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Abstract. For invertible, area-contracting maps of the plane, it is common for a
basin of attraction to have a fractal basin boundary. Certain periodic orbits on
the basin boundary are distinguished by being accessible (by a path) from the
interior of the basin. A numerical study is made of the accessible periodic orbits
for the Hénon family of maps. Theoretical results on rotary homoclinic
tangencies are given, which describe the appearance of the accessible saddles,
and organize them in a natural way according to the continued fractions
expansions of their rotation numbers.

Introduction

Let f denote an area-contracting invertible map of the plane and let U be the basin
of attraction of an attractor A. Although U may be easy to describe topologically
(for example, U may be connected and simply connected, and thus homeomorphic
to a disk), the boundary of U can be extremely complicated. In [ 7], it is pointed out
that much of the basin boundary behavior can be characterized by certain
distinguished orbits on the basin boundary, called accessible orbits. A point x is
accessible from an open set U if there is a path, beginning in U, such that x is the
first point not in U reached by the path. For real-valued maps, when the basin
boundaries are fractal, most of the points in the basin boundary are not accessible.

When U is connected and simply connected, the map f acts on the accessible
points as if they were on a circle. This fact, known to Birkhoff [4], means that one
can associate a rotation number to the boundary points accessible from U. We call
this number the accessible rotation number. It is shown in [2] that if the accessible
rotation number is rational, then there exist accessible periodic orbits.

The goal of this paper is to study changes in the accessible rotation number as a
map parameter is varied. The results of a computer investigation of a typical two-
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parameter family of plane diffeomorphisms, the Hénon map, are discussed in
Sect. 2. Motivated by these results, we single out a specific theoretical pheno-
menon, the rotary homoclinic tangency, for further study. The main theorem of the
paper (Theorem 3.1) shows that this phenomenon underlies many properties of the
accessible rotation number observed in the Hénon map.

Some of these properties are illustrated in Fig. 2. First, as the parameters 4 and
B of the Hénon map are varied, the accessible rotation number ¢(A4, B) changes
discontinuously. For values of the Jacobian B near onc, i.e. as the area contraction
becomes weak, these discontinuous jumps occur in more rapid succession, and
there is a greater variety of accessible rotation numbers, although they appear to
always be rational for B< 1. Third, the lower the denominator of a rational g(4, B),
the broader the region in parameter space in which it is the accessible rotation
number. Thus “phase-locking” is more pronounced for small denominators.

By rotary homoclinic tangency we mean the tangency of an unstable manifold
of one point in a periodic saddle with the stable manifold of an adjacent point from
the same periodic orbit. This definition subsumes the standard definition of
homoclinic tangency, which is the tangency of stable and unstable manifolds of the
same saddle point (for f or some higher iterate f* of f).

In studying the dynamics of area-contracting maps of the annulus, Hockett
and Holmes [11] use the term “rotary homoclinic points” in reference to
transverse intersections of stable and unstable manifolds which encircle the
annulus at least once, a situation which is also studied by Aronson et al. [3].
Although we are interested in homoclinic tangencies in the plane, not in the
annulus, our use of the term “rotary homoclinic tangency” is suggested by this
usage since we are looking at periodic orbits which have a natural rotation number
as accessible orbits on a basin boundary.

Gavrilov and Silnikov [6] studied nondegenerate homoclinic tangencies in
area-contracting planar maps. They showed that if a fixed point p of a C3-family f,
(or of f¥, if p is a periodic point of period k) creates a quadratic homoclinic
tangency when 1 =4, then there exists a sequence 4,— 4, such that f, hasa saddle
node bifurcation at which an attractor of period n and a saddle of period n are
born. It was in this situation that Newhouse [12] (see also [13]) proved the
existence of infinitely many sinks for a single difftfomorphism. Robinson [13]
strengthened Gavrilov and Silnikov’s result to hold for the formation of any
homoclinic tangency for a real analytic diffeomorphism, even if the intersection is
created degenerately.

The sequence {p,} of saddles created at such a tangency plays an important role
in metamorphoses, i.c., sudden jumps in basin boundaries at homoclinic
tangencies [ 7, 9]. The discontinuities in rotation numbers mentioned above are a
result of these sudden jumps. However, the complexity of rotation numbers and
the patterns of metamorphoses which we found in the Hénon study were not fully
explained by this theory.

In the present paper, we prove a result (Theorem 3.1) which describes the
appearance (and abundance) of rotary homoclinic tangencies. Namely, if a rotary
homoclinic tangency of a saddle orbit p is created when A= 1,, then there exists a
sequence 4, — 4, such that for sufficiently large n, the saddle p, (guaranteed by the
Gavrilov-Silnikov result) creates a new rotary homoclinic tangency at 4, . Stated
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informally, the existence of one rotary homoclinic tangency (for instance, the
existence of a homoclinic tangency) implies the existence of infinitely many rotary
homoclinic tangencies. The theorem is proved under fairly general hypotheses
which are satisfied, for instance, by the Hénon map. The advantage of this version
is that it is self-replicating. Each of the infinitely many rotary tangencies produces
new sequences of saddles with rotary homoclinic tangencies and so on. Thus the
original tangency implies the existence of a hierarchy of levels of saddle orbits and
tangencies.

The rotation numbers of the new saddles cretaed at one level are related to the
rotation number of the saddle at the previous level in a natural way using
continued fractions representations of rational numbers. Through an analysis of
these continued fractions, we are able to describe the phenomena observed in the
Hénon map.

1. Preliminaries

Let f be an area-contracting, orientation-preserving diffeomorphism of the plane.
The point p is called a periodic point of period k if f*(p)=p. Unless otherwise
specified, we assume that k is the smallest such number, and thus k is the minimum
period of p. For a periodic point p of period k, the stable manifold of p is the set
We(p)=1{y: f*(y)- f*(p), as n—oo}; the unstable manifold of p is the set W*(p)
={y:f¥™(y)—> f "*(p), as n—>o0}. The orbit of p is the set of k distinct forward
images of p. The stable (respectively, unstable) manifold of the orbit of p is the set of
k distinct forward images of W¥(p) (respectively, W*(p)). We let Df(x) denote the
matrix of partial derivatives of f evaluated at x. The determinant of Df(x) is the
Jacobian of f at x. A periodic point p of period k is an attractor (respectively,
saddle) if the eigenvalues e, and e, of Df ¥(p) satisfy |e,| < 1 and |e,| < 1 (respectively,
le;] <1 and |e,|>1).

When f has more than one attractor, the boundaries between respective basins
of attraction can be extremely complicated. Such boundaries can be fractal,
making final state predictability very difficult, and they can contain infinitely many
unstable periodic orbits [7, 1]. As a further obstacle to predictability, it has been
shown [9, 1, 7] that, as a parameter in f is continuously varied, sudden
discontinuous jumps can occur in the position and structure of a boundary. This
phenomenon is called a basin boundary metamorphosis and is discussed more fully
later in this section and in Sect. 2.

In order to understand the dynamics of f on the boundary, we begin by
restricting ourselves to the accessible boundary points. If the basin U is connected
and simply connected, then f acts like a circle map on the accessible points (see, for
example, [4, 5, or 2]). An orientation-preserving invertible map g of the circle is
classified according to a rotation number ¢ which is a measure of the average
rotation of the circle under g (see, for example, [8]). Specifically, if o = h/k (reduced),
then there are periodic points of period k which go around the circle 4 times every k
iterates. The rotation number is 0 if and only if g has fixed points. In the main result
of [2] it was shown that if the rotation number of f on the accessible points is
rational, say h/k, then every accessible boundary point is either a periodic point of
period k (not necessarily the minimum period) or is on the stable manifold of such a
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(a) (b)

(e)

Fig. 1a—c. A portion of the basin of infinity of the Hénon map (1.1) is shown in black for each of
three values of the parameter 4. The region indicated is the subset [ — 3, 3] x [ —4, 12] of the plane.
In each figure, a cross indicates the position of a point in a saddle orbit accessible from the white
region. a At A=1.31, the set of accessible points consists of a saddle fixed point and its stable
manifold. b At 4=1.39, the set of accessible points consists of a period-four saddle and its stable
manifold. In ¢ At A =1.40, the set of accessible points consists of a period-three saddle and its
stable manifold

point. Of course, the dynamics of other boundary points are not easily described.
Non-accessible periodic orbits can have vastly different (in particular, higher)
periods.

Figure 1 shows in black the basin W of attraction of infinity for three different
values of the parameter 4 in the Hénon map [10]

f(x,y)=(4—x*—By, x). (1.1)
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The Jacobian of f is B which is fixed at 0.3. (Later we investigate the map for
varying B values.) We chose the Hénon map for this study because of its
prototypical behavior (when B=0, it is the one-dimensional quadratic map F(x)
= A —x?), and because calculation of orbits is very efficient. We are interested in
the orbits accessible from the white region U which is the complement of the
closure of W. Here we are considering a rather broad concept of basin, as in [2];
namely, U is connected and simply connected, and there is an ¢-neighborhood N,
of the boundary of U such that the orbits of a dense set of points in N, eventually
leave N,.

In Fig. 1a (4 =1.31) there is an attractor of period 2 in the white region U to
which orbits of almost all points in U tend. At this 4 value, there is a saddle fixed
point p on the boundary. The entire boundary is composed of p and the stable
manifold W¥p) of p. Thus the rotation number g is 0. In Fig. 1b (4=1.39), the
boundary is fractal. There is an accessible saddle of period 4, giving a rotation
number of 1/4. All other accessible points are on the stable manifold of this orbit. In
Fig. 1c(A4 =1.40), the accessible points consist of a periodic orbit of period 3 and its
stable manifold; hence the rotation numberis 1/3. For B=0.3 and A between 0 and
2, these rotation numbers — 0, 1/4, and 1/3 - are the only ones observed.

In a one-parameter family of invertible circle maps, the rotation number varies
continuously with the parameter. In the present situation, however, we see an
entirely different phenomenon. The rotation number of accessible basin boundary
points does not vary continuously with the parameter. In Fig. 1a, the stable
manifold of the fixed point saddle p on the boundary is visible since it is the basin
boundary; the unstable manifold W*(p) is not visible, but extends from p into the
white region. At a critical parameter value A= A4, ~1.315, the stable and unstable
manifolds of p become tangent for the first time and then cross for 4> A,. At this
parameter value, there is a sudden jump in the boundary, and points which were
well within the interior of U at A= A4, go to infinity for all 4> 4,. In [9] Hammel
and Jones prove that at a homoclinic tangency (where W*(p) and W*(p) become
tangent and then cross) W*(p) jumps into the region U. Their result holds for a
general class of maps, not just for the Hénon map, and implies that a boundary
metamorphosis occurs whenever the stable and unstable manifolds of an
accessible saddle become tangent and then cross (see [7 and 1]). In our example,
there exists a periodic saddle of period 4 well within the interior of U at A= A,,. For
every value of A greater than A,, this orbit is in the boundary. Another
metamorphosis occurs at A x~1.395, and the boundary jumps to the period 3 orbit
shown in Fig. 1c. This metamorphosis is described in the next section.

2. A Numerical Study of Metamorphoses of the Hénon Map

Figure 2 shows the results of a numerical study of rotation numbers of
accessible points for the two-parameter Hénon map (1.1). The basin U is the set
described in Sect. 1. For 0 < B <1, f is orientation preserving and area contracting.
The diagram indicates that the rotation number is a discontinuous function of the
parameter. Although not every rotation number which occurs for 4 and B in the
range shown is indicated, the representation is correct for B=0 to B=0.95 on a
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Fig. 2. Rotation numbers of accessible orbits of the two-parameter Hénon map are shown. The
fractions represent rotation numbers of orbits accessible from the region U, i.e., the set of points
not in the closure of the basin of infinity. In each of Fig. 1a—c, U is the region shown in white

grid size of 0.01 x0.01. Beyond B=0.95, the regions are too small and too
numerous for all of them to be shown in this picture.

Some qualitative observations can be made about the diagram. First, the
rotation number appears always to be rational when B < 1. Second, the size of the
region in parameter space with rotation number h/k roughly decreases as k
increases. Third, the greater the area contraction (i.e., the smaller B), the fewer
metamorphoses occur as A is varied and the greater the jump in rotation number
at each metamorphoses. For larger B, more distinct rotation numbers are possible.
Fourth, for fixed B, the rotation number is increasing (although not continuous) as
a function of A. We choose to emphasize these qualitative aspects of the diagram
because they are likely to be observed not just for the Hénon map, but in more
generality. To explain these phenomena, we need to examine in more detail the
mechanism for changing the rotation number of the accessible orbits, which is the
metamorphosis mentioned in the previous section.

For A= —(B+1)%/4, (1.1) has fixed points. There is a saddle-node bifurcation
at A= —(B+1)?/4 at which point a fixed point attractor 6 and a saddle p come into
existence. For values of 4 near the saddle node, the saddle p and its stable manifold
form the boundary of the basin U of the attractor 0. Thus the boundary of U starts
as a smooth curve on which all points are accessible from U and which has a
rotation number of 0. This is the situation illustrated in Fig. 1a and for all values of
A and B in Fig. 2 in the region marked 0. The curve which bounds this region
indicates the parameter values where a homoclinic tangency occurs. We refer to
the tangencies along this curve as simple homoclinic tangencies since the
intersecting manifolds emanate from a fixed point.
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When there is a homoclinic tangency of the stable and unstable manifolds of p
(under certain non-degeneracy assumptions), infinitely many horseshoes are
formed near a point g of tangency (see, for example, [8]). Specifically, there exists
an integer M > 0 such that for n> M, f” forms a horseshoe. For ease of exposition
we describe here the case where horseshoes form prior to the actual tangency.
Although this is not always the case, it is the pertinent situation for the
consideration of metamorphoses, and we are more specific about this assumption
in the statement and proof of the theorem in Sects. 3 and 4. The domains and
images of two horseshoe maps in the sequence are illustrated in Fig. 3.

In the horseshoe formed by /" there are two saddle orbits of minimum period n.
Oneis a “flipped” or “Mobius” saddle (i.e., Df " evaluated at a point in this orbit has
an eigenvalue in (— oo, — 1)), and the other is a “regular” saddle [i.e., Df" evaluated
at a point in the orbit has an eigenvalue in (1, c0)]. We call the regular saddle orbit
of period n the principal saddle of period n. Given a point g of tangency of W¥(p)
with W*(p), there exists a sequence {p,} of principal saddles converging to q.

For n sufficiently large, the stable and unstable manifolds of successive
principal saddles in the sequence cross forming a complicated web. In particular,
there exists an N >0 such that for n= N, W*(p,) crosses W*(p, ,) (see [1]). This
crossing implies W*(p, . ) C W*(p,) (see, e.g., [8] for a discussion of the A-lemma).
Since the saddles p, converge to g, this implies that ¢ is in W*(p,,), for alln> N. Thus
when W¥(p) crosses W*(p), it simultaneously crosses W*(p,) for all n= N. Then
W(p,) C W¥(p) for all n= N. Since W*(p) is in the boundary of U at the homoclinic
tangency, when W¥(p) and W*(p) cross, p, and W¥(p,) are in the boundary for all
n= N (this fact was pointed out in [7]).
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Fig. 3. A homoclinic tangency of the stable and unstable manifolds of a saddle p is shown, along
with the domains and ranges of two horseshoe maps in the infinite sequence of horseshoe maps
formed near a point ¢ of tangency
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Fig. 4. Portions of the stable and unstable manifolds of two adjacent principal saddles are shown.
Thelower boundary of the region ¥ contains a point of homoclinic or rotary homoclinic tangency.
The point y and the region D are described in the proof of Theorem 3.1

The value of N where this process starts determines the rotation number of the
new accessible orbits. For the homoclinic tangency at B=0.3 and A=A4,~1.315,
N equals 4, and the subsequent metamorphosis results in a jump in the rotation
number from 0 to 1/4. Notice, however, that for 4> A, all the principal saddles p,,
for n=4, and their stable manifolds are in the boundary (along with the stable
manifolds of other points in the invariant sets of the horseshoes). Figure 4 shows
portions of the stable and unstable manifolds of two successive principal saddles.
As shown, part of W¥(p,) extends from p, through the rectangular domain B,, and
part of W*(p,) extends from p, through the horseshoe-shaped image f"(B,). As the
Jacobian B increases toward one, indicating weaker area contraction by f, the
spacing between successive horseshoe images, and thus between unstable mani-
folds of the saddles p,, increases relative to the spacing of the stable manifolds.
Thus we expect N (where the process of linking of stable and unstable manifolds
begins) to become larger with B. As shown in Fig. 2, this is in fact the case.

Subsequent metamorphoses are possible. Jumps in the boundary occur when
there is a crossing of W¥(py) (the accessible points) by another invariant manifold.
Thus if r is a periodic saddle in U and if W*(r) crosses W*(py), then the boundary
jumps to contain r and its stable manifold. For example, when B=0.3 in (1.1),
W*(p5) crosses W¥(p,) at A~ 1.395, at which point the rotation number jumps from
1/4 to 1/3. See Fig. 1c and Fig. 2. As B is increased, Fig. 2 shows regions in
parameter space with rotation numbers which are of the form h/k, where h> 1. In
such regions there are accessible periodic orbits which are not simple; that is, the
orbit winds around the basin h times every k iterates. Surprisingly, these rotation
numbers can also be understood in terms of homoclinic tangencies and horseshoe
formation.

3. Rotary Homoclinic Tangencies

In studying the metamorphosis described above where the rotation number jumps
from 1/4 to 1/3, it was observed [7] that just prior to the crossing of W*(p;) with
W*(p,) there is a tangency of the unstable manifold of p, with the stable manifold of
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Fig. 5. The domain B, and the range f*"*3(B,) of a horseshoe map formed near a rotary
homoclinic point ¢ are shown. The point p, is a periodic saddle of period four

another point in the orbit of p,. Again, there is recurrent behavior, and horseshoes
are formed in a neighborhood of a point of tangency. In this case, however, the
principal saddle in each horseshoe is not a simple orbit. Figure 5 depicts the
horseshoe formation as a rectangular domain B, near a point g of tangency moves
around the circuit formed by the ring of stable and unstable manifolds. Every four
iterates of f moves B, along the stable and then the unstable manifold of p, to
another point of tangency. As shown in Fig. 5, this occurs in 4n iterates. Then
another three iterates moves f*(V) back to ¢, so that f*"*3(B,) forms a horseshoe-
shaped image intersecting B,. In particular, there exists N >0 such that for n> N
there is a domain B, for which f*"*3 forms such a horseshoe. There is a principal
saddle in B, with minimum period 4n+ 3. This orbit is not simple since each point
in the orbit goes around the circuit n+ 1 times every 4n+ 3 iterates.

As in the case of the simple homoclinic tangeny, when the invariant manifolds
of the accessible period-four orbit pass through the tangency at A =A4,, there is a
metamorphosis. There will be a jump in the basin boundary so that the saddles of
period 4n+ 3 (for n sufficiently large) described above, together with their stable
manifolds, will be in the boundary for 4> A4,. Hence we expect accessible periodic
orbits of period 4N + 3 and rotation number (N +1)/(4N + 3), for some N >0.
Again, as in the case of a simple homoclinic tangency, as B increases and there is
less area contraction, the larger we expect N to be.

We have described two levels in the hierarchy of horseshoes: horseshoes with
rotation number 1/n, for n sufficiently large, in the case of the simple homoclinic
tangency; and between horseshoes of rotation number 1/N and 1/(N —1) at the
first level, a secondary level of horseshoes with rotation numbers (n+1)/(nN
+ N —1), for n sufficiently large. In fact, there are infinitely many levels. Before
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stating the theorem which guarantees the existence of this hierarchy, we give more
formal definitions of some of the concepts described above.

Let f be an orientation-preserving, area-contracting, invertible map of the
plane, and let p be a periodic point of period k. Suppose that W*(p) is tangent with
WS(f(p)), for some j, 1 < j<k. Let q be a point of tangency, let « be the segment of
W*(p) from p to q (inclusive), and let f§ be the segment of W*(f/(p)) from g to f(p)
(inclusive). We say that the orbit of p (or sometimes, by abuse of notation, the point

k
p) forms a rotary homoclinic tangency at q if I'(p)= () f'(axup) forms a simple
closed curve (cf. Fig. 5). =1

If p forms a rotary homoclinic tangency, let 7, = p, and let {n,, 7,, ..., 7| be the
orbit of p, where the points are listed in order of their appearance along the circle
I'(p), say in the counter-clockwise sense. We say that p has rotation number h/k
with respect to I'(p), if, for all 1 Si<k, f(n;)=m;, where j=(i+h) mod k. Informally
speaking, f restricted to the orbit of p moves the points around I'(p) as if they were
an orbit of an order-preserving circle map of rotation number h/k.

At a rotary homoclinic tangency there is recurrent behavior. Just as in the case
of a simple homoclinic tangency, horseshoes (and therefore principal saddles) are
formed near a point of tangency. (We discuss sufficient non-degeneracy assump-
tions in Sect. 4). In describing metamorphoses, we are interested in principal
saddles which form prior to the rotary tangency. For some types of tangencies,
recurrent behavior does not occur prior to tangency but only after the manifolds
have crossed. When principal saddles are created prior to tangency and when this
tangency is the first interesection of the invariant manifolds involved, we call the
tangency an inner tangency. Let p be a regular fixed-point saddle of an orientation-
preserving map, and let Wj(p) and Wj'(p) denote the two branches of the local
unstable manifold of p. If, prior to tangency, W}(p) (respectively, W;(p)) appro-
aches W*(p) on the side from which W}(p) (respectively, W(p)) emanates, then the
tangency will be inner. More generally, let p be a periodic orbit of period k, k> 1.
For a rotary tangency of p, let 7, =p and let {n, n,, ..., m,} be the ordering of the
orbit of p on I'(p). Then if Wi(n;) (respectively, Wy(n;)) approaches W+ 1) moas)
(j=1,....k) on the side from which W7 1)mear) (respectively, Wi(7; 1)moar)
emanates, then the tangency will be inner.

The rotation numbers of accessible orbits at different levels are best described
by continued fractions. As explained above, the sequence {s,} of saddles which
exists when py (the simple orbit of period N) forms a rotary homoclinic tangency
have rotation numbers {(n+1)/(nN+ N —1)}, for n sufficiently large. As a

continued fraction, (n+1)/(nN+N—1) is In general, let [a,,

N—1/n+1)
a,, ...,a;] denote the rotation number of a periodic saddle p at level j, where for
a;22, [a;,a,,...,a;] stands for the finite continued fraction

lai, as,...,a;]= ]
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Each rational number strictly between 0 and 1 can be written in a unique way
as [ay,...,a;] for some j=1 and a; = 2. Further, consider the reverse lexicographic
ordering on the symbols [ay, ..., a;]. To be precise, we say that a<b if and only if
a=[a,,....a; Giq,....a;], b=[a,,...,a; by y,....b;], and a;,;>b; ;. (If a is
shorter than b, fill out a with oo signs.) Thus [4]<[4,3]<[4,2]<[4,2,2]
<[4,2,2,2]<[3]. One checks that this ordering is identical with the usual
ordering of rational numbers. It should be emphasized that these properties hold
for the “minus” continued fractions we have described here, and not the “plus”
continued fractions often used in the study of circle maps. It is these properties (and
Lemmas 4.1-4.2) that make the above continued fraction representation of
rational numbers very natural for keeping track of rotation numbers in this
context.

We are now ready to state the main theorem, which will be proved in the next
section.

Theorem 3.1. Let f, be a C*-family of real analytic, area-contracting, orientation-
preserving maps of the plane. Suppose that a periodic saddle p forms an inner rotary
homoclinic tangency at a point q when /.= A,. Then there exists a sequence {1,} of
parameter values with limit 1, and a sequence {p,} of principal saddles with limit q
such that for n sufficiently large, each principal saddle p, has an inner rotary
homoclinic tangency at 1,

Moreover, if the rotation number of p with respect to I'(p)is [ay, ..., a;], then the
rotation number of p, with respect to I'(p,) is [a,, ...,a,n+1].

The theorem implies that at any rotary homoclinic tangency there are infinitely
many levels of rotary homoclinic tangencies and principal saddles described by the
continued fraction representations of their rotation numbers. Since each of these
rotary tangencies is an inner tangency, a basin boundary metamorphosis can
occur at any level, depending of course on the level of the accessible saddle.

As Bisincreased in (1.1), (i.e., the area contraction is decreased), not only do we
observe larger values of N in the rotation number 1/N as the line of simple
homoclinic tangencies is crossed in Fig. 2, but we also observe deeper levels of
continued fractions. Qualitatively, this phenomenon can be explained by the fact
the unstable manifolds of principal saddles at a given level are more spatially
separated relative to their stable manifolds when there is less area contraction.
This spacing allows metamorphoses which result in accessible orbits at the next
level.

As an illustration, we interpret the jumps indicated in Fig. 2 when B is fixed at
0.9 and A4 is varied. For 4 =0.8, there is an accessible period 4 saddle orbit, and so
the rotation number is 1/4. As A is increased, this accessible saddle has a rotary
homoclinic tangency. The sequence of principal saddles converging to the point of
tangency has rotation numbers 1/(4 — 1/n) for n = 2. For values of 4 slightly greater
than the tangency value (approximately A=0.815), the accessible orbit has
rotation number [4,3]=1/(4—1/3)=3/11. The other orbits created by the
tangency, of rotation number [4, n] for n =>4, are buried in the basin boundary and
not accessible. Later (at approximately A =0.831), the 3/11 orbit is buried by a new
accessible orbit with rotation number [4, 2]=2/7. As A increases beyond 0.972,
the 2/7 orbit has a rotary tangency, resulting in a sequence of principal saddles of
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periods [4, 2, n] for n=2. It turns out that the n=2 orbit is accessible for 4
immediately beyond A=0.972, so the accessible orbit has rotation number
[4,2,2]=3/10. At A=1.013, the 3/10 orbit has a rotary tangency, resulting in a
new accessible orbit with rotation number [4, 2, 2, 2]1=4/13. When the 4/13 orbit
has a rotary tangency (at approximately 4 =1.036), the entire sequence of orbits
converging to the tangency is buried by the stable manifold of the period 3 saddle
orbit remaining from the original period 1 homoclinic tangency, and the rotation
number jumps to [3]=1/3.
We end this section with the following conjectures:

Conjecture 1. Given a nonnegative rational number r, r < 1/3, there is a region in
(A4, B)-parameter space where the rotation number of the accessible orbits of the
basin U in (1.1) is r.

Conjecture 2. There are no parameter values with 0 < B <1 where the accessible
orbits have an irrational rotation number.

4. Proof of Theorem

We begin with some observations on the continued fractions defined in the
previous section. For a fixed continued fraction [a,, ..., a;], define the lowest-terms
numerator and denominator by

M/N,=[a,,...,a;] for 1ZiZj.
Fact 1. Foriz3, M;=aM; ,—M,;_, and N;=a;N;,_—N,_,.
Fact 2. Fori=z2, M;\N; —M,;_,N;=1.
Fact 1 is easy to derive by induction, and Fact 2 is a consequence of Fact 1.

Lemma 4.1. Let0<M/N =[a,,...,a;] <1 be arational number with M/N in lowest
terms. Then
(a) @(x)=x+M is a group automorphism of the additive group Z/(N), and
(b) The unique solution of ®*(0)=1 for k in Z/(N) satisfies h/k=[ay, ...,a;_ ] in
lowest terms. In fact, kM =1+hN.

Proof. Part (a) is obvious. The key point kM =1+hN of part (b) follows from
Fact 2.

For example, consider the rational number [2, 3,4]=11/18. Note that [2, 3]
=3/5. The content of Lemma 4.1 is that to solve the equation 11k=1 in Z/(18)
requires k=35.

Remark. Lemma 4.1 has a more geometric illustration when applied to the closed
orbits of a circle map. Let g be an order-preserving map of the circle with a closed
orbit of rotation number M/N =[a,, ...,a;]. Let p; be a point of the orbit and let
p, be the next point of the orbit in the chosen direction of rotation (with respect
to a fixed lift). We pose the following question. How many iterates of g are
necessary to map p, to p,! The answer, according to Lemma 4.1, is k, where h/k
=[ay,..., a;_,]. Moreover, p, will have gone around the circle h times to reach

Da2-
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The second lemma can be most easily expressed in terms of Farey sums. Given
two rational numbers h,/k; and h,/k, we will denote the Farey sum by
hy ks @hafky = (hy + hy)/(ky + k).

Lemma 4.2. (a) For nz1, [ay,...,a;1®[ay,...,a,n]=[a,,...,a; n+1].

(b) Let hi/ky=[ay,...,a;], hy/k,=[a,,...,a;—1] in lowest terms. Then for
nz1, (nhy+h,)/(nk, +ky)=[ay,...,a;, n+1].

Proof. Part (a) is proved by induction. The j=1 case is that 1/a,®n/(na; —1)
=m+1)/a,(n+1)—1)=[a;, n+1]. In general, let M,/N,=[a,,...,a;] and
M,/N,=[a,,...,a;n]. Then
1 1
lag,....a;]®@[ay,....,a;,n]= 4~ M,N, @ 4.~ M,/N,
=N,/(a;N;—M)®N,/(a;N,—M,)
_ 1
ay—(M;+M,)/(N;+N,)
=[ay,...,a,n+1],

where the last equality follows from the induction hypothesis.
Part (b) follows from the obvious equality [a,,...,a;—1]=[ay,...,a; 1] and
repeated application of part (a).

Proof of Theorem 3.1. First, we give a proof of the theorem in the case that pis a
fixed point. Then we indicate the changes needed to deal with the general case. We
follow a standard construction of the horseshoes which form near a quadratic
tangency, (see, for example, [8]). For a real analytic map, tangencies of non-
coincident invariant manifolds are not necessarily quadratic, but they are of finite
order. In cases where the tangency is not quadratic, Robinson [13] has shown that
there are at least hyperbolic principal saddles when the tangency is of finite order.
Our proof depends on the existence of these saddles.

Set f'= f;«. Let Wbe a neighborhood of p in which f is smoothly conjugate to a
linear map. Without loss of generality, we assume that g is in W, Let V be a
rectangular neighborhood in W bounded on one side by a segment of W¥(p)
containing g and on the opposite side by a line segment joining points of W*(p), as
shown in Fig. 3. For each n sufficiently large, there is a domain B, extending from
the left to the right side of V' on which f” forms a horseshoe-shaped image, as
shown in Fig. 3. The set f"(B,) lies above W*(p) and intersects the top boundary of
V in two components. The invariant set of the horseshoe is in f*(B,)nB,. For the
particular position of invariant manifolds shown in Fig. 3, the principal saddle p,, is
in the right component of f*(B,)nB,. For n sufficiently large, W*p,) extends
through B, and W*(p,) extends through f"(B,), (see, for example, [1]). We show the
portion of each invariant manifold from p, to the first intersection with the
boundary of V in Fig. 4.

It was shown in [1] that at A= 4, there exists N >0 such that W*(p,) crosses
W(p,+.) for n=>N. (See Remark 1 following the proof.) We will show that this
crossing implies that p, , ; has a rotary homoclinic point;i.e., for some A</, p,.
has a rotary homoclinic tangency, and then its stable and unstable manifolds cross.
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Let Wi(p,) and Wy(p,) denote the two branches of W¥(p,), as shown in Fig. 4.
Similarly, let Wy(p,) and Wj(p,) denote the two branches of W*(p,). Since W} (p, )
extends from p,,, , to the top boundary of V, Wi(p, , ;) crosses W3(p,,). This crossing
implies W*(p,) C Wr(p, + 1), and hence that W*(p,) = W*(f"(p,)) C Wi(f"(py+1)). For
n2N, Wi(p, ) crosses Wy(p,) [1]; since W*(p,) C Wi (f"(Py+ 1)), Wi(p,+ 1) must also
cross Wi (f™(p,+.)), resulting in a rotary homoclinic point.

Clearly, there are parameter values prior to the tangency of W*(p) with W*(p)
for which W(p, . ,) and W{(f"(p,)) do not intersect. Thus there is a parameter
value at which they are tangent for the first time. We claim that this tangency is an
inner tangency, i.e., that principal saddles are formed prior to tangency. We need to
show that Wi (f"(p.+ ) approaches Wj(p, ) on the side from which Wi(p,, )
emanates. Suppose otherwise, and let y be a point at which Wg(p, . ;) and Wj(p, +,)
intersect (see Fig. 4), and let D be a region bounded by the segment of Wy(p,. ;)
between p, , ; and y (inclusive) and by the segment of W(p, . ;) between p, , ; and y
(inclusive). Then part of Wi(f"(p, +,)) must be inside D before tangency, implying
that W*(f"(p, ) intersects W(p, . ) or W§(p, . ;) before tangency, both of which
are impossible. Thus W*(f"(p, . ,)) forms an inner tangency with W*p,, ,).

In the general case, we begin with a rotary homoclinic tangency of a point p of
rotation number h/k=[ay,...,a;] with respect to I'(p). Consider the rational
number c¢/d=[a,,...,a;—1]. We will show that the rotation numbers of the
sequence of principal saddles p, as above are given by (nh+c)/(nk+d). Then it
follows from Lemma 4.2(b) that the rotation number of p, on I(p,) is
lay,...,a,n+1].

Let m, =p, and let {n,,7,,...,7,} be the ordering of the orbit of p along the
closed curve I'(p). A principal saddle is mapped from a neighborhood U, of the
point g of tangency of Wj(r,) with W;(p) along W;(p) toward p and then out Wi(p)
from p to a neighborhood U, of the point of tangency of Wy(p) with Wj(n,). Let p,
be the principal saddle for which this process takes n steps, for n sufficiently large.
Since the period of p is k, n steps accounts for nk iterates of f. Also, each step
accounts for h circuits of the curve I'(p). From the remark following Lemma 4.1
and Lemma 4.2(a), it follows that f™(p,) will map from U, back to U, (and thus to
p,) in another d iterates of f and c circuits of I'(p).

The rest of the proof proceeds as in the fixed point case, except that the period
of p, is nk+d instead of n. Thus we get, for sufficiently large n, a crossing of
Wi(p, + 1) with WA(f™*4(p, , ,)). By the remark after Lemma 4.1, f"™*4(p,, ,)is the
point in the orbit of p,,, adjacent to p,, {, as needed. []

Remarks 1. In [1] it was shown that when 4= 4, there exists an N =0 such that for
n=N, WH¥p,) crosses W¥p,,,), under the hypothesis that the tangency is
quadratic. The proof there depends on the fact that the distance from f"(B,) to
W*(p) relative to the distance of B, to W*(p) goes to 0, as n goes to co. This fact
follows from an analysis of distances in W (where the map is linear) which depend
on the eigenvalues of Df(p) and n. Outside W, a fixed number k of iterates,
independent of n, maps f"%(B,) (the last iterate of B, in W) to f"(B,). As long as f
is Lipschitz, the ratio of the distances in the limit as n— o0 is preserved with the
addition of k iterates. Thus, since the existence of the principal saddles is
guaranteed for finite order tangencies (see [13]), that hypothesis is sufficient for the
result in [1].
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2. Let p be a periodic point of period k which forms an inner rotary homoclinic
tangency when 2= /,. It is easily seen that if the invariant manifolds forming the
tangency cross transversally (say for A>4,), then the stable manifold of p crosses
the unstable manifold of p transversally for 2> /.. Resulting points of intersection
of W3(p) with W*(p) are transverse homoclinic points in the ordinary sense, i.e.,
points whose forward and backward iterates are asymptotic to p under f*

3. Under non-degeneracy assumptions, the existence of homoclinic or rotary
homoclinic tangencies implies the existence of infinitely many horseshoe maps, i.c.,
invariant sets which are conjugate to the full two-shift. Under such hypotheses,
each principal saddle guaranteed by Theorem 3.1 represents an entire horseshoe.
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