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Abstract. We prove the existence of infinitely many stationary states for the
following nonlinear Dirac equation

iyμdμψ — mψ + (φψ)ψ = 0 .

Seeking for eigenfunctions splitted in spherical coordinates leads us to analyze
a nonautonomous dynamical system in R2. The number of eigenfunctions is
given by the number of intersections of the stable manifold of the origin with
the curve of admissible datum. This proves the existence of infinitely many
stationary states, ordered by the number of nodes of each component.

1. Introduction

We study the existence of stationary states for the following nonlinear Dirac
equation

3

)ψ = Q. (1.1)

The notation is the following, ψ is defined on R4 with values in C4, dμ = d/dxμ, m is a
positive constant, ψψ = (y°ψ, ψ), where ( , ) is the usual scalar product in C4, and the
yμ's are the 4 x 4 matrices of the Pauli-Dirac representation, given by

"/ 0 Ί . Γ 0 σ*

t o - / I and H-v o
where

"0 1

I 0

for fc=l,2,3,

0 - / i . 1 1 0
σ^' o r - l o -i

Finally, F:R-»R models the nonlinear interaction.
We are interested in stationary states, or localized solutions of (1.1), that is

solutions ψ of the form ιp(t, x) = eιωtψ(x\ where t = x0 and χ ^(xl,x2,x3). In
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addition, we seek finite energy solutions, and so we want φ to be at least square
integrable.

The problem of the existence of stationary states for (1.1) arises in several
models of particle physics (see for example [1, 4, 5] and the references therein). For
the sake of simplicity we specialize here to the model case F(x) = x (the Soler model
of extended Fermions, see [4]), even though the method applies as well to more
general nonlinearities (see below).

Clearly, the equation for φ:R3-»C4 is

3

Σ ykdkφ-mφ + ωγ°φ + (φφ)φ = Q. (1.2)
k=l

We seek solutions that are separable in spherical coordinates, of the form

"1"

φ(x) =

iu(r)
Γ cosθ

lsmθeiφ

(1.3)

Here, r = |x|, and (9, Φ) are the angular parameters.
The Dirac equation then turns to a nonautonomous planar differential system,

in the r variable, which is (compare [4, 7])

w' + (2/r)w - φ2 - u2 - (m - ω)), (1.4)

v' = u(v2 -u2-(m + ω)). (1.5)

In order to avoid solutions with singularity at the origin, due to the term (2/r)u
in (1.4), we impose

w(0) = 0. (1.6)

Since we are interested in finite energy solutions of (1.2), we seek solutions of
(1.4HL5), which fulfill

\u(r)\ + \υ(r)\-+Q, as r-* + oo. (1.7)

For every given x, there exists a local solution (ux, vx) of (1.4)-(1.6), with initial
datum υ(0) = x. The problem is to find x, such that the corresponding solution is
global (i.e. defined for all r ̂ 0), and satisfies (1.7). Our main result is the following.

Theorem 1.1. Assume 0<ω<w. There exists an increasing and bounded sequence
(xn)n>o of positive numbers, with the following properties. For every ίt^O,

"(i) the solution (un,vn) of (1.4)-(1.6) with vn(G) = xn is a global solution,
(ii) both un and vn have exactly n zeroes on (0, + oo),

(iii) (un9 vn) converges exponentially to (0,0), as r-* + oo.

Theorem 1.1 calls for several comments.
The first existence result for stationary states of (1.1) was obtained by Cazenave

and Vazquez [1]. Under some assumptions on F (satisfied in particular for
F(x) — x) they proved the existence of a solution without nodes (positive u and v),
which is essentially the solution (w0,ι>o) of Theorem 1.1. Later, that result was
extended to a wider class of nonlinearities by Merle [3].
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Theorem 1.1 is stated in the special case where F(x) = x in Eq. (1.1). However,
the method applies, without any modification, to more general situations. In
particular, Theorem 1.1 is still valid (all properties except boundedness of the
sequence (xn)n^ 0) when F satisfies the following assumptions. FeCi(R, R), JF(0) = 0,
F is increasing on (0,+00), F(x)>m + ω for x large, F'(F~l(m — ω))>0, and
F(x) ^ 0 for x g 0. These assumptions are basically the assumptions in [1]. For the
boundedness of the sequence (xn)n^09 we need for example that F(x)^δ(Log(x))β,
for x large, and where /?>!, (5>0. As pointed out in [1], the condition ωe(0, m)is
almost necessary for the existence of even one solution of (1.4)-(ί.7) (see
Remark 4.2 of [1]). Let us also mention that it does not restrict the generality to
consider only the case u(0)>0. Indeed, if (u,v) is a solution of (1.4)-(1.5), then
( — u,—v)is also a solution.

The numerical experiments performed on system (1.4)-(1.5) indicate the
following [6]. First, starting from x larger than some x*, the solutions blow-up
(compare Proposition 3.1). It is also observed that the global solutions converge to
one of the rest points of the system, which are (0,0), (0,(m — ω)1/2) and
(0, — (m —ω)1/2). The solutions wind around the origin (in the plane (υ,u)) before
converging to a rest point. Note that (0, ±(m — ω)1/2) are stable rest points while
(0,0) is a saddle point. The set of positive initial data for which the solution turns
n/2 times (n being an integer) around (0,0) before converging to (0, ±(m — ω)1/2)
seems to be an interval of the form ( x M _ 3 , xn). The only solutions with positive
initial data converging to (0,0) appear to be those starting from xn? and they have n
nodes. We prove these properties here, except uniqueness of the π-nodes solution
with positive initial datum.

In the proof of Theorem 1.1, we consider (1.4)-(1.5) as a non-autonomous
planar dynamical system (r being the time variable), and we follow essentially the
scheme suggested by the numerical results. For every n ̂  0, we construct an open,
non-empty set /„ of initial data for which the solution turns n/2 times around the
origin and then remains trapped near one of the stable rest points. Next, we show
that the solutions with initial data in /„ are bounded, uniformly in r ̂  0 and in the
initial datum. Finally, we show that the solution with initial datum Sup(/M) is the
expected π-nodes solution. The boundedness of the sequence (xjκ>0 follows from a
blow-up result (Proposition 3.1).

Theorem 1 raises some open questions, apart from the uniqueness problem.
For example, the sequence (xn)n^0 is bounded, but we do not know whether the
corresponding sequence (un, vn)n^0 of solutions is bounded or not (the numerical
experiments indicate that it is unbounded). A related question is the following.
Consider the limit, say x^, of (xn)n^0. Does the solution of (1.4)-(1.6) blow-up in a
finite time when v(0)^x^l

Notice the importance of the term (2/r)u in (1.4). Indeed, it is the non-
autonomous term that allows the existence of infinitely many solutions (the same
phenomenon appears in the semilinear elliptic problems, see [2]). More surpris-
ingly, it is also the non-autonomous term (although being linear) that makes some
solutions blow-up in a finite time (when this term is removed, all the solutions are
global solutions).

The paper is organized as follows. In Sect. 2, we introduce the notation and we
collect some basic properties of system (1.4)-(1.5). In Sect. 3, we study the blowing-
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up of solutions and in Sect. 4, we establish the main boundedness property.
Finally, in Sect. 5, we complete the proof of Theorem 1.1

2. Some Preliminary Results

In order to analyze the dynamical system (1.4) and (1.5), we recall that:

u' + (2/r)u = v(v2 -u2-(m- ω)) , (1 .4)

(1.5)

and in all the sequel, we assume 0 < ω < m. It will be useful to keep in mind the
velocity field for various values of r (as in Figs. 1 and 2). We will consider the
Hamiltonian system associated with (1.4)-(1.5), which is

M' = φ2-H2--(m---ω)), ι/ = φ2-w2-(m + ω)); (2.1)

where ' denotes the differentiation with respect to the r variable. The correspond-
ing Hamiltonian is given by

H(u,υ) = ̂ (υ2-u2)2-m(v2--u2) + ω(υ2 + u2)'], for u,veR. (22)

There exists two constants, k and K, such that (see [1, Proof of Lemma 2.1])

H(u, υ) ;> k(ιι2 + v2)-K, for any u,veR. (2.3)

We recall (see [1, Lemrna 2.4]) that for any x e R, there exists a unique solution
(ux, vx) E (̂ ([O, Rx\ R2) of (1 .4)-(l .6) such that υx(0) = x. The solution is defined on
the maximal interval [0, jRJ, with \ux\ -f \vx\ -> H- oo as rfRx iίRx < oo. Furthermore,
we have

(ux,vx) depends continuously on x in €^[0, #],R2), for any R<RX. (2.4)

The continuous dependence in C([0,^], R2) is stated in [1] (Lemma 2.5), and the
continuous dependence in C1([0, -R],R2) follows from the equations. For conve-

Fig. 1. The velocity field at r> 1/ω Fig. 2. The velocity field at r < 1/ω
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nience, we define the function Hx, for xeR, by

Hx(r) = H(ux(r\ vx(r)) , for every r e (0, Rx) .

We have (see [1, Lemma 2.6])

(Hx)'(r) = (2/r)u2(r) [v2

x(r] - u2

x(r) - (ro + ω)] , for every x e R and r e (0, ΛJ; (2.5)

and so, the sign of the variation of HX9 at some time r > 0, is determined only by the
region of the plane where (wx, vx)(r) belongs. We shall need the following identities,
which are easily obtained from (1.4)-(1.5) and hold for x e R and re(0,JRJ:

(2.6)

(ujvj = (1/v2) l(vl - u2)2 + (m - ω) (u2 - v2) + 2ωu2 - (2/r)uxv J , if vx Φ 0 ,

(2.7)

(vx/uj = (1/u2) [ - (v2 - u2)2 -(m-ω) (u2 - v2) - 2ωu2 + (2/φ A] , if Wjc Φ 0 .

(2.8)

In the following lemmas, we collect some basic properties, of a geometric
nature, for solutions of (1.4)-(1.5).

Lemma 2.1. Let x φ 0. // /or som£ r0 > 0, we have ux(r0) = 0, then vx(r0) φ {0,
±(m — ω)1/2} and w^(r0)Φθ. //, /or some r0>0, we ftai e ^^0)6(0, ±(m — ω)1/2

and (

o/ First, observe that the only rest points of (1.4H1-5) are (0,0), (0,(m-ω)1/2)
and (0, -(m-ω)1/2). Furthermore, for r0>0, the Cauchy problem for (1.4)-(1.5) is
locally well-posed for any initial datum (w0, VQ) e R2, for both r ̂  r0 and r ̂  r0. Thus,
a rest point cannot be reached in a finite time. Hence the result.

Lemma 2.2. Let x e R. Assume Rx = +oo,am/(wx,t;;c)-»(0, ±(m — ω)1/2)asr-> + oo.
T/?βn ι/x /ιas infinitely many zeroes.

Proof. It is equivalent to show that (ux,vx) cannot converge to (0, ±(m — ω)1/2),
while being in one of the half-planes {u>0} or {w<0}. It is proved in [1] (Proof of
Lemma 2.10) that (MX, ϋx) cannot converge to (0, (m — ω)1/2), while being in the half-
plane {w>0}. By symmetry, (ux,vx) cannot converge to (0, — (m — ω)1/2), while
being in the half-plane {u < 0}. The same proof applies to the two other situations.

Lemma 2.3. Let x Φ 0. Assume that, for some r0 > 0, we have vx(r0) = ux(rQ). Then
r 0>l/ω.

Proof. We can assume that x>0, and that r0 is the first zero of vx — ux. Let h(r)
= (ux — ux) (r). We have

(2.9)

Since Λ(r0) = 0, we get from (1.4H1.5),

Λ/(r0) = 2((l/r0)-ω)ι;JC(r0). (2.10)

Furthermore, vx(rQ) φ 0 by Lemma 2. 1 , and even ux(r0) > 0. Indeed, if vx(rQ) < 0, then
vx has a first zero, say ρ, in (0, r0). Thus 0 = ι;x(ρ) > wx(ρ), and v'x(ρ) ^ 0. This is ruled
out by (1.4H1 -5); and so ̂ (r0)>0. Therefore, from (2.9)-(2.10), we obtain r0 ̂  1/ω.
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It remains to show that r0 Φ 1/ω. Indeed, if r0 = 1/ω, we get from (1.4)-{1.5) and
(2.10),

Λ'(r0) = 0; fc"(r0) = -2ω2vx(r0)<0.

This is again impossible, since h > 0 on (0, r0), and /z(r0) = 0. Thus, r0 > 1/ω; and so
the proof of Lemma 2.3 is complete.

Lemma 2.4. Let xφO. Assume that (ux,vx)E{v2 —u2^m + ω} on some interval
[rQ, rj C [0, Rx). Then r,~r0< 3/2ω.

Proof. Because vx is continuous, we can assume, say, t;x>0 on [r0, r^. Thus, we
have

-\<ux/vx<\, on [ΓQ,^). (2.11)

From (2.7), we get, on [r0, rj,

and so

( -> w*Yί r 2 ^J^2ωr 2 . (2.12)

Integrating (2.12) between r0 and r1 ? and using (2.11), we get

r2 + r2 ^(2ω/3) (r\ - rg) = (2ω/3) (r, - r0) (r2 + r :r0 + r2)^ (2ω/3) (r{ -r0) (r2 + r2).

This proves Lemma 2.4.

Lemma 2.5. There exists a function F E C(R, R), with the following property. If
x E R is such that Rx > 1/ω and (ux, vx) E {v2 — u2^m + ω}? on some interval [r0, r t)
C [1/ω, R J, ffcen ι\<Rx and

(\ux\ + \vx\)(r)^F((\ux +\vx\)(r0)), for every TE^T^T^.

Proof. By continuity and symmetry, we can assume, (ux,vx)E{v2 — u2^m + ω,

^m + ω, v>0, u^O}. Observe that, from (1.5), ux>0 on [r0,rj; and so, if
(ux9 vx) (ρ)ED + , for some ρ E [r0, rj, then (MX, t J (r) e D + , for all r e [ρ, rt). Thus, we
can assume that (ux,vx)(r)eD~ on some interval [r0,r2], and (w^,i J(r)eD + on
[^rj. On (r0,r2], we have w^>0 and vx<0. Therefore,

(\ux\ + |^x |)W^(|wx | + |ι;x|)(r0), for every re[r0, r2] . (2.13)

Next, (v2 — ul] is nonincreasing on [r^rj, by (2.6). Thus, by (1.4)-(1.5),

(Ux + UJ' = (Ux + ̂ x) [(UΛ ~ Ux) (r2Ϊ] -> OΠ [ Γ 2? Γ l ) (2.14)

Finally, by Lemma 2.5, we have rί~r2:g3/2ω. Therefore, (2.13) and (2.14) yield

IKNJ + KDOΌ)]2)? f°r every re[r0, r t ).

Hence the bound on (\ux +\vx\)', and so r1 <RX, unless rί~Rx= -f GO. This is ruled
out by Lemma 2.4.
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Lemma 2.6. Let x φ 0. Assume that for some r0 > 0, we have vx(r0) ^ ux(rQ) and
ux(r0) > 0 (respectively, ux(r0) ^ vx(r0) and ux(r0) < 0). Then there exists r0<r1< Rx,
such that |wx |>0, on (r0, r±\ and ux(r1) = 0, \vx(r1)\>(m — ω)1/2. In addition, either
vx(rQ) > 0 (respectively, vx(r0) < 0), and then vx has exactly one zero in (r0, r t), or else
vx(r0)^0 (respectively vx(r0}^0), and then |ί;x|>0, on (r0, r t).

Proo/. Assume, for example, t;x(r0) ̂  wx(r0) and wx(r0)>0. Suppose first that vx(r0)
^ — ux(rQ). Because the velocity field on {v= — u, u>0} points towards {v< — u},
(ux, vx) can only enter { — u ̂  v g w, w > 0} by crossing the diagonal {w = v} and so,
by Lemma 2.3, r0 > 1/ω.

For r^r0, and while (MX JUX) belongs to { — u^v^u, u>0}, we have by (2.8)

(vx/ux)
f £ (1/u2) ((2/rQ)uxvx - 2ωul) ̂  - 2(ω - (l/r0)) < 0 .

Thus, (ux, vx) exits { — u^v^u, w > 0} in a finite time, by crossing the w-axis once, if
vx(r0) > 0, and then, by crossing the diagonal {v = — u, u > 0} (note that in the region
{ — u ̂  v ̂  w, u > 0}, the trajectory remains trapped in the set {H(u, v) ̂  Hx(r0)} due
to (2.5)). Therefore, we can assume vx(rQ)< —ux(r0).

Suppose now that vx(rQ) — ux(r0)<m + ω. While (ux,vx) belongs to the region

we have, by (2.5), H'x^0; and so (ux, vx) is bounded. We claim that (wx, vx) must exit
D in a finite time. Indeed, assume that (MX, ι;x) remains in D for r ̂  r0. We have v'x ̂  0,
thus vx has a negative limit as r~> -f oo. It is not difficult to show that ux also has a
limit (compare [1], proof of Lemma 2.10). The limit (/c, h) of (ux, vx) is therefore a
rest point of (1 .4)-(l .5) in the half-plane {v < 0}. Thus, (fc, h) = (0, - (m - ω)1/2). This
is ruled out by Lemma 2.2. Therefore, (uxί vx) must exit D in a finite time. Next,
(wx,ι;x) cannot exit D by crossing the diagonal {u= — v, w>0}, since the velocity
field on |z;= — w, M>0} points towards {v< —u}. If (uxί vx) exits D by crossing the
y-axis, then ux<0; and so υx< — (m — ω)1/2, which is the desired estimate.
Therefore, we can suppose that (MX,I;X) exits D by crossing the hyperbola {v2 — u2

= m + ω). When (wx, vx) belongs to D' — {v2 — u2 ̂  m + ω, t; < 0, w ̂  0}, we have by
(2.6)

and so, (ux, vx) cannot exit D' by crossing again the hyperbola {v2 — u2 = m + ω}. By
Lemmas 2.5 and 2.4, we know that (wx, ι;x) must exit D' in a finite time by crossing
the i -axis; and when it does so, we have vx^ — (m + ω)1/2. Hence the result.

Corollary 2.7. Let x Φ 0. Assume that, for some r0 > 0, we have vx(r0) = 0. Then there
exists r1>rQ, rί<+co, such that |wx|>0, |^x|>0 on (r0, rt), and ux(r1) = Q, K(rι)l

Proo/ If wx(r0) > 0, we have t;x(r0) ̂  ux(r0), and if MX(ΓO) < 0, we have ux(r0) ^ υx(r0).
Thus, we can apply Lemma 2.6.

Lemma 2.8. Let x φ 0 be such that Rx= + 00. Assume that for some r0 > 0, we have
\ux >0 on [r0, + oo). Then, we have the following.
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(i) uxvx>0 on (r0, +00),
(ii) there exists C, such that 0<|wx(r)| <|ux(r)|<Cexp( — (l/2)(m — ω)r), for

re(r0, +00).

Proof. Assume, for example, w x >0 on [r0, + oo). Then, by Lemma 2.6, we have

0<w x <vx9 on [/0, H-oo).

This proves (i). By (2.6), and the above inequality, we have

(υ2

x — u2)' < 0 , for r large .

Therefore, by Lemma 2.4, we have

— , for r large;

and so, u'x < 0 and υ'x < 0, for r large. Thus, (ux, υx) has a limit, as r-^ -h oo, which is a
rest point of (1.4)-(1.5). By Lemma 2.2, this limit is (0, 0). Therefore, for r large, we
have

It follows from (1.4)-{1.5) that we have then

from which the exponential decay follows.

Corollary 2.9. Let x Φ 0. Assume that Rx>\/ω and that, for some r0 g; 1/ω, we have
Mx(r0) = 0. Then, one of the following properties holds:

(i) vx(rQ)\ <(m — ω)1/2, and there exists r1 e (r0, Λx) such that uxvx < 0 on (r0, r J,

(ii) \vx(rQ)\>(m — ω)1/2, and ί/iere exists rv e(r0, JRJ swc/i ί/iaί w j cf ; c>0 on (r0, rr),
<|t;x| on (ΓQ,^), It ̂ rJKίm-ω)1/2, anrf Mx(r1) = 0;

(iii) vx(r0)\>(m — ω ) ί f 2 , and there exists r1 £(r0,Rx) such that uxvx>0 on(r0, rx),
^x(^i) = 0;

(iv) \vx(r0)\>(m — ω)i/2, Rx=+ao, uxvx>0 on (r0, +00), and Q<\ux\<v
<Cexp( — (l/2)(m — ω)r), on (r0, +00).

Proof. Assume for example vx(r0) > 0. If vx(r0) <(m — ω)1/2, then u^(r0) < 0. Applying
Lemma 2.6, we get (i), except the property 0<|wx |<|ί;x | on (r0, r^). Observe that
//X(r0)<0, and that on (TΌ,^), we have ίΓ^O and ι;x^0, until possibly (w^i J
crosses the hyperbola ̂  = {v2 — u2 = m + ω}; and so, until then, we have Hx<0,
from which it follows easily that ΰ<\ux\<\vx . Now, the velocity field on
Jf n{u<0) points towards {v2 — u2>m + ω}. Thus, iΐ(ux,vx) crosses Jf , it cannot
come back in the region {v2 — u2^m + ω} on (r0, rx). Hence (i).

Suppose now ^(ΓQ) > (m — ω)1/2, and let ρ = Sup{r e (r0, l^J, u^ > 0 on (r0, r J}.
If ρ < Rx, we have either i ̂ ρ) = 0, in which case we get (ii), or else ux(ρ) = 0. In the
last case, we have 0< \ux\ < \vx\ on (r0, ρ), by Lemma 2.6; hence (iii). Assume now
ρ = Rx. By Lemmas 2.4 and 2.5, there exists τ>r0, such that vx(τ) — ux(τ)<m + ω.
Since τ>l/ω, the velocity field prevents the solution from entering the region
{v2-u2>m + ω} for r^τ. Thus, Hx(r)^Hx(τ}, for re[τ 9 JR x); and so Rx= +00.
Applying Lemma 2.8, we obtain (iv).
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Lemma 2.10. Let x φ 0. Assume that vx has at least two zeroes. Then, between two
consecutive zeroes of vx9 ux has an odd number of zeroes.

Proof. Assume for example that ι^>0 on (r&r^ and vx(r0) = υx(ri) = 0. Because
v'x<0 when vx = 09 ux>0, and vx>0 when vx = 09 ux<0, we have ux(rQ)ux(rί)<0.
Hence the result.

Lemma 2.11. Let xφO. Assume that Rx^.l/ω, and that ux has a finite number of
zeroes. Then Rx= + 00, and \ux\ + \vx\-+Q as r-> + oo.

Proof. In the region {v2 — u2 ^ m + ω}, Hx is nonincreasing, by (2.5); and so, by (2.3),
(ux9vx) cannot blow-up. Now, the region {v2 — u2>m + ω] is the union of two
connected, open components D t and D2, where D1 = {v2 — u2>m + ω, v>0} and
£>2 = {v2 — u2 > m + ω, v < 0}. Considering the velocity field on the boundary of D l 5

and for r ̂  1/ω, it is not difficult to show that (uX9 vx) can enter Di only in the half-
plane {u<Q}, and can exit Dί only in the half-plane {w>0}. Thus, when the
solution crosses D^ after r = 1/ω, ux has at least one zero. By symmetry, the same
holds for D2l and so, (ux9 vx) can only cross D± or D2 a finite number of times. Thus,
by Lemma 2.5, we have Rx = -f oo. Note that DX cannot vanish after the last zero of
uX9 by Corollary 2.7. Therefore, we can apply Lemma 2.8, from which the result
follows.

3. A Blow-Up Result

In this section, we prove that for |x| large enough, the solution (ux, vx) blows up in a
finite time, and remains in the region {v2 — u2>m + ω}. This shows the existence of
an a-priori bound on admissible initial data for the solutions of (1.4)-(1.7). Our
main result is the following.

Proposition 3.1. For every τ > 0, there exists B(τ) such that if \x\ ̂  B(τ\ then Rx<τ
and v2 — ux>m + ω for r e (0, Rx).

The basic argument is the construction of a trapping region for the solutions of
(1 .4)-(l 5), in which they blow up in a finite time. Before proceeding to the proof, we
shall establish two preliminary lemmas.

Lemma 3.2. Let x>(w + ω)1/2, and let /ιx = sup{re[0,.Rx), vx — ux^m + ω on
[0, r]}. Then9 we have

ux/vx ^ (2ω/3)r , for every r e [0, hx) .

Proof. Since x>(m + ω)1/2, we have λx>0. On [0,ΛX), inequality (2.12) is satisfied.
Integrating (2.12) between 0 and re[0,/zx) yields the result.

Lemma 3.3. Let C1? C2 >0, β> 1, θ>0. Let /e C([0, 0]) sflίis/> /or re [0, 0], /(r)
(r) (Log(/(r)/C2)/. Then
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Proof. Let g = Log(//C2). We have

g'M^CVgW^, for re[0,τ]. (3.1)

The result follows from integrating (3.1).

Proof of Proposition 3.Ϊ (See Fig. 3). By symmetry, it is enough to consider the case
x > 0. Let τ > 0, with τω < 1, and let (xτ, yτ) be the solution of the algebraic system

yτ = τωxτ, x2 — y2 = m + ω, xτ > 0.

We set σ = τ/2. Let C>0, and β> 1, and consider the set

A = {(M, t;) e R2, v > xτ, M > 0, v2 - u2 > (m + ω) + C(Log(ιyX)/}.

Choose C small enough, so that

C2β(Log(x/xτ))2β~1^2ωx2, for x^xτ; (3.2)

We claim that if C is as above, and if x > xτ, then (ux, υx) cannot exit A for r <Ξ σ.
Indeed, assume that there exists x>x τ, such that Rx>σ and (w^uj exits zl, at
r0 G (0, σ). Because u'x(0) > 0, (ux, vx) eA for r > 0 and small. In A we have v'x > 0, so
ι;x > x; and if wx(r0) = 0, we have ux(rQ) > 0. Therefore, (ux) vx) must exit A, by crossing
its upper boundary

Γ - {(u, v) G R2, i; > xτ, M > 0, ί;2 - u2 - (m + ω) + C(Log(ϋ/xτ)/}.

Thus we have

)-C(Log(t;x/xτ))^|r=ro = 0, (3.4)

From (3.5), (2.6), (1.5), and (3.4), we get

r0)
2 - C^aog^roVx,))2^ '1 ̂  0. (3.6)

! T t T

Fig. 3. The trapping region A
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Note that we have l/r0^2/τ, and so (3.6) and (3.2) yield

ω) (t>x(r0)/*τ)2 -

163

(3.7)

Since (ux(r0\ vx(r0))eΓ, (3.3) yields

vx(r0)
2 ~ ux(r0

Thus, since m + ω = x^ — y^9

{vx(r0}
2 - ux(rQ)

Next, by (3.8), we have

(3.8)

(3.9)

Putting together (3.7) and (3.9), we get a contradiction; and so, A is a trapping
region for r e (0, σ).

Consider now τ, /?, and C as above. Let x>xτ, and ρ^minl^^, σ}. We have
(ux,vx)eA for re(0,ρ), thus by (1.5) and Lemma 3.2, we obtain

x τ ) , o n , ρ .

Therefore, by Lemma 3.3, if x is large enough, we have ρ<σ. Hence the result.

4. A Boundedness Property

We introduce the sets /„, Aw and En, (see Fig. 4) defined for n e N by

In={x>(m — ω)1/2, there exists rx nE(Q,Rx) such that both ux and vx

have exactly n zeroes on (0,rx>n), and ux(rXfn) = Q],

An = {x>(m — ω)1/2, ^x= +00, both wx and t;x have exactly n zeroes on (0, +00),

and (ux9 vx) satisfies (1.7)},

Fig. 4, Trajectories with x : in 71 and yΐ in
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For xeAn, we set

rx,n=+(x>

Finally, we define the sets /, A, and £, by

/= U I n , A= U An, E= U En.
n ^ O n ^ O n ^ O

In this section, we shall establish a boundedness property for solutions of
(1.4)-(1 5), with initial data in En. Our main result is the following.

Proposition4.1. Let rceN, and assume EΠΦ0. Then

Sup Sup \ux(r)\ + \vx(r)\<co.
xeEn re[0,r x,n)

Before proceeding to the proof of Proposition 4.1, we need some preliminary
lemmas, where we set topological features of the sets £„, and properties of
trajectories with initial data in En. We begin with

Lemma 4.2. For every n^O, /„ is an open subset of ((m —ω)1/2, -f oo).

Proof. Observe that iΐvx = 0 (respectively ux = 0), then by Lemma 2.1, we have v'x φ 0
(respectively v'x φ 0). Therefore, the result follows from (2.4).

Next, we recall the following result of [1] (steps 1 and 3 of the proof of
Theorem 3.1, and Lemma 3.4), which concerns the case n = 0.

Lemma 4.3. /0 is a nonempty set, Sup /Oe^40, and

Sup Sup \ux(r)\ + \vx(r)\<cc.
xelo r e [ Q , r x , o )

The argument given in [1] applies as well to show the following result.

Lemma 4.4. We have Sup Sup \ux(r)\ + ̂ (r)! < oo .
xeAo re[0,r X ) o)

We now consider the case n^l. In the following lemma, we describe some
topological properties of (ux, vx), when x e In.

Lemma 4.5. Let rc^l, and xeln. Then,
(i) Rx>l/ω,

(ii) the first zero of uxvx in (Q,rXίn) is a zero of vx9

(in) the 2n zeroes of uxvx in (0, r^J are alternatively one zero of vx and one zero
of uX9

(iv) the last two zeroes of uxvx in (0, rx n~] are zeros of ux,
(v) we have \vx(rXtn)\<(m — ω)112.

Proof. Let r0 be the first zero of vx. By Corollary 2.7, ux has at least n zeroes in
(ro? rx, J If ux nas a first zero? say? Qo> in (05

 ro)? we have uf

x(ρ0) < 0, and so 0 < vx(ρ0)
<(m — ω)1/2. By Corollary 2.9, ux must have another zero in (0, r0); and so ux has at
least n + 2 zeroes in (0, rx> J, which is impossible. This proves (ii). Therefore, (ux, vx)
must cross the diagonal {u = v] in (0, r0). Hence (i), by Lemma 2.3. Next, note that,
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by Corollary 2.7, a zero of ux follows every zero of vx; hence (iii) and (iv). (v) follows
from (iii), (iv), and Corollary 2.9.

A similar result holds for solutions with initial data in An. More precisely, we
have.

Lemma 4.6. Let n^l, and x e An. Then, the first zero of uxvx in (0, rx^ n) is a zero of
υx. The 2n zeroes of uxvx in (0, rx n) are alternatively one zero of vx and one zero of ux.
Furthermore, for some r0 > 0, we have uxvx >Qon (r0, -f GO), and there exists C, such
that

(\ux\ + \υMr)£Cexp(-(ί/2)(m-ω)r), for r^O.

Proof. The alternate character of the zeroes of ux and vx is proved with the
argument of the proof of Lemma 4.5. The other properties follow from Lemma 2.8.

The following corollary is an immediate consequence of Lemmas 4.5 and 4.6.

Corollary 4.7. We have lr\A = $. Furthermore, for /cφj, we have / k n/y = 0.

Next, observe that, from Proposition 3.1 and property (i) of Lemma 4.5, we
have.

Lemma 4.8. The set E is bounded.

Finally, we will need the following two results.

Lemma 4.9. For any K>0 and πeN, there exists C(K,h) with the following
property. Assume x>Qis such that Rx>\/ω. Assume furthermore that there exists
r0, r1 E[l/ω,Rx~],such that Hx(ro)^K, and ux has at most n zeroes on (r0, rt). Then

(\ux\ + \υx\)(r)^C(K,n), for re(r0,rι).

Proof. Considering the velocity field on {v2 — u2 = m + ω}, for r> 1/ω, we observe
that (ux9vx) can enter Dl = {v2 — u2>m + ω, v>0}, only in the half-plane {w<0}.
Similarly, (ux, vx) can exit D l 5 only in the half-plane {u > 0}. Therefore, when (ux, vx)
crosses D l 3 ux has at least one zero. The same holds for D2 = {v2 — u2>m + ω,
t;<0}; and so (ux,vx) crosses D1 or D2, at most n times on (r0, rj. When (ux9vx)
crosses the set {v2 — u 2 ^m + ω}, we have ί^rgO, and so (ux,vx) is bounded.
Therefore, the result follows from Lemma 2.5.

Lemma 4.10. For every n^l, and K > 0, there exists τ(K, n) > 0, with the following
property. Suppose xεEn and Hx(ρ) = K, for some ρε[0, rx „). Then ρ ^τ(K,n).

Proof. Let x e R and ρ > 0 be as in the assumptions of the lemma. By Lemma 2.5 of
[1], there exists a function θ, with the following property. For any T>0, if ρ is
larger than θ(T,ux(ρ), vx(ρ))> then (ux,vx) will remain close to the solution (u,v) of
(2.1), which fulfills (u, v) (ρ) = (ux, vx) (ρ), on the interval [ρ, ρ + T]. It is easy to check
that 0(7; α, b) is uniform in (α, b) such that H(a, b) = K; and so we will write 0(7; K}.
Note that (u9 v) is a Hamiltonian motion, which is periodic and that the zeroes of u
and those oft; alternate. Thus, if T large enough, and ρ>θ(T, K), (ux9 vx) will have at
least n + 1 alternate zeroes of ux and υx, in [ρ, ρ -f T] and so, by Lemmas 4.5 and
4.6, xφEn.
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As a consequence of the previous results, we have the following.

Corollary 4.11. For every x>(m — ω)1/2

; xφl, one of the following properties is
satisfied:

(i) Rx^l/ω, and ux, vx and [v2 — u2 — (m + ω)] are positive on (09RX),
(ii) Rx> 1/ω, both ux and vx have infinitely many zeroes on (0, Rx), and they are

alternate,
(iiϊ) xeAn, for some neN.

Proof. Let x be as above. We have u'x(0) > 0, and so ux > 0 and vx > 0, for some time.
Let

ρ = Sup{re(0,#x), ux>0 and vx>ux, on (0, r)}.

Suppose first that ρ = Rx Then, either vx is bounded, and therefore xeA07 by
Lemma 2.10 of [1]; or else, vx is unbounded. In the latter case, vx is positive
somewhere. Thus,

J = {r e [0, Rx)9 v2(r) - u2

x(r) ^ (m + ω)} φ 0 .

Therefore, by Lemma 2.9 of [1], J is either the interval [0, Rx), or else some interval
[0, R], with R < Rx. In the latter case, υ'x is negative on [R, Rx\ and so vx is bounded,
which is a contradiction. Thus, J = [0, Rx). Applying Lemma 2.5, we obtain
#x£Ξl/ω, and so we have property (i).

Suppose now that ρ < Rx. Then, we have either ux(ρ) = 0, or else ux(ρ) = vx(ρ). In
the first case, we have x e/0, which is a contradiction (by Corollary 2.7). Therefore
ux(ρ) = vx(ρ); and so, Lemma 2.6 implies that vx has at least one zero, which is the
first zero of uxvx. Furthermore, by Corollary 2.7, after every zero of vx9 the next zero
of uxvx is a zero oίux. A zero of vx cannot be followed by two zeroes of ux9 since we
would have xe/ 5 and this is ruled out by Corollary 4.7. Therefore, if vx has
infinitely many zeroes, (ii) is satisfied, and if vx has a finite number of zeroes, we
have (iii), by Lemma 2.11. Hence the result.

Proof of Proposition 4.1. From Lemmas 4.3 and 4.4, we only have to prove the
property for n ̂  1 . Therefore, by Lemma 4.5, we have Rx > 1/ω. Now, we choose K
large enough, so that the sets [H(u, υ) < K] and {v2 — u2>m + ω} have a nonempty
intersection.

Consider xeEn. By Lemma 4.5, we have Hx(rXtn)<0, if xe/ Λ . Furthermore,
Hx(r)-+Q as r-> -f oo, if x e An. Therefore, there exists r e (1/ω, rx >n), with #x(r) < K.
We define the number ρ, by

ρ = l/ω, if

ρ = Inf{re((l/ω),r j eJ,HJC(r)<K, if Hx(\/ω)>K.

By Lemma 4.9, we have

(\ux\ + \vx\)(r)^C(K9n)9 for re^r^J.

Therefore, it remains to bound the solution on (0, ρ). Note that, from Lemma 4.10,
there exists T>0, depending only on n, such that ρrg T.

We shall bound the solution separately on [0, 1/ω] and on [1/ω, ρ].
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Step ί. A bound on [0, 1/ω].

Let us show that for every A>0, there exists £>0, such that if (\ux\
+ |ιg)(l/ω)^, then (\ux\ + \υx\)(r)£B9 for re[0,l/ω].

To prove this, we first observe that (ux,vx)(r)E{Q<u<v} on [0, 1/ω]. Indeed,
by Lemmas 4.5 and 4.6, the first zero oΐuxvx in (0, rx J is a zero oΐvx; and so, (ux, i J
has to cross the axis {u = v} in the region {v > 0). By Lemma 2.3, this happens after
1/ω. Therefore, we also have υx > ux on [0, 1/ω]. By Lemma 2.9 of [1], there exists
τe[0, 1/ω], such that (uχ9vx)E{v2 — u2^.m + ω} on [0, τ), and (ux,υx)e{υ2 — u2

<m + ω} on (τ, 1/ω). Now, on [0,τ], we have ι;x^0; and so

τ), for re[0,τ]. (4.1)

It remains to bound the solution on (τ, 1/ω), in the case τ< 1/ω. Observe that

(v$-ux)(τ) = m + ω and (v2 - u2)' (τ) ^0 ,

which implies

x(τ)/vx(τ}}. (4.2)

Now, (ux(τ\vx(τ)) is on the hyperbola {v2 — u2 = m + ω}, and H(ux(τ\ vx(τ)) = K.
Therefore, there exists ε>0, depending only on K, such that

ux(φx(τ)^ε. (4.3)

Let us set

f(r) = ux(r) + vx(r), for re[τ,l/ω]. (4.4)

From (1.4H1.5), we get,

/' = - ((21 r) + m)f + (2/r)vx + ω(vx - ux] + f(v2 - u2)

^-((2/r) + m)/, on [τ, 1/ω] . (4.5)

It follows from (4.5), (4.2), and (4.3), that

/'^-((2ω/ε) + m)/, on [τ, 1/ω] . (4.6)

Integrating (4.6) between re[τ, 1/ω] and 1/ω, we get

/(r) ̂  /(1/ω) exp( - (1/ω) ((2ω/ε) + m)) . (4.7)

Putting together (4.1), (4.4), and (4.7), we obtain the desired estimate.

Step 2. A bound on [1/ω, ρ].

Let us consider the regions Δί9 A2, Δ3, and A4, (see Fig. 5), defined by

A ! = {v2 - u2 > m + ω, H(u, v) > K, v > 0} ,

, H(u, v) > K, v < 0} ,

A 4 = {v2 - u2 < m + ω, H(u, v) > X, u < 0} .
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Fig. 5. The sets Δb i =1,2, 3, 4

Assume that (ux, vx), enters Δλ at some time t e [1/ω, ρ]. Considering the velocity
field on the hyperbola {v2 — u2 = m + ω}, we obtain that ux(i)<Q. By Lemma 2.4,
(ux,vx) must exit Δί in a finite time. The velocity field on the hyperbola {v2 — u2

= m + ω} forces (ux, υx) to exit A ί in the half-plane {u > 0}. Therefore, ux has at least
one zero in Δί. The same holds for A3, by symmetry. A similar argument shows
that, when (ux,vx) crosses A2 or z14, vx has at least one zero. Therefore, (ux,vx)
crosses at most n times each of the sets At. Thus, the proof of Proposition 4.1 will be
complete, provided we show the following.

Claim. For every IE (1,2, 3,4}, and for every T>0, A>0, there exists £>0, with
the following property. Let xeR, be such that RX>T. If on some interval [r0, r t]
C[l/ω,T], we have (ux,vx}zΔb and if (\ux\ + \υx\}(r,)^A, then (\ux\ + \vx\)(r)^B,
for every re^rj.

Proof. If i= 1, or ι = 3, Hx is nondecreasing on [TΌ,^]; and the result follows from
(2.3). Now, assume for example i = 2, the case i = 4 being treated similarly. We split
A 2 in four subdomains <5 l 5 δ2, <53, and (54, defined by (see Fig. 6)

δ2 = {(u, v) e A 2, 0 ̂  i; ̂  u} ,

^4 — {(M, v)e A2,u^ — v} .

Considering the velocity field on the axes {w = ?;}, and {u= —v}, for r>l/ω, we
obtain easily that (wx, ϋx) can only move from 5 1 to <52, from ^2 to (53? and from (53 to
£4. Therefore, we can assume, without restricting the generality, that
(ux>vx)(ro)εδι> and (wχ^χ)(rι)e^4 We denote by τί5 for i = l,2, 3, the time when
(wx,ι;x) moves from <5f to ίί + 1.

On [τ3, rj, we have ί;JC<0, ι4<0, an(i w^^ — i; .̂ Thus,

(\ux\ + \ v x \ ) ( r ) ^ 2 A , on [τ^rj. (4.8)
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Fig. 6. The sets δi9 i= 1,2,3,4

Next, in (5 3 we set

g(r) = ux(r)-vx(r), for re[τ2,τ3].

Considering (1.4)-(1 5)5 we obtain

-(Vχ-ul)g, on [τ2,τ3];

from which we get

(4.9)

(4.10)

(4.11)

Integrating (4.9) between re[τ2,τ3] and τ3, yields

g(r)^g(τ3)exp(2ωΓ), for every re[τ 2,τ 3].

Putting together (4.8) and (4.10), we obtain

(\ux\ + \vx\)(r) = 2Aexp(2coT), on [τ2, r t].

Then, in <52, for re[τ l 5τ 2], we set

h(r) = ux(r) — vx(r).

Applying (2.6), we obtain

h'^4ω(uxvx — ux)'^: -4ω/z, on [τ1?τ2]. (4.12)

Integrating (4.12) between re[τ l 5 τ 2 ] and τ2, and applying (4.11), we obtain

/z(r)^/z(τ2)exp(4ωT)^4y!2(exp(4ωT))2, for every re[τ l 5 τ 2 ]. (4.13)

Considering (1.4) and (4.13), we obtain

u'x^. —(2/r)ux — Cvx^ —(C + 2ω)ux, for every re[τ l 5 τ 2 ], (4.14)

where C = 4,42(exp(4ωT))2. Since ux^vx on [τ l5τ2], integrating (4.14) between
re[τ1 ;τ2] and τ2, and applying (4.11), gives

K -f-|ι;J)(r)^2^exp(2ωΓ)exp((C + ω)T)J on (4.15)
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Finally, in <51? we set

k(r) = ux(r) + υx(r), for re^τj .

We apply the argument of the proof of Step 1 to obtain

k' ^ — (m + 2ω)k , on [r0, τ j ]

and so

/c(r)^fc(τ1)exp(-(m + 2ω)T), for every re^ij. (4.16)

Putting together (4. 1 5) and (4. 1 6), completes the proof of the claim, hence the proof
of Proposition 4.1.

5. Proof of Theorem 1.1

We begin with two preliminary observations.

Lemma 5.1. Let n^O. Assume ^4ΛΦ0, and let x belong to the closure of An. Then

Proof. By Corollary 4.7, we have Ir\A = 0. Thus, since / is open (Lemma 4.2), x φ I.
By (2.4) and Proposition 4.1, (ux, vx) is bounded. This proves Rx = + oo . If ux and vx

have more than n zeroes, then it is the same for xf close to x. This is impossible,
since x belongs to the closure of An. Therefore, the result follows from Corollary
4.11.

Lemma 5.2. Let n^Q. Assume /ΠΦ0, and let x belong to the boundary of In. Then
xe U Aj.

O^j^n

Proof. By Proposition 4.1, / Π ΦR, so its boundary is nonempty. By Corollary 4.7,
and since /„ is open, x φ In. Therefore, since / is also open, x φ I. Now, we apply
Corollary 4.11. Property (i) is ruled out by Proposition 4.1, while property (ii) is
ruled out by (2.4). Thus, x belong to some A*Γ By continuous dependence, again, we
must have j ̂  n.

In order to show that /„ is nonempty, we need the following lemmas.

Lemma 5.3. For every C>0, there exists T>0, with the following property. Let
x φ O be such that RX^T Assume that for some ρ^T, we have vx(ρ) = 0 and
\ux(ρ)\^Cexp(-(ί/2) (m-ω)ρ). Then, there exists θ>ρ, such that \ux\>Q and \vx\
^(m-ω)1/2 on (ρ,θ), \vx(θ)\=(m-ω)υ2, and

Proof (See Fig. 7). Let x and ρ be such that ρ rg Rx, and ^(ρ) = 0, and

-ω)ρ). (5.1)

Assume, for example, ux(ρ) > 0. Then, vx will become negative, before ux vanishes. If
ρ is large enough, we have ux(ρ)^(l/4)(m — ω)1/2. We define the number R>0, by

-ω)1/2 on [ρ,r]}. (5.2)
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-(m-ω) ι y 2

Fig. 7. Notation for Lemma 5.3

By Corollary 2.7, we have R<RX. Thus,

-ω)1/2. (5.3)

Observe that on [ρ,R] we have ^^0, and so vx^0. Furthermore, on the set
( — (m — ω)1/2,0)x {0}, the velocity field points upward. Therefore, on [ρ,R], we
have wx>0, and

(ux ~ vx)
f ^ 2(m + ω) (ux - vx] .

Integrating (5.4) between ρ and R, we get

(ux + \vx\) (R) ̂  ux(ρ] exp [2(m + ω) (R - ρ)] .

Putting together (5.1), (5.3), and (5.5), we obtain

(5.4)

(5.5)

Hence, for some a > 0 and ρ large enough

(5.6)

We claim that, if ρ is large enough, then HX(R) < 0. To see this, observe first that
from (2.2), we get

u2^3(m — ω)v2, for all M, v such that H(u, ι?)^0,

and u2 + v2^

Let now

c^ on

From (5.7) and (5.8), we get

cux(r)^ — vx(r), for re [ρ,τ] ,

(5.7)

(5.8)

(5.9)
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where c = [(5/3)((m + ω)/(m — ω))]1/2. Next, on [ρ,Λ], we have

and ι;2-ι*2-(m-ω)^ -(l/2)(m-ω). (5.10)

Therefore, we have, by (1.4) and (1.5),

(ux-vx)'^-(2/r)ux + (l/2}(m-ω)(ux-vx). (5.11)

Since — ux^ — (ux — vx), and if ρ > 8/(m — ω), we get from (5.11)

(ux-υx)(r)^u^G\p((ί/4)(m--ω)(r-ρ)), for re[ρ,K]. (5.12)

Putting together (5.9) and (5.12), we obtain

ttΛ(r)^feMx(ρ)exp((l/2)(m-ω)(r-ρ)), for re[ρ,τ], (5.13)

where fe = [!/(! + c)]2. Now, from (5.8), (5.10), and (2.5), we have

O^Hx(τ)£Hx(ρ)-(m + ω)]-ux(r)2dτ. (5.14)
Q Γ

Next, observe that if ρ is large enough, we have by (5.1)

Hx(ρ) = (l/4)ι/x(ρ)4 + (1/2) (m + ω)ux(ρ)2 ^ (m + ω)ux(ρ)2 . (5. 1 5)

Therefore, putting together (5.13), (5.14), and (5.15), we obtain

0^1-/c2j-exp((l/2)(m-ω)(r-ρ))dr. (5.16)
Q Γ

We deduce easily from (5.16), that

(fc2/τ)[exp((l/2)(m

Therefore, for any α > 0, we get when ρ is large enough

τ^(l+α)ρ. (5.17)

Putting together (5.6) and (5.17), we obtain τ<,R. Since we have H'x<0, on [τ,K],
we get

HX(R) < 0 , if ρ is large enough . (5.18)

To conclude, observe that by Corollary 2.7, vx must decrease to some value less
than — (m — ω)1/2, before ux vanishes. Note also that when \vx\^ — (m — ω)1/2, we
have H'X<Q; and so, at the time when vx= — (m — ω)1/2, we have Hx<0. Thus, the
proof of Lemma 5.3 is complete.

Lemma 5.4. There exists R with the following property. Assume x Φ O is such that
RX^R. Assume further that for some ρ^R, we have vx(ρ)= — (m — ω)1/2, ux(ρ)>0
(respectively vx(ρ} = (m — ω)1/2, ux(ρ)<0), and Hx(ρ)<0. Then, there exists τ>ρ
such that vx\ > 0 on (ρ, τ) and such that ux has two zeroes on (ρ, τ).

Proof. (See Fig. 8). Let x be as above, and assume, for exmaple, ux(ρ) > 0. By
Lemma 2.6, and Corollary 2.9, there exists ρ1e(ρ,Rx), such that vx(ρι)
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Fig. 8. Notation for Lemma 5.4

= ~(m — ω)1/2, vx< — (m — ω)1/2 on (ρ, ρ^, and wx has exactly one zero on (ρ,
Assume that Hx(ρ1)<0. Let

Observe that H^i)<0, and ^foι)>0. Therefore, (w^i J will belong to Σ, for
re(ρ l 5 Q^+έ], where ε is some positive number. Since Hx(ρί)<Q, Z1 is bounded
away from the w-axis. Furthermore, when (ux, vx) e Σ, we have H'x < 0, and vx > 0, by
(1.5) and (2.5). Thus, (ux, υx) cannot exit Σ by crossing the line {v= — (m — ω)1/2} or
the curve {H(u,v) = Hx(ρi)}. Finally, since Σ is bounded away from the κ-axis, it
follows from Corollary 2.9, that (ux9 vx] exits Σ in a finite time, by crossing the
υ-axis. This is the desired result.

It remains to prove that H^ρJ < 0. Note that for a fixed value ofHx(ρ), and for
ρ large enough, this is a consequence of the fact that the trajectory remains close to
a trajectory of the Hamiltonian motion. Actually, we need an estimate on ρ that
does not depend on the value of Hx(ρ). To prove this, we consider two cases.

If 3ω ̂  m, then the sets {υ2 — u2^(m — ω)1/2} and {H(u, v) < 0} are disconnected;
and so, by (2.5), the set {H(u, v)<0} is a trapping region for the solutions of (1.4)-
(1.5). Thus, we have J7x(ρ1)<0.

If 3ω<m, then #(0,(m + ω)1/2)<0, and the set {//(Mg#(0,(w + ω)1/2)} is a
trapping region. Thus, if for some r e [ρ, ρj, we have Hx(r) ^ H(0, (m -f ω)1/2), we get
immediately Hx(ρί)<0. Therefore, it only remains to consider the case where x is
such that Hx(ρ) < 0, and

,(m + ω)1/2)<H:c(r), for every

Let A be the set of such x's. Consider the set

Clearly, we have

(5.19)

UX(Q) E J , for every xeA. (5.20)
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Note that, since 3ω<m there exists (5e(0,(m — ω)1/2) such that H(Q, — δ)
= #(0,(ra-fω)1/2). It is not too difficult to show that for ze J, there exists Tz>0,
such that the solution (uz, vz) of (2.1), with uz(ρ) — z, vz(ρ) — — (m — ω)1/2, will satisfy

vz(r)<-δ, for ίe(ρ,ρ+T z)9 wz(ρ + T2)<0, and vz(ρ + T2} = ~ δ .
(5.21)

The set {0^//(w, ι;)^ίf(0,(m + ω)1/2), v< — δ} is bounded away from the critical
points of H, and so, there exists M > 0 such that

for every z e J . (5.22)

Note also that, since J is bounded,

(uz(r\ vz(r)) is uniformly bounded, with respect to r e R, and z e J . (5.23)

Next, by Lemma 2.5 of [1], we know that for every xeΛ, there exists rλ >0, such
that if ρ ̂  rx, then

^^-(^^^(l/^Km-ω)1/2-^], on (ρ,ρ + M), (5.24)

where z = w^ρ). Note that, since J is bounded, rx can be chosen to be bounded,
uniformly in xeΛ. Thus, if R is large enough, we have (5.24), for every xeA.
Therefore, from (5.21), (5.22), and (5.24), we get

(5.25)

On the other hand, by (5.23), (5.24), and (5.25), we have

(ux,vx) is bounded in C!([ρ, ρ^R2), uniformly in xeΛ . (5.26)

Let now σ be the area of the set {H(u,υ)^H(Q,(m + ω)1/2, v^-(m-ω)1/2}. It
follows from (5.25), and (5.26), that if R is large enough, we have

r
f 1 - ^ ux(r)υ'x(r)dr rg — , for every xeA. (5.27)

Next, observe that the curve \J [ux(r\ vx(r}} has no multiple points, since on
re[ρ,ρι]

(ρ,ρι), we have (vx — u2)'>0, while wx>0, and (vx — ux)'<Q, while wx<0. This
comes from (2.6), assuming R>\/ω. Let Σx be the region contained between
the curve, and the line {v= -(m-ω)1/2}, and let δx be its area. By (5.19), we have

,v^-(m-ωY12}; and so

δx^σ. (5.28)

Now, applying Green's formula, we have

δx=- 7 ux(r)v'x(r)dr. (5.29)
Q

Putting together (5.27), (5.28), and (5.29), we get

βί 1 σ
--. (5.30)
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Integrating (2.5), between ρ and ρ l 5 and using (1.5) and (5.30), we obtain the
inequality

from which the result follows.

Corollary 5.5. Let n^Obe such that An Φ 0, and let xn = Sup An. Assume xn e An, and
/M. Then, there exists ε>0 such that (xrt,xw

Proof. Let us set ([/, V) = (uXn,υXn), and let R be the last zero of U. Assume for
example that 17 >0 on (R, + oo). By Lemma 4.6, there exists τ>R, such that

0<(7(r)<F(r)^(l/4)(m-ω)1/2, for r^τ . (5.31)

Next, observe that for x close to xn9 we have the following. Both ux and vx have n
zeroes on (0, τ), which are alternate, and

-ωY/2. (5.32)

This follows from (2.4) and Lemma 4.6. Now, assume in addition that x>xn. Let

ρx = Sup{r e (τ, Rx)9 ux>Q and vx > 0 on (τ, r)} .

Observe that, from (5.32) it follows easily that u'x<0 and v'x<0 on (τ,ρx), and so

and 0<ι;x^(l/2)(m-ω)1/2, on (τ,ρx). (5.33)

Next, xφAn, and so, by Lemma 2.8, ρx is finite. Therefore, ux(ρx) = Q9 or vx(ρx) = Q.
Furthermore, xφln9 and so ux(ρx)ή=Q. Thus, vx(ρx) = 0. Note that, from (5.31), and
(2.4), we have

ρx-> + oo, as x-+xn. (5.34)

Finally, from (1.4), (1.5), and (5.33), we get

(ux + υx)'£--(ί/2)(m-ω)(ux + vx), on (τ,ρx). (5.35)

Integrating (5.35), we obtain

-ω)ρ;c). (5.36)

Putting together (5.34), (5.36), and applying Lemmas 5.3 and 5.4, we obtain that if x
is close enough to xn, then uxvx has at least two zeroes after ρx9 and the first two
zeroes are zeroes of ux\ and so x e In + ί. This completes the proof of Corollary 5.5.

End of the Proof of Theorem 1.1. Let y0 = Sup 70. By Lemma 4.3, y0 e A0. Let now
xQ = SupA0. Applying Lemma 5.1, we get x0e,40. Therefore, by Corollary 5.5,
there exists ε0 > 0, such that (x0, x0 + ε0) C / 1 . Thus, / i =(= 0. Let yi = SupI1. We have
y\ >^o = 3 ;oj and so, by Lemma 5.2, yί eAί9 then by Lemma 5.1, x1 — Sup^41 E A±.
Iterating this argument, we construct an increasing sequence (xn)n^0, with xneAn.
The boundedness of (xn)π^0 follows from Lemma 4.8, and the exponential decay,
from Lemma 4.6. Thus, the proof of Theorem 1.1 is complete.
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