing the orbit space X5 of the action of K. In these
coordinates K, has the form K, = (4k,, 4) and the metric g,; can be decomposed as

1
. — oyt Ak e, Ak, (1)

Ak A4

We will use the scaled metric h,, on the three dimensional orbit space X5, since it
leads to the standard form of the Lagrangian in 3 dimensions. In order to do all this
we have to require 4 %0. h,, is positive definite if K is time-like, i.c. 4>0 and has
the signature (+ — —) if K is space-like, i.e. 4<0. Similarly we decompose the
vector fields B! = (B! + kB, BY) into pieces B! and B perpendicular and parallel to
K. We can now rewrite the Lagrangian [compare Eq. (2.15)] in the form (apart
from surface terms)

1 A? b
ﬁz‘ aaAabA + ? kabk

~ 1 - - _
Z=)/n (— RO e <<Ja, Ty 0B UE,B+
(3.2)

2

~ A L 1 -
+(Gup+kapB)" < . () (G + k**B) + ﬁ e"”Cv(¢)6cB>> ,

where R is the scalar curvature for h,,, k,, = 0.k, — 04k, G o = 0,8, — 0,B,, and all
indices are raised or lowered with the metric h. The Killing vector field is
hypersurface orthogonal iff k,,=0.
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If the original field configuration was a solution of the 4-dimensional field
equations (2.16-18) then hy, 4, k,, B!, B! and ¢ are a solution of the three
dimensional field equations derived from the action | .2 and vice versa. The field

~ 23
equations for the 3-dimensional vector fields B} and k,,

v, (—Au@)(éﬂb+kabB)+ ﬁ e“bfv@@B) = .
<A2 ket + BT< () (G + k™ B) + ﬁ sabw(a)acB)) =0,

can be considered as Bianchi identities for the dual potentials C, (which are just the
time components K*C,; of the dual potentials C,;) and § (the twist potential).

Instead of using the definitions of k,, and G, we can treat them as independent
fields and add Lagrange multipliers to the Lagrangian which guarantee that they
are curls,

Z'=Z+56"(CT ") 71 0,Gpe + 5B+ CT (") B) k) (3:4)
The resulting field equations for k,, and G, are

1 1 .
k“bz—s“bcﬁw with  w,=0,p+(C"(n")"'0,B—B"y~10,C),

Vi (3.5)

~ 1 1
G+ k®B= — & — = '(vo,B—n~10,C).
Vﬁ A
Inserting these expressions into .#’ we finally obtain the Lagrangian for the
dimensionally reduced three dimensional theory,

1 -
FO=\/h @ RO — 2 e <222 (0,40, + o) + (T > — — 8aATMabA>)
1
2

=\/h < R® — ~ 19,00,y (¢) > (3.6)

and we can rewrite the twist vector in the explicitly G-invariant form
w,=0,p+A"Y 10,4 (3.7)

If all potentials A for the vector fields vanish, then w,= 0, and (4, () parametrize
the well known SL(2)/SO(2) o-model of pure gravity.

We have obtained a non-linear o-model with a target space ¢ parametrized by
¢ =(A4,, A, §) and coupled to (three dimensional) gravity. For a space-like Killing
vector (4 <0) the metric on @ is positive definite, but for a time like-Killing vector
(A>0, stationary solutions) the metric is indefinite with 2k negative terms due to
the fields A4 originating from the k vector fields in the 4-dimensional theory.
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From the Lagrangian (3.6) we obtain the field equations

R3) —0.9'0,¢7:($)=0, (3.8)
wa
ye (F) =0, (3.9a)
a A?[ v-1 aly) _
v <—A— 0, A+Y 1A Ve =0, (3.9b)
2 [ 04 r M oA
v ( Y A Y ﬁaA—f-wA—) =0, (3.9¢)

1 _ _ 1 M 1
l7a _ -1 T O = a Ty —
(2 M~ M+ = z <A§ A y 5 A—5 AZ A'Y™ >p,> 0. (3.9d)

The metric on the space @ and the field equation (3.8-9) are obviously
invariant under

1. G-transformations (acting on ¢ and A),

2. “electromagnetic” gauge transformations (with a constant vector a)

Po>Pp+ATY la, A-A+a, (3.10)
3. twist gauge transformations
P—>P+y, (3.11)
4. scale transformations
A=A, -0, A-UA. (3.12)

On the submanifold A =0 there is the well known (infinitesimal) Ehlers transfor-
mation [38], 3
dA=2pA, p=9*—4*, 6$=0. (3.13)

It may or may not be possible to extend this isometry to the whole manifold ®. We
are interested in those cases where this is indeed possible and find that the metric
on @ is in addition invariant under

5. (infinitesimal) generalized Ehlers transformations

SA=20PA, SP=1p2—A2+ATMAA+O(4%),
66=0(4%), JA=(p—YMA)A+0(43),

6. (infinitesimal) generalized Harrison transformations [20] (the commutator
of the transformations (3.10, 14))

04=0(4)4, p=0(A),
0¢p=0(A4), JA=(Pp—YMAa+O0(A?).
All these transformations will then form a non-compact Lie group G and @ is
either the Riemannian symmetric space G/H', where H' is the maximal compact
subgroup of G (4 <0) or the pseudo-Riemannian symmetric space G/H (4> 0),

where H is a non-compact real form of H'. Moreover the submanifold where A =0
(ie. the intersection H"/K=G/HNG/H') must be SL(2)/SO(2)x G/H and the

(3.14)

(3.15)
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generators of the coset space must transform under the two dimensional
representation of SL(2) in order to reproduce the scale transformations (3.12). In
Appendix B we give a complete list of all combinations of groups G, H, H', H” and
K which have these properties. For each of them we can start from the Lagrangian
(3.6) for the three dimensional theory and reconstruct the Lagrangian (2.15) of the
corresponding 4-dimensional theory.

For definiteness let us consider the stationary case with a pseudo-Riemannian
symmetric space G/H, and let us assume that the group G is simple. We proceed in
a similar way as we did previously for G. We choose a (possibly complex)
irreducible matrix representation ¢ of G and a hermitian matrix X satisfying o(z(g))
=X "'o(g”")X, and define P=p(P), M=P*XP=Xo(M). The Lagrangian (3.6)
can then be rewritten in the form

gmzﬂc R® — ;<J”J>>
=\/h < R®— gh“bTr(M—laaMM—labM)>, (3.16)

with a constant ¢ depending on the representation g and on the particular o-model.
Introducing the currents [compare Eq. (A.11)]

J,=tM~ oM, . (3.17)

the field equations (3.8-9) can be rewritten in the form
R =<Jwdp, (3.18)
ves,=0. (3.19)

As mentioned in Appendix A, not all of the conserved currents J, and not all of the
field equations VJ =0 are independent.

In order to make the connection with the 4-dimensional equations of motion it
is useful to observe that for any current J* defined on 2 there is a corresponding
current

JE=(471J%,0) (3.20)

defined on the 4-dimensional space-time X with vanishing Lie derivative with
respect to K. Furthermore there is a related antisymmetric tensor field J** = K*J#
—J*K* with the property

TPy =KJP y= A7 K, (3.21)

We can thus convert conservation laws on 2 into Maxwell-like equations on X. In
some cases this gives the possibility of avoiding difficulties with the vanishing of 4
(compare the proof of Theorem 2.8).

Later on in Chap. 5 we will study solutions with asymptotically Euclidean X
and o-model fields which have an asymptotic multipole expansion,

M(x)~

n

FM(9, ). (3.22)

™18
o
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Without loss of generality we can assume that they have the asymptotic values
Ao=1, Py=Ay=0, M,=1 corresponding to P,=1, My=1 or My=X. The
charges lim rJ,x*= —3My *M, have values in the Lie algebra of G, but in fact

those in the Lie algebra of H vanish identically. The subgroup H CG leaves the
asymptotic value P, invariant and transforms the charges according to

Hah: X 'M,~hX 'Mh =X "'(h*)" ‘M h". (3.23)

The precise form of this action of H on the charges depends on the particular
g-model under consideration. There are, however, in all cases, generators of H
which differ from the transformations (3.14, 15) by suitable multiples of the
transformations (3.10-12). The names generalized Ehlers and Harrison transfor-
mation shall henceforth refer to these linear combinations and we can use them
to transform the (electric and magnetic) vector charges and the NUT charge into
the mass and the scalar charges and vice versa (compare Egs. (3.10-15)).

Remark (Static Truncation). If we apply the staticity constraints to the o-model
described by the Lagrangian (3.6) we obtain a consistent truncation, the
corresponding “static” o-model.

Appendix B contains some examples of such static o-models. At this point we
just want to mention the static truncation SO(n, 1)/SO(n— 1, 1) of the generalized
Einstein-Maxwell case SU(n, 1)/S(U(n—1, 1) x U(1)). The special case n=2 corre-
sponds to the Einstein-Maxwell theory.

3.2 Dimensional Reduction from 3 to 2 Dimensions

Stationary, axially symmetric configurations of the 4-dimensional theory are
characterized by their invariance under two commuting Killing vector fields K
respectively K’ describing time-translations respectively axial rotations. Similar to
the case of one Killing vector we can perform a “dimensional reduction” from 4 to
2 dimensions. Since we want to make use of the o-model structure obtained for the
3-dimensional theory after suitable dualizations we prefer to employ a two step
procedure. First we use one Killing vector field to reduce from 4 to 3 dimensions,
and then the second one to do the step to 2 dimensions. Depending on whether we

take the Killing vector field K = % orK'= 6i to perform the reduction from 4 to 3
P

dimensions we end up with two different o-models corresponding to G/H
respectively G/H', parametrized by the matrices M respectively M'.

In order to be able to do the step from 3 to 2 dimensions we first have to make
sure that the Lie derivative of the 3-dimensional fields h,, and M with respect to the
second Killing vector vanishes. For h,, this is a direct consequence of the
commutativity of the two Killing vectors. For the electromagnetic potentials 4 we
find that their Lie derivative has to be constant. This constant has to vanish for
asymptotically trivial configurations with a regular rotation axis. In adapted
coordinates the vanishing Lie derivative of h,, and M means they are independent
of t and ¢. Hence the only non-trivial step in the reduction from 3 to 2 dimensions
concerns the decomposition of the 3-metric h,, which we parametrize in analogy to
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Eq. (3.1) in the form
27 2 2
hab= </{ hle-'z_ka bkbl QQ?I) . (324)

In terms of these new fields the Lagrangian (3.6) becomes
- 1~ o2 1 _ i i _
(2) _ - kl - 1 1 1 1
& —Q]/P_z[— 5 R— FYE bub* + g M™'OM, M~ 'oM>—1"10A¢ 89}. (3.25)

A novel feature for d =2 is that 1 cannot be used to remove the factor ¢ multiplying

Vﬁin front of the Lagrangian. This is a consequence of the conformal invariance of
the 2-dimensional theory.

A simplification occurs with the vector fields b, which lose their dynamical
degrees of freedom in 2 dimensions. From the field equation

@2 2b)=0, (3.26)

. 1 .
it follows that the dual field strength *bh= —— &¥931~2b,; obeys the equation
2/
o *b=0, (3.27)
and hence *b = const. For asymptotically Minkowskian solutions *b vanishes at
infinity, and hence the constant vanishes, and consequently b,,=0, i.e. the Killing

vector fields are hypersurface orthogonal. This is our version of the “Generalized
Papapetrou Theorem” [13]. Then & simplifies to

FO=o)/A[ 4R+ LM 1OM, M~ 'OM)Y—2"19)0 100].  (3.28)

The field equations derived from .#® are (we omit the field equation for A, since it
is of no relevance)

Ry—3h R=5(M~'OM, M~ *0,M)—2A~ Y0uie 100

— LR (A (M TIOM, M~ 1OM Y — 22" 1 0A0 ™ 10p), (3.29)
V(eM~'oM)=0, (3.30)
Vog=0. (3.31)

The 2-dimensional metric /,; can be brought to the conformally flat form f,, = 1,
by a suitable choice of coordinates. Finally /i can be absorbed into the conformal
factor 4 leading to /i, = J,,. Since the field equations for M and ¢ are conformally
invariant they are independent of 4 and hence the same as in flat space. In
particular g is a harmonic function on R?. Together with its conjugate harmonic
function z defined by 0z = — *Jg (note that **0= — J in a 2 dimensional space with
definite metric) it provides a canonical coordinatization of the 2-dimensional
reduced manifold as long as dg=+0 (Weyl’s canonical coordinates), With this
choice, which we shall always make from now on, the equation for M is that of a
generalized (not translationally invariant) non-linear o-model on flat space
independent of A.



310 P. Breitenlohner, D. Maison, and G. Gibbons

Equation (3.29) turns into an equation for 4, since the left-hand side vanishes
for hy,=0d,,;. One finds

210, 0= g (M~'0,M,M~"'0,M,
(3.32)
27100 = %((M"0QM,M‘109M>—<M“62M,M"02M>).

From these equations 4 can be computed by a simple integration once M is known.
The integrability conditions are satisfied if Eq. (3.30) is fulfilled.

4. Spherically Symmetric Solutions

The system of Egs. (2.2-3) looks deceptively simple due to its elegant mathematical
description. But it has to be remembered that it describes rather complex and
complicated physical situations and mathematical structures. Most of its explicitly
known solutions are therefore distinguished by some symmetry properties of the
remaining 3-dimensional Riemannian space X; and the g-model fields ¢(x)
reducing the number of essential variables. The maximal symmetry group for X is
the 6-parameter euclidean group of motions, which singles out the trivial
“vacuum” solution, 4-dimensional Minkowski space with vanishing vector field
strengths and constant scalar fields. A physically more interesting class of solutions
are the spherically symmetric solutions with an isometry group SO(3) acting on
2-dimensional orbits. Note that if the NUT-charge is non-zero the action of SO(3)
on the 4-dimensional space-time has 3-dimensional orbits. Using polar coordi-
nates the metric of X5 can be parametrized as ds*=h,dx*dx?=dr*+ f(r)*(d9*
+sin*9d¢?). The Egs. (2.2-3) become under these circumstances

d¢’ do*

fo <f2 W) 1 24 o, @1a)

f d¢' d¢’

L= — 1 _r
=-2f" (0 Rl (4.1b)

_,(d .df
R,,=Rg=f""? <E; o —1) =0. (4.1¢)
The last equation has the general solution

fr)=@r—ry’+c. 4.2)
Introducing t(r)= — Ojo f~*(s)ds, which is a harmonic function on ¥, equipped

with the metric h,,, Eq. (4.1a) becomes

d” g’ di*

with ¢(r)=¢'(z(r)). This is the equation for a geodesic in the symmetric space G/H.
The decomposition of ¢ : £;— G/H into a harmonic map t: X3 —R! and a geodesic
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¢ :R'—G/H illustrates a general theorem on harmonic maps [39] according to
which the composition of a harmonic map with a totally geodesic one is again
harmonic. Since ¢ describes a geodesic we get

4§ i’

Vil @)~ =20 =const. (4.4)

From (4.1) we find ¢ = — v It is however important to notice that v* can in general
have either sign due to the indefiniteness of the metric of G/H. The behaviour of the
metric function f? and correspondingly of the affine parameter 7(r) depends
crucially on the sign of v2. If v > 0 the function f2 has two simple zerosatr=r,+v

1 r—r
= 2 1 —_ Y
(v= ]/17), causing t(r) o In <r iy

geodesic in G/H starts off at t =0 from some value ¢, — the asymptotic value of ¢ at
r= o0 in X5 — and approaches for infinite affine parameter some other value ¢ 4, the
value of ¢ at r=ry+v, the position of the horizon for black hole solutions. For
v2=0 the two zeros of f? merge and (r) becomes equal to ©(r)= —(r —r,) " '. The
behaviour of the geodesics is similar as for v >0. From Eq. (4.1) it follows that in
this case R, =0, and hence h,, =, 1.. X is flat. On the other hand if v* <0, i.. the
geodesic is “space-like”, f? is always positive and the affine parameter (r)
r—

—v
n ) to tend to — oo at r=r,+v. Hence the
v

_ r m i
=y~ !'| arctan 9 _ Z)runsfromt=0atr=oc0tot=— — at r= — co. Hence
v

2
the “space-like” geodesics have finite length.

In order to illustrate this typical behaviour of the geodesics we take the
simplest example allowing both signs of v?. Since pure gravity leads to G/H
= S1(2)/SO(2), which has positive definite metric, we choose the Einstein-Maxwell
theory with G/H=SU(2,1)/S(U(1,1) x U(1) with the signature (+ + — —). For
spherically symmetric solutions we can restrict ourselves to the subspace of
strongly static solutions corresponding to (G/H),=S0(2,1)/SO(1,1), since a
possible magnetic field can be trivially eliminated by a duality transformation. The
corresponding line element of @ is

dA* _ 2dA?

2_ 44
=33 =4

4.5)
where A respectively A are the gravitational respectively electric potential. The
geodesic equations are

A—A"142—24%=0, A—A"'AA=0. (4.6)

They can easily be solved directly with the boundary conditions A(0)=1, 4(0)=0
according to the asymptotic behaviour at r=o0. One obtains the well-known
Reissner-Nordstrem solutions. For v >0 one finds

sinh? B sinhvt

= dnh2B—vn’ AT smb(B—ovo)’ @7)

where m=vcothf and g=v/sinhff are the mass and the charge of the solution.
From Eq. (4.5) one obtains the relation m? —g* =v>
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The equation
A=(A+coshp)*—sinh?p (4.8)
shows that the geodesics are parabolae hitting the axis 4 =0 at A =sinh f —coshf

= —q '(m—)/m*—¢?) for 1= — o respectively r=rq, +/m*—q* =m+)/m* —q*
for the standard choice ro=m. This is the position of the event horizon. The
solution for v?=0 is obtained letting v, f—0 with their ratio tending to m. The
result is the extreme Reissner-Nordstrem solution (¢*=m?) given by

A=1-mt)"?, A=mi(l—mr)~ . 4.9)

This time the parabola 4= (A + 1) just touches the 4 =0 axis at A= —1 for r=r,
the position of the degenerate horizon.

The space-like geodesics with v? <0 are obtained by analytic continuation
from v? >0 replacing v by iv and 8 by i. One obtains the over-extreme solutions

given by (v=1/[v*])

sin?p _ sinwt
—Wl;)’ A_m. (4.10)

These geodesics do not reach 4=0, but 4 tends to infinity for the finite value
p—n
v

of the affine parameter, corresponding to r =r,—v coth f=r,—m. This is

T=

the position of the naked singularity.

Since the metric (4.5) is that of 2-dimensional de Sitter space we may illustrate
these facts by means of a Carter-Penrose diagram shown in Fig. 1. This figure may
be obtained by setting A~ ' = 4 and t=24 in Fig. 2.2b of [13, p. 66]. In Fig. 1 light
rays are at 45° and the dashed (dots) indicate curves of constant 4(A4) respectively.
The vanishing of 4 corresponds to future or past time-like infinity. If v >0 the

Fig. 1. Carter-Penrose diagram for 2-dimensional de Sitter space. The curves a, b, ¢ are examples of
time-like, light-like, space-like geodesic segments respectively corresponding to the solutions
(4.7-10)
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geodesics start from an interior point at t=0 and reach past time-like infinity at
t= — o0. The space-like geodesics, v* < 0, never reach infinity but intersect the lines

- 0 . .
A= oo where the Killing vector oA becomes light-like.

Summarizing we arrive at the following picture. Each of the geodesics
corresponding to a solution with the required asymptotic behaviour has to pass
through ¢, =(4(0), A(0))=(1,0) for t=0 and is uniquely determined by its tangent
vector ¢(0) there. $0)=(4(0), A(0)) = (m, g) is given in terms of the “global charges”
of the conserved currents J, of Eq. (3.17). The group SO(1, 1) leaves ¢, fixed and
acts transitively on the tangent vectors of fixed length v?. Therefore it is possible to
get the charged solution Eq. (4.7) from the Schwarzschild solution with the same
value of v? through a Harrison transformation.

In the general case we obtain the following equations for the geodesics
describing spherically symmetric black holes:.

d (o104
d’C< Mdt> =0

d —1dA -1 T—dA
E(A o AT ) =0, 4.11)

d (1 __,dM A’ =
— (=M ' — +4~ A—M =0.
p (2 & T 5( a0t >p> 0
Remark. In distinction to the case of pure gravity the assumption of spherical

symmetry and the absence of a NUT charge does not mean that the solutions have
to be strongly static in the sense defined in Sect. 2.2

From the asymptotic behaviour of the geodesics we learn how to fix the
arbitrary constants obtained by integrating these equations:

-1 A—-::
A Md'f QAa
PR EIPLS L (4.12)
dt dt
{ __dM 1 dAT =\
iM dr +4 ?(A dr M p,_Q'

From Eq. (4.4) we get

21/ i _ Vi T .
1 A‘IEJA +—< ldhj\i[,M"léy— —A_ldiMd:é=2v2. 4.13)
2 dt 4 T T

Putting 1=0 in this equation we obtain the relation
m*+3¢0,0> —304Q,=0". (4.14)
Although it seems quite impossible to solve Egs. (4.12) in closed form in the general

case, it is possible to study the behaviour of the geodesics qualitatively. We are
particularly interested in the asymptotic behaviour when t— — oo, where we
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approach the horizon. We have to anticipate the boundary conditions on the
horizon, which will be discussed in the following section:

A(—0)=0, M(—)=My<w, A(—wn)=A,<w0. (4.15)

o . . aM S o
These boundary conditions imply in particular that e must vanish in the limit
T

17— — 00, and we obtain the following relations between the charges and boundary
values at the horizon:

. dln4 _ 1
2m—ALQ,= lim 0=— E:(AXQAT)I,,. (4.16)

- dT

There are two essentially different situations:

dinA . .
1. dn — A>0. This is only possible for v>>0, because the negative
T 1™~ ®

contribution in Eq. (4.13) vanishes for 4—0. Obviously 4 behaves like
A~e* for 1——o0. (4.17)

Considering A and M as functions of 4 one finds A=A4,+O0(4) and M=M,,
+ O(4). The quantity 27/ is the surface gravity « times the area of the horizon.

dln4 . . .
2. dri _—_ Odescribes solutions with a degenerate horizon. Analyzing Egs.

(4.11) together with the boundary conditions (4.15) one sees that this is only
possible for v>=0. The asymptotic behaviour is, in this case,

2
QAM %04
with A=A, + 0(]/2) and M = M ,, + O(4). In addition to the relations (4.16) there
is a series of constraints on M. The coefficients C, of the expansion

172 for 1> —® (4.18)

M=M,exp ¥ C,4* must satisfy the equations
k=1

(C M3 Q0% =ths, k=1,2,..., (4.19)

SN

(k3 @itzoc, -

where the rhs depends only on C, with [<k and vanishes for k=1. This is an
inhomogeneous linear system for the C,. For k large enough there will be no
solutions of the homogeneous system and we can solve the equations recursively.
For small k (and in particular for k =1) we must, however, look for solutions of the
homogeneous system. A very simple example of this situation is provided by the
extremal solution of [40] for the g-model with G/H=SL(3)/SO(2,1) and G/H
= GL(1). The constraints require in this case that the value of the scalar field 4,, on
the horizonis (Q/P)*3, where Q is the electric charge and P the magnetic charge, i.e.
neither Q nor P are allowed to vanish (compare also [41]).
The results of this chapter can be summarized in the following

Proposition 4.1. Every stationary spherically symmetric black hole solution is
characterized by a time-like or light-like geodesic segment in G/H starting at the
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point M, (corresponding tor= oo ) and running to the boundary A =0. In general not
every time-like geodesic leads to a black hole solution.

Remark. In Sect. 6 we will show that all such “time-like” black holes are Harrison-
transformed Schwarzschild solutions (compare Theorem 6.3). Hence the scalar
charges cannot be chosen freely but are determined by the other charges.

5. Boundary Conditions for Black Holes

In this section we shall consider the boundary conditions for our solutions. From
our Generalized Serini-Einstein-Pauli-Lichnerowicz Theorem 2.8 we expect that
non-trivial solutions must have singularities and/or more than one infinite region.
Thus we look for solutions with event horizons hiding these singularities and/or
infinite regions. Just as in our treatment of Theorem 2.8 we shall need for our
arguments the existence of globally defined potentials. Therefore we shall assume
that the exterior region of the black holes is simply connected. Furthermore most
of our arguments would require a special treatment for the degenerate case. Thus
in what follows we shall assume unless otherwise stated that all horizons are non-
degenerate. We now discuss the boundary conditions at infinity and at the horizon.

We begin with infinity. The boundary conditions at infinity can be discussed in
terms of the 3-dimensional space X, introduced in Sect. 3. For the Einstein-
Maxwell theory this question has been thoroughly discussed by Simon [33]. As
mentioned by Simon his results can be extended to a larger class of theories
including those considered here. Accordingly we require the following asymptotic
behaviour (holding in a suitable coordinate system) of the fields defined on X5:

hab=5ab+ 0 <%> >

1 1 (5.1)
M=M0+ ;M1+O<r‘2‘>,

where M, corresponding to the “vacuum” solution, is conveniently chosen as the
unit element 1 of G. The behviour of the individual fields (after a suitable choice of

gauge) in M is
2m 1 . n 1

A=&+o<;2>, o1 o (L),

r

(5.2)

where m is the total mass, n is the NUT-charge, Q, a vector of “electric”
respectively “magnetic” charges and Q a hermitian matrix of scalar charges. In
order to have asymptotically Minkowskian geometry the NUT-charge has to
vanish, i.e. we require n=0.

We now turn to the event horizon which can be rotating or non-rotating.

Definition 5.1. A non-rotating event horizon is one whose null generator [
coincides with the Killing vector field K* on the horizon.
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Hawking’s strong rigidity theorem [34] shows that in vacuum a rotating black
hole must posess an additional Killing vector, i.e. must be axisymmetric. It seems
plausible that this theorem can be generalized to Einstein-Maxwell theory and to
the theories we are considering in this paper. However in view of the counter-
examples quoted in Sect. 2.2 there is room for some caution about whether the
matter fields need necessarily be axisymmetric. In this paper we shall assume that a
rotating black hole is axisymmetric and that it is causal, i.e. that the axial Killing
vector K’ is space-like on and outside the horizon, apart from the rotation axis
where it vanishes. We shall discuss single stationary axisymmetric black holes in
Sect. 7.

For non-rotating horizons the exterior domain is either static or not. The static
case is treated in Sects. 4 and 6.

Hawking [34] showed for the vacuum case that strict stationarity of the
exterior domain implies staticity. The generalization of this result to electromagne-
tism has not yet been achieved (see [42] for a recent discussion which corrects a
contrary claim in [13]). In any case even if Hawking’s result could be generalized to
include electromagnetism or the more general fields discussed in tis article it would
still leave open the possibility of non-rotating holes with ergoregions. Our
generalized Lichnerowicz Theorem renders this possibility less plausible than one
might otherwise think, but there remains a substantial gap in the rigorous chain of
uniqueness arguments, since it does not seem possible to treat this case with
present day techniques.

In summary if the strong rigidity theorem can be generalized and anyhow in all
the cases considered in this paper the event horizon is a Killing horizon in the sense
of Carter [13].

Regardless of whether the horizon is a Killing horizon or not it follows that on
the horizon

TP =0. (5.3)
This implies that

1. The scalar fields are constant along the null generators

10, =0. (5.4)
2. The electric and magnetic fields satisfy
UFyulpy=0,  I"*F,,l5=0. (5.5)

If I coincides on the horizon with a Killing vector field L then the surface gravity

K defined by
k=]/3L, ;L** (5.6)

is constant on each connected component of the horizon. If one further assumes
that the fields have vanishing Lie derivative with respect to L one finds that the
vector fields I# *F ,; are curlfree. We can thus introduce (at least locally) potentials
¥ by

[P*F,=0,%. (5.7)
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These potentials are constant on each connected component of the horizon. Note
that unlike ¥ the scalar fields ¢ have to be finite but not necessarily constant on the
horizon.

Let us now consider the strictly stationary case which includes in particular the
static case. The horizon occurs at the boundary of X; where A4 vanishes. The
surface gravity of the horizon is given by

K2=1h"0,40,4, (5.8)

which must be constant on each connected component of the horizon, as must the
potentials 4. Moreover, being orthogonal to the horizon, K satisfies there the
hypersurface orthogonality condition K, ;K =0. This implies that w, vanishes
and 1 is constant on each connected component of the horizon. In addition the
geometry determined by the physical 3-metric 4~ 'h,, should remain regular as
one approaches the boundary 4|0. If k &0, i.c. for a non-degenerate horizon, this
implies that 4 vanishes as the geodesic distance (in the scaled 3-metric h,,) from the
boundary and that (in suitable coordinates) the same holds true for the induced
2-metric on the surfaces 4 =const. In terms of the physical 3-metric the boundary
is a totally geodesic 2-surface and each connected component has the topology of a
2-sphere. The reader may check that these conditions are satisfied by the spherical
metric h,, used in Sect. 4.

The boundary conditions in the stationary axisymmetric case are more
complicated because one must consider the axis as well as the horizon. However
they are essentially the same as those discussed by Carter [13] in the Einstein-
Maxwell case. For one or several black holes the argument he gives to prove the
existence of the global coordinates ¢ and z goes through in our case. In these
coordinates the 2-dimensional space is the half-plane X, = {(z, 0): ¢=0}. Both the
horizon and (the exterior part of) the rotation axis are represented by the z-axis
(0=0). Each connected component of the horizon corresponds to a segment of the
z-axis with 4'>0 whereas A’'=0 on the rotation axis.

The boundary conditions at infinity (r=]/z* + ¢* — c0) are now [compare Egs.

(5.1, 2)]
1—_1+0(1>, M_—M0+1M1+0<—12>. (5.9)
r r r

The corresponding behaviour of M’ is more complicated due to the non-trivial
asymptotic behaviour of the axial Killing vector field and involves the angular
momentum. For vanishing NUT-charge one gets

. 2m 1 o 2J(3Q z+ 223)
A—2<”r+0<r2>)> " o(;)
-8 o) s

where A" is the square of the axial Killing vector and J the total angular
momentum.

The conditions at the horizon # are simply that M’ has to attain a finite limit,
specifically 4%, >0 (distinguishing the horizon from the rotation axis).

(5.10)
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On the rotation axis A4'=¢%0(1) and M’ tends to a finite limit quadratically
with ¢. The behaviour of {" and 4" can be determined using Egs. (3.5):
A'=+0,+a(2)0* +0(eY,
P'=+4J F QLY 'alz)e® +0(¢?),

with some function a(z) and the signs referring to the upper and lower part of the
axis.

(5.11)

6. Static Single Black Holes

Before we enter into the discussion of uniqueness theorems for black holes we want
to prove another version of the “Generalized Lichnerowicz Theorem” (compare
[13]). Although we have already given the more generally valid Theorem 2.8
in Sect. 2.2 we include it here, because it illustrates rather nicely the technique
employed subsequently for black holes.

Theorem 6.1. (Generalized Lichnerowicz Theorem ). Suppose X5 with its metric hy, is
topologically trivial and non-singular. If M is a regular solution of V(M ~'0,M)=0

1 1
with the asymptotic behaviour M=M,+ — M, +0 <7>, then M=M, and hy,
r r

=0, 1.€. Space-time is flat and empty.
Proof. Integrating V{(M ~'0,M)=0 over X, we get
{ M™'0,MdX*=4rnMys'M,=0,

and hence M, =0. As a consequence the total mass m vanishes. From the “Positive
Mass Theorem” [10] we conclude that the solution is the “vacuum” solution, i.e.
Minkowski space with vanishing vector fields and constant scalars.

The static single black hole solutions can be completely determined in the
present setting. It turns out that they are just the spherically symmetric ones
already described in Sect. 4. For pure gravity (no vectors, no scalars) this is a
classical result due to Israel [15]. Israel’s argument was later improved and
simplified by Robinson [43]. Israel was also able to generalize his theorem to the
Einstein-Maxwell theory [44]. In this case his proof consists of two steps. First he
shows that the electric potential A is a function of the gravitational potential 4 and
then he proceeds similarly to the case of pure gravity. Again there exists a
simplified version of Israel’s proof due to Bunting [11]. He makes use of the fact
that the matrix of conserved gauge invariant currents J,=M ~'9,M of the
corresponding SO(2,1)/SO(1,1) o-model has a component in the Lie algebra of
H=50(1,1), namely J¥=A"140,4+(1 —4— A*0J,A], with vanishing “charge”

{ JHdX*=0. From that he is able to derive that the current JI has to vanish

identically, which allows him to express 4 as a function of 4. Then he uses an
adaptation of the argument of Robinson to reach the desired conclusion. It is an
interesting problem to generalize Bunting’s method to the type of theories
including scalars considered here. We shall, however, proceed somewhat differ-
ently using an argument put forward in [45] (compare also [46]). We use the fact
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that the vector (electrical) charges can be transformed to zero by a suitable
Harrison transformation (compare Sect. 2). Then we show that the vector fields
vanish identically if they carry no charges. In a second step we conclude that once
the vector fields vanish, also the scalar fields have to be trivial, i.e. constant. This is
expressed by the following theorems:

Theorem 6.2 ( No Charges, no Vectors). For a static single black hole solution of
Egs. (2.16--18) with vanishing vector charges Q ;= 4‘171— rzj"oo 0,4d2* =0 the potentials
A are constant, and hence vanish identically being normalized to zero at infinity.
Proof. From Eq. (3.9b) we find

VAT ATMO,A)=A""0"ATM0,A, (6.1)
and hence through integration

[ A"1ATM3,AdS = | A~10°ATM0,AdY . (6.2)
H 23

(The surface term at infinity vanishes, since the integrand is O(r~).)
On the other hand

[ A7 ATMO,Ad3 =A%, [ A~ 'Mo,Ad"
H H
=—AT | A'Md,Ads"=0, (6.3)

due to the boundary conditions on the horizon # and the vanishing of Q ,. Since
M is a positive matrix (compare Sect. 3) we get 0,4=0 as claimed.

Theorem 6.3 (No Vectors, no Scalars). If for a static single black hole solution of
Egs. (2.16-18) the vector potentials A vanish, then the scalar fields are constant.

Proof. For vanishing vector potentials 4 the scalar field equation Eq. (3.9d) reduces

to _ _
VM~ 10,M)=0. (6.4)

Integrating we get

o o
0=¢ | M '0,Mdx=0, (6.5)

since the contribution at the horizon vanishes because dX* vanishes like 4
(compare Sect. 5).
On the other hand we can multiply Eq. (6.4) by M and obtain

Veo,M=0"MM ~'o,M , (6.6)
and again by integration

[ MM~ '9,MdE= | 0,Mds*=0. 6.7)
pX}

r=

From the positivity of M we deduce d,M =0 and therefore M =M =1.
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Remark. As can be seen from the proof the assumption of staticity can be replaced
by the weaker assumption of strict stationarity in this theorem.

Remark. For non-vanishing vector charges 0, we obtain from Eq. (3.9d),

1 1 -
pe <§M‘16aM+A“ Z:(A@,ATM)I,,> =0, (6.8)

a relation between the Q ,’s and the scalar charges Q
~ 1
0= = (40, (69)

Combining the two theorems with Israel’s theorem for pure gravity we obtain
the

Theorem 6.4. Any static single black hole solution of Egs. (2.16-18) with a non-
degenerate horizon is a member of the “Schwarzschild family”, i.e. can be obtained
from the Schwarzschild solution through a Harrison transformation.

This implies as a corollary the

Theorem 6.5. (Generalized Israel Theorem). Allstatic single black hole solutions of
Eqgs. (2.16-18) are spherically symmetric.

Proof. Starting from an arbitrary single black hole solution of Egs. (2.16-18) we can
transform it via a Harrison transformation (compare Sect.3) into one with
vanishing A and constant M. It follows from Egs. (3.10-15) that this transforma-
tion does not change the boundary conditions at the horizon. Since Egs. (3.8-9)
reduce to those for pure gravity for vanishing 4 and constant M, we conclude that
the transformed function 4 has to be the Schwarzschild solution. Reversing the
transformation, we obtain the solution we started with as the Harrison-
transformed Schwarzschild solution, exhibiting at the same time its spherical
symmetry.

7. Stationary, Axisymmetric, Single Black Holes

The prototype of a stationary, axisymmetric black hole is the Kerr solution,
depending on two parameters, mass and angular momentum. This is, in vacuum,
the only such single black hole solution [47]. Also for the Einstein-Maxwell theory
the questions of existence and uniqueness have a simple, positive answer in the form
of the Kerr-Newman solution, depending on four parameters — mass, angular
momentum, electric and magnetic charge. The uniqueness of the Kerr-Newman
solution has only rather recently been proven by Mazur and Bunting [12, 11].
From our experience with the static solutions we expect the existence problem to
be more delicate when we turn to the theories considered here. In fact, in the static
case the charges Q for the scalars cannot be given freely, but are determined by the
vector charges 0 4. On the other hand we were able to show that all the static single
black holes are members of the “Schwarzschild family”, i.e. could be generated
from the Schwarzschild solution via a suitable Harrison transformation acting on
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M. It is tempting to speculate that this situation prevails in the case of rotating
black holes, if we replace Schwarzschild by Kerr. That this speculation can be
materialized will be shown below.

In order to prove the uniqueness of the solutions with given v (“irreducible
mass” or size of the horizon), angular momentum J and charges Q, we shall
generalize the uniqueness theorem of Mazur [12]. As already observed by Mazur
himself [48] his theorem can in fact be rather easily extended to theories of the type
considered here, the essential ingredient being the 3-dimensional ¢-model
structure for axisymmetric solutions. In contrast to the uniqueness proofs for static
black holes using the G/H ¢g-model, the Mazur theorem uses the G/H' g-model
based on the matrix M’ instead of M. This is necessary because only G/H' has
positive definite metric as required in the proof of the theorem. Moreover this
formulation avoids the singularities of the matrix M at the ergosurface.

As discussed in Sect. 5 we can choose canonical coordinates ¢ and z such that
the horizon meets the rotation axis at the two points z= +wv. The horizon itself is
then given by # = {0 =0, |z| <v}. The exterior region of the black hole is the union
of the two pieces of the rotation axis {¢=0, |z|>v} with 2, ={(z,0): ¢>0}.

Theorem 7.1 (Mazur). Two solutions Mi=(P)*P; (i=1,2) of the equation
V(o(M?)~'0M’)=0 taking their values in the Riemannian symmetric space G/H' and
obeying the same boundary conditions for single black holes (i.e. equal values for v, J
and Q4 ) are identical.

Proof. Putting J,=4(M!)~'0M: and using V(¢J;)=0and J;" = MJ (M)~ !, we find
V(e Tra(M}) 'My)=3V(e Tr(MY) ™ 'M5(J,—J 1))
=0 Tr(M}) " '(Jo,—J1) " M3y(J,— 1))
=0 Tr(S2715) (7.1)
with #,,=P4(J,—J,)(P})”'. Integrating this identity over ¥, and using TrJ,=0,

we obtain

xj Tr(5,5.4,,)edodz

L ATHMY) M, — T e
’ (7.2)

il 2 Tr(Po(PY) 1) = Py(PY) ™ 1)I15)edn.

In order to evaluate the boundary term we use the boundary conditions discussed
in Sect. 5. There is no contribution from the horizon due to the explicit factor g. At

o 1 .

infinity one finds P4(P}) " '=1+0 (;) and the normal component of .4, is
1 o . .

0 <r2>; hence the boundary term at infinity vanishes for any two solutions. In

order to analyze the contribution from the axis we need the detailed form of the
boundary conditions [compare Eq. (5.11)]. For two solutions with the same
angular momentum J and vector charges Q , it follows that both P5(P;)™ ! and .#,,
stay finite at the axis. Hence the boundary term at the axis vanishes as well. This
implies .#,,=0, i.e., o(M})”'M%)=0 leading to M, =M} since (M})”'M,—1
for r—oco.



322 P. Breitenlohner, D. Maison, and G. Gibbons

As an immediate consequence of this theorem a stationary, axisymmetric black
hole with vanishing vector charges Q, is necessarily a Kerr solution. This is the
analogue of the “No charges, no vectors” and “No vectors, no scalars” theorems
proven for static black holes in Sect. 6.

Remark. It is also possible to generalize Bunting’s method [11] to prove
uniqueness exploiting the harmonicity of the map M':R*—G/H'.

The action (A.10) of the group G transforms solutions of Egs. (3.8-9) into
solutions. The requirement to preserve the asymptotic behaviour (5.1), is, however,
only satisfied by elements of the subgroup H C G which is the isotropy group of
M=1 in G/H. Applying this “Ehlers-Harrison” group H to the Kerr solutions
(embedded into the G/H o-model) produces the “Kerr-family”. What remains to
be shown is that the “Kerr-family” contains black holes with arbitrary values of
v,J and Q. This is expressed by the following proposition proved in [49]:

Proposition 7.2.

1. Acting on a Kerr solution with an element of H which does not produce a
NUT-charge yields a black hole solution satisfying the boundary conditions
(5.10-11).

2. Applying these transformations to all Kerr holes one obtains black holes with
arbitrary values of v, J and Q ,.

Remark. The proof of this proposition is non-trivial because the group G acts in a
simple way only on M whereas the black hole boundary conditions involve M'.

Combining the Mazur Theorem with Proposition 7.2 yields immediately the
announced result concerning the “Kerr-family”.

Theorem 7.3. Any stationary, axisymmetric single black hole solution of Egs.
(2.16-18) is a member of the “Kerr-family”, i.e. can be obtained through a Harrison
transformation from the Kerr solution.

8. Stationary Multi-Black Holes

Single black holes have many analogies with solitons known from certain
2-dimensional non-linear field theories. Therefore one might expect a particle-like
behaviour for configurations containing several black holes — at least if they are far
apart and slowly moving. Among other things that would mean that such
configurations could be well described by a finite number of parameters, such as
masses, charges and positions. Clearly this would require that emitted or absorbed
radiation could be neglected to lowest order. Some preliminary steps in this
direction are described in [50].

In view of the highly non-linear character of the field equations and their
relativistic covariance the effective dynamics of such “particles” is expected to be
rather involved. Therefore it is highly remarkable that there even exist static multi-
black hole configurations. The best known example is a superposition of several
extremal Reissner-Nordstrem holes, contained in the Majumdar-Papapetrou
(M-P) class of solutions [9]. The existence of such a configuration of several black
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holes in indifferent equilibrium may be attributed to a complete balance between
their gravitational attraction and electric repulsion. The explicit formula for the
solution with N holes is

A=1—-m1)"%, d=mi(1—mr)?,
1 ¥ m;

‘c=——rﬁi;ri, r=lx—x|, m=Ym;.

(8.1)

Just as for the single hole, the corresponding harmonic map from X5 to the
symmetric space @=S0(2,1)/SO(1,1) can be factorized via some harmonic
function 7 on X5 and a light-like geodesic in @. The metric h,, on X5 is again flat.
The question arises if the M-P type solutions are the only stationary multi-black
hole solutions. There is a rotating version of the extremal Reissner-Nordstrem
solution, the extremally charged (i.e. g = m?) Kerr-Newman solution [13], which
does, however, not describe a black hole but a naked singularity. Similarly there
are rotating versions of the M-P solutions, the Perjes-Israel-Wilson (P-I-W)
solutions [51], but as to be expected they have naked singularities too [52]. The
P-I-W class exhausts the completely light-like solutions, but it is not known, if
equilibrium configurations of black holes can only exist for extremally charged
ones. For the static case, in vacuum, it has recently been proven that there are no
multi-black holes [14], which is intuitively obvious (but nevertheless hard to
prove) as there is no force to balance gravitational attraction. For rotating black
holes it could in principle be possible to balance the mass attraction by the spin
repulsion. In fact, it is possible to construct explicitly so-called multi-Kerr
solutions using Backlund transformations [ 53], but none of them seems to be free
of naked singularities.

In the following we shall discuss generalizations of the extremally charged
solutions for the Einstein-Maxwell theory to the type of theories considered here.

Definition 8.1. A solution of Egs. (3.8-9) is called extremally charged, if the image
in @ is completely light-like, i.e. if (M ~'0,M, M~ *0,M»=0.

The term “extremally charged” for this type of solutions is justified by the
relation (generalizing the relation g =m? for the extremal Reissner-Nordstrem
solution)

m? +4n* +3Q0, 0> —3040,=0, (8.2)
obtained from the defining relation by picking its leading term for r— co0. For the
spherically symmetric case this relation implies that the surface gravity vanishes.
In the thermodynamic interpretation of black holes [54] vanishing surface gravity

means zero temperature. In fact, spherical symmetry is not essential as shown by
the

Theorem 8.2. For extremally charged, strictly stationary solutions the surface
gravity k> =2%h"0,40,4 vanishes.

Proof. For strictly stationary solutions the boundary condition T, 4"’ =0 on the
horizon turns into

T, KK =L Ah(0,A" M6, A+ A<T,, T,»)=0. (8.3)
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However from R, =0 we find
h®3, 40,4 = h(240,AT MO, A — w,w,— 24T, T,>). (8.4)

In view of Eq. (8.3) and the boundary condition for w,, the right-hand side of Eq.
(8.4) vanishes on the horizon.

For such extremally charged solutions h,, = d,, (in suitable coordinates), since
due to Eq. (3.8) the Ricci tensor and hence also the Riemann tensor of 4, vanishes.
The simplest case is again given in terms of a light-like geodesic and a single
harmonic function as for the M-P solutions. These are determined by some light-
like tangent vector to @ at M, — the asymptotic value of M at r= o0 —and a single
harmonic function 7(x) on 2. What are the requirements on that tangent vector
and the harmonic function 7(x) in order to obtain a superposition of N black holes?

In order to avoid a NUT charge, i.c. a :—2 contribution to the current 4~ 2w, this
current has to vanish identically; hence the solution has to be static. The additional
requirements concerning the behaviour of M at t= —oo have already been
discussed in Sect. 4.

Next we have to study the conditions on the harmonic function 7(x) on R3. As
discussed by Hartle and Hawking [52] the only acceptable solution for a static

N m.
superposition of N black holes is 7(x)= — % D e as for the multi-Reissner-

i=1F;
Nordstrem solution. It is easy to see that the m; have to be non-negative in order to
avoid naked singularities.

There is an obvious generalization of the solutions discussed above, involving
several harmonic functions, based on the composition theorem on harmonic and
totally geodesic maps mentioned earlier. Let t=(ty,...,7,) be a harmonic map
from X, =R? to R", given in terms of the n harmonic functions t,(x) and ¢ a totally
geodesic map from R” into G/H. Then the composition ¢t defines again a
harmonic map from X, into G/H. The tangent vectors to the image of ¢ in G/H at
some point constitute a subset of the part of the Lie algebra of G corresponding to
G/H. Since ¢ is totally geodesic, it maps straight lines in R" into geodesics of G/H. It
is easy to see that this implies that the image of ¢ is generated by an abelian
subalgebra, hence a flat submanifold of G/H.

In order to obtain extremally charged solutions we have to require in addition
that this abelian subalgebra is completely light-like, i.e. all its elements are light-
like. For a solution describing a superposition of black holes there are in general
further constraints arising from the finiteness of the scalar fields at the horizon. It
seems that this requires that the various harmonic functions 7,(x) have common
singularities, but no proof of that is known to us. An example demonstrating this
behaviour is given in [41].

9. Open Problems

In this chapter we wish to conclude with a list of open problems. We begin with the
vacuum case.
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Vacuum Case. For static solutions the situation is rather satisfactory. In the
stationary case the most important unresolved question is whether a non-rotating
hole need be axisymmetric. If not there are new single black hole solutions to be
found. The other outstanding problem is whether there are stationary solutions
with more than one black hole. Experience with the “multiple Kerr” solutions
obtained via the Inverse Scattering Method [53] suggests a negative answer.

Einstein-Maxwell. In the electromagnetic case there remains the problem whether
there exist topologically non-trivially configurations without horizons. In the case
of static holes one would like to know whether the only multi-black hole
solutions are the Papapetrou-Majumdar metrics. In the stationary case one
inherits the open problems in the vacuum case fogether with the additional one of
whether a rotating black hole need be axisymmetric.

General Case. In the case of the more general theories, in addition to the problems
inherited from the two previous cases the classification of the solutions based on
totally light-like totally geodesic submanifolds of G/H is not yet clear.

Three additional types of problems also suggest themselves:

1) Whether stationarity or axisymmetry of the metric implies stationarity or
axisymmetry of the matter fields under the global conditions.

2) The extension to different boundary conditions — for example those arising
from a cosmological term [16] or asymptotically Melvin type boundary
conditions [55].

3) The extension to black holes in arbitrary dimensions.

Appendix A. Non-Linear 6-Models and Symmetric Spaces

In this appendix we shall study group theoretical aspects of non-linear g-models
with a target space @ which is a non-compact Riemannian or pseudo-Riemannian
symmetric space G/H.

A.1. Non-Compact Riemannian Symmetric Spaces

Let G be a non-compact real form of some- compact Lie group. There is an
involutive automorphism t: G—G, t?>=1 such that

H={heG:t(h)=h} (A1)

is the maximal compact subgroup of G and the coset space G/H is a non-compact
Riemannian symmetric space [30, 31, 56].

In order to parametrize the coset space G/H we can choose a group element P
as representative for each coset, i.e. introduce fields P(x),

P:X>3x->Px)eG. (A.2)

Customarily, G/H denotes the space of left cosets gH. For purely historical reasons
we use the space of right cosets which is sometimes denoted by H\G. As these two
spaces are isomorphic we prefer the notation G/H. The choice (A.2) of representa-
tives is obviously not unique and the freedom to choose representatives leads to a
gauge invariance with gauge group H, in addition to the group action of G on G/H,

P(x)—h(x)P(x)g~ !, h(x)eH, geG. (A.3)
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The field equations for P (and the action) are invariant under the action of both G
and H. Because of this gauge invariance the true dynamical variables have their
values in the coset space G/H.

We can eliminate the gauge group H by choosing one standard representative
for each coset. We will obtain a particularly simple parametrization of G/H [57] if
we choose a solvable subgroup (represented by matrices “triangular” in the sense
of the Iwasawa decomposition [ 30]) which intersects each coset once. Given such a
gauge choice (or any other one) the action (A.3) of a g € G will lead to non-standard
representatives and must therefore be accompanied by an induced gauge
transformation h(P(x),g)e H (depending in general non-linearly on P and g) in
order to maintain the gauge choice

P(x)—>h(P(x),g)P(x)g" !, geG. (A.3)

In order to construct the metric y;; we consider the 1-form dP(x)P(x)~ ! with
value in the Lie algebra ¢ of G and its decomposition

_ A=
PP 1= (et s, O . A.
d A+ I =(A,+ F,)dx", ()= -5 (A4)
The transformation laws [induced by (A.3)] for &/ and .# are
o =4(dPP~ ' +1(dPP~'))»ho/h~ ' +dhh™ !,
(A.5)

J=4dPP ' —1(dPP " Y)»hsh~ !,

i.e. o/ can be interpreted as connection for H whereas .# transforms H-covariantly
and both are G-invariant. Given any invariant scalar product ¢-,-> on ¢ we can
define an invariant metric y on G/H by

dp'de’y($)=(F, F). (A.6)

If G is simple any such <-,-) is a (positive) multiple of the Killing metric and for
each faithful representation g: 93 # — # = o(#) there is a (positive) constant ¢ such

that (S, F>=¢Te(3.F). (A7)

Note that the scalar product {-,-)> on % is indefinite but the metric y on G/H is
(positive) definite.
If G = [] G, is semi-simple there are for each faithful representation g constants

1
¢, such that (I, 0= &Tr(,7), (A7)
1

where .#, is the component of .# in %, and .%,=o(.#,). We will, however, use the
simpler notation of Eq. (A.7) for this case as well. The situation remains essentially
unchanged if G contains one abelian factor, but becomes more complicated in the
presence of several such factors (U(1) or SO(1,1)~R).

Given an r-dimensional faithful representation ¢ of ¥ we can project any r x r
matrix T onto ¢, T—(T),,, such that for every . €%,

<(T)p,, Fy=¢Tr(TF) (A.8)
and thus (ﬁ)p,=f . This projection satisfies (878~ Doe = g(T)pr g !forall geG.

pr>
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The automorphism 7 provides us with a canonical embedding of G/H in G [59],
Po>M=tP )P, (M)=M"1', (A9)

where M is H-invariant and transforms covariantly under G

M-1(gMg™!, geG. (A.10)

For the corresponding current J=43M ~'dM we find
J=DPP~'=1PM~'dMP~'=PJP~', (A11)

where DP =dP — /P is the H-covariant derivative of P.
The line element (A.6) on G/H can be reexpressed in terms of M,

dp'diy,(¢) =2 (M~ 'dM, M~ 'dM), (A.12)

and the o-model field equations can be rewritten in the equivalent forms

D“%,=0 or VJ,=0 or VM 19,M)=0, (A.13)

where D,#;=V, I;—[A,, #5]. There are dimG currents J and field equations
VJ =0, but clearly only dimG/H of them are independent. In fact, the currents J
obey the identiy 7(J)= —MJM ™! due to t(M)=M"1.

We will choose the basis for a representation g such that t(g)=(g*) ™! for all
g€, and thus ©o(F)=—F" for all #€%. In such a basis the matrix M = o(M)
= P* P is hermitian and positive definite.

Note that M and P are very close analogues of the metric and the moving frame
(tetrad) in general relativity. We see that the “metric” M is sufficient to formulate
the o-model and this remains true if we include vector fields. Nevertheless the
“moving frame” P with a “triangular” gauge choice yields a very convenient and
simple parametrization of G/H. The situation changes if we add fermion fields to
some of our models (e.g. N =1 supergravity) because these fermion fields transform
with some representation of H and not of G. The “moving frame” P is, therefore,
necessary in order to describe these fermions.

A.2. Pseudo-Riemannian Symmetric Spaces

The situation becomes slightly more complicated if we consider a pseudo-
Riemannian symmetric space G/H [56]. In this case we have a non-compact Lie
group G and an involutive automorphism t which defines the subgroup H of G as
before. In addition there is a different involutive automorphism ' commuting with
7 (t7'=1"t=1") which determines the maximal compact subgroup H’' of G

H'={heG:T'(h)=h}. (A.14)

Again we can choose P, decompose dPP ™!, and construct M and y as before. The
basis for a representation ¢ will be chosen such that t(g)=X"'(¢g*) !X with a
hermitian matrix X. If we define M = Xo(M)=P* XP, the matrix M will again be
hermitian. Due to the non-compactness of H the matrix X and thus M and the
metric y will, however, not be positive definite.
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Finally there are subgroups
H"={heG:1"(h)=h},
K={keH :t(ky=k}=HnH',
where K is the maximal compact subgroup of H and H”/K is a Riemannian

symmetric space which is a totally geodesic subspace [30] of both G/H and G/H’
(in fact the maximal such space because H'/K =G/HNG/H).

(A.15)

A.3. Consistent Truncations

Given a non-linear g-model with target space ¢ and metric y we may be interested
to study a truncated o-model with target space @ C® and the induced metric

7="a-

Definition A.1 ( Consistent Truncation). A non-linear g-model with target space @
is a consistent truncation of another s-model with target space @ if #C @ and if
every solution of the field equations (2.2-3) for the @ g-model is a solution of the
field equations for the ¢ o-model as well.

This is the case iff @ is a totally geodesic subspace of .

If ¢ is a Riemannian symmetric space G/H, then every totally geodesic
subspace of @ is again a Riemannian symmetric space G/H. The automorphism t
maps the subgroup G C G onto itself, ¥ =1|;, and therefore HnG = H C H. Similar
statements hold true if @ is a pseudo-Riemannian symmetric space.

Appendix B. A List of s-Models

In Sect. 2.1 we have studied a rather general class of non-linear G/H c-models
coupled to k vectors and gravity. In Sect. 3.1 we have shown how solutions of such
theories with a Killing vector field give rise to dimensionally reduced, 3-dimen-
sional theories consisting of a non-linear a-model with target space @ coupled to
(3-dimensional) gravity. The metric on the (dim G/H + 2k + 2)-dimensional space @
is positive definite or indefinite with 2k negative contributions if the Killing vector
is space-like (4 < 0) or time-like (4 > 0) respectively. Finally we have observed that,
depending on the details of the 4-dimensional theory, it may or may not be true
that @ is a symmetric space G/H' respectively G/H. If, however, @ is a symmetric
space then G/H' is a non-compact Riemannian symmetric space and G/H is a
Pseudo-Riemannian form of G/H' [compare Egs. (3.6-9)]. In this appendix we
shall give a complete list of all the cases where @ is indeed a symmetric space. We
shall also give a list of some possible static truncations (compare Sect. 2.2).

In order to reduce the list of all possible symmetric spaces G/H we can first
exclude as uninteresting all the cases where G/H is a direct product (G;/H,)
x (G,/H,). This can happen only if G/H is a direct product of the form (G,/H,)
x (G,/H,) and the action of G, on the vectors is trivial. In this situation either the
scalars parametrizing G,/H, are constant or there are naked singularities
(Theorem 6.1 applied to G,/H,). Moreover G must contain the subgroup SL(2)
and can therefore not be abelian. Thus G must be a non-compact real form of a
semi-simple Lie group G, [30]. From the list of all simple pseudo-Riemannian
symmetric spaces given in [56] we find the following possibilities:
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1) G=0Q°xQ°, H=0Q" H =Q x Q,where Q is a compact simple Lie group with
complexification Q¢;

i) G=Q¢ H=Q,., H' =0, where Q,_ is a non-compact real form of Q;

i) G=Q° H=R‘, H =Q, where R is the maximal compact subgroup of Q,;
V) G=0, X Qs H=0,, H=RxR;

v) G, is simple. There are 56 pseudo-Riemannian symmetric spaces G/H for
the exceptional groups. For the classical groups there are 21 series of such spaces
depending on one parameter, 12 series depending on two parameters and 3 series
depending on four parameters.

We shall now require the additional properties found in Sect. 3.1 in order to
reduce this list in three steps.

Step 1. H must be a non-compact real form of the maximal compact subgroup H’
of G. This excludes the cases iii), iv) and reduces case v) to 22 exceptional coset
spaces, 5 series with one parameter, 4 series with two parameters and 3 series with
three parameters, whereas, e.g., all the following examples are excluded:

G H H

Fyiia) S0(5,4) USp(6) x SU(2)

Es_s SU(6,2) S0(12) x SO(3)

SU*(2n) SO*(2n) USp(2n) (B.1)
SO(n, n) GL(n) SO(n) x SO(n)

SU(p,q) SO(p, q) S(U(p)x U(q)

Moreover the four parameter family G=SO(p+gq, r+s), H=SO0(p,r) x SO(q, s),
H'=S0(p+ q) x SO(r +s) is reduced to a three parameter family by the restriction
r=s.

Step 2. The intersection G/HNG/H'= H"/K must be the direct product of the two
spaces SL(2)/SO(2) and G/H. This excludes cases i), ii). The list for case v) is
restricted further and again all the following examples are excluded (at least for
general values of the parameters).

G H H"

Fisa USp(4,2) x SU(2) 50(5,4)

Eqs) 50(8,4) x SO(3) 50(8,4) x SO(3)

SO*(4n) SU*(2n) x SO(1,1) SU*(2n) x SO(1,1) (B.2)
SL(p+q) S0(p, q) S(GL(p) x GL(q))
SU(p+q,p+r) S(U(p,r) x Ulg, p)) S(U(p,p) x U(g, 1))

Step 3. The generators of the coset space G/H” have to transform under the
2-dimensional representation of SL(2)CH” in order to reproduce the scale
transformation (3.12). The possibility

G SO(n+2,n+1)

H =500 1)xso@,n T = 500m xS0 (B.3)

is ruled out by this last condition.
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Table 2. List of all symmetric spaces obtained by dimensional reduction from four to three
dimensions of theories with scalars and vectors

#* G/H G/H dimG/H k
1 SL(n+2)/SO(n,2) GL(n)/SO(n) In(n+1) n
SU(p+1,q+1)
2 B Sk R U(p, q)/U(p) x U 2pq p+q
S(U(p,1)x U(1,q)) (p,9)/U(p) x Ug) P
S0(p+2,9+2) S0(p,q) 50(2,1)
3 — X pq+2 p+q
S0(p,2) x SO(2,9) S0(p)x SO(g) ~ SO(2)
SO*(2n) x SU(2)
4 SO*(2n+4)/U(n,2 ——— In(n—1 2
(n-+4)U(n,2) Gl S00) fn(n—1) n
5 Sp(2n+2; R)/U(n, 1) Sp(2n; R)/U(n) In(n+1) n
G2(+2)
6 —_— SU(1,1)/U(1 2 2
SU(1, 1) x SU(1, 1) LM
Foiva
7 ————— Sp(6; R)/U(3 12 7
Sp(6; R)x SU(1, 1) P& RYUG)
8 Eg(+6/Sp(8; R) SL(6)/SO(6) 20 10
. Egirz SUG.3) " "
SU(3,3)x SU(1,1) S(UB)x U(3))
E6(— 14)
10 —_——— 1 1 10
SO*(10) x SO(2) SUG. UG 0
11 E;+7/SU4,4) S0(6, 6)/SO(6) x SO(6) 36 16
12 __Bwes S0*(12) x U(6) 30 16
S0*(12) x SO(2, 1)
E, _ 1
13 e _soueg 20 16
Eg(—14)x SO(2) SO(10) x SO(2)
14 Eg(+5/SO*(16) E;c47/SU8) 70 28
15 B _ Eicas 54 28
E7-25xSU(1,1) Eg— 18 xS0(2)

Apart from the trivial case G/H = SL(2)/SO(2) with no scalars and no vectors
we are left with 15 possibilities. They are listed in Table 2 together with the number
of scalars, dim G/H, and the number of vectors k=1dim G/H" for each case.

Due to the assumptions made in Steps 1-3 above, the adjoint representation of
G has the decomposition

AdG=AdGR1DIR2D1I®3 (B.4)

into representations of G x SL(2), where ¢ is the 2k dimensional real matrix
representation describing the action (2.9) of G on the vector field strengths. This
decomposition allows us to generalize the parametrization of the coset representa-
tives P(x) used by Julia [57] for G=Eg g, to all the cases listed in Table 2.
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Table 3. Some static truncations of coset spaces appearing in Table 2

# Gy/Hy, Gy/Hy dimG,/H,
1 GL(n+1)/S0(n, 1) GL(n)/SO(n) In(n+1)
SO(p+1,q+1)
2 S_Om SO(p, q)/SO(p) x SO(q) rq
SO(p+1,q+1) SO(p, q)
3 S0(, )xS0(1,q) X SO0(p) x S0(q) P+l
9 Sp(8; R)/GL(4 50633 9
p(&; R)/GLI) SO(3) x SO(3)
10 USp(4, 4)/Sp(4; C) SU*@4)/USp(d) 5
11 E USp(4,4 S0G.3) _ 25
a 6(+6/USP(4,4) S,0(5)XSO(5)
11b SI(8)/SO(4, 4 SLE) x SL&) 18
L@®ysot4.4) S0(4) x SO(4)
SU(4,4) '
12 SLE O R SL(4; C)/SU(4) 15
13 SU*(8)/USp(4, 4 SUMA) X SU4) 10
®)/USp4,4) USp(d) x USp(4)
14 S0(8,8)/S0(8; C) SL(8)/SO(8) 35
15 SO*(16)/SU(8) x R SU*8)/USp(8) 27

Choosing the coefficient ¢= for the adjoint representation leads to the

1
2k+4
scalar product (A.7) which reproduces the form (3.6) of the Lagrangian with the
correct coefficients. Reversing the reduction from 4 to 3 dimensions we thus obtain
a unique 4 dimensional theory for each case in our list.

In Sect. 2.2 we have defined the static truncation of the 4 dimensional G/H
o-model which induces a corresponding static truncation of the 2 and 3
dimensional G/H g-models. The precise form of these truncations depends on the
assignment of temporal parities to the scalars and vectors. In Table 3 we give static
truncations for some of the coset spaces listed in Table 2, all chosen such that the

number of vector fields in the truncated theory, k, =4 dim G, /H?,, is the same as in
the untruncated one.
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