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Symmetric Harmonic Maps Between Spheres
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Institute of Mathematics, Academia Sinica, Beijing, People's Republic of China

Abstract Necessary and sufficient conditions for the existence of symmetric
harmonic maps between spheres are established.

1. Introduction

In [S], Smith studied the problem of existence of harmonic maps between
Euclidean spheres. The harmonic maps he constructed are of very special type.
Starting from two homogeneous harmonic polynomial maps f:Sp-+Sm of
homogeneity k and g:Sq-*Sn of homogeneity /, Smith sought for harmonic maps
from Sp + q + 1 into Sm + n + 1 which are of the following form:

u(x,y)= Uinα(ί)/ c o s α ( ί ) g h , (1.1)

where xeRp+1, yεRq+1, with | x | 2 +)> 2 = l, f = log(|x|/|;y|), and a(t) is a real
function with range in [0,f]. It is proved that if a(t) satisfies the following equation:

.. r (p-l)e-'-te-i)e' . λ^-λ^-' .
a-\ --- : - : - a-\ -- - - — — smαcosα — 0,

ef + e~ f e' + έΓ'

together with the conditions

and

lim α(ί) = 0, limα(ί) = f,

then the map defined in (1.1) is actually an analytic harmonic map. Here
λλ =k(k + p — 1) and λ2 = l(l + q — l). It is obvious that such a map is homotopic
to the join /*g of / and g [which is defined by (1.1) with sin a(t) = x and

Smith proved that if (p — I)2 <4λ^ and (q — \)2<4λ2 or p = q and λί=λ2, then
there exists a harmonic map homotopic to /* g. Quite recently, Ratio [R] showed
that the same conclusion holds provided λv =prg5. In this paper, we completely
solve the problem of existence of harmonic maps of Smith's type. Our main result is
the following:
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Theorem. Assume that

^te-l)^2(p-l). (1.2)

For the existence of a harmonic map of the form (1.1) it is necessary and sufficient
that either (i) (q-l)2<4λ2, or (ii) (g-l)2^4A2, and

One should note that (1 .2) is not a restriction, since it can always be assumed by
interchanging the roles of / and g whenever necessary.

We will use variational methods to prove Theorem 1.1. For the existence part
of the theorem, essentially we obtain our harmonic maps by minimizing the energy
over the class of mappings of the form (1.1). The only difficulty here is to show the
energy-minimizing map is different from two specific weakly harmonic maps
[corresponding to α(ί) = 0 and f in (1.1)]. This is overcome by a complete analysis
of the stability of the two weakly harmonic maps as critical points of the energy.
The proof of the nonexistence part of the theorem seems more interesting, since it
relies on the mountains pass theorem which is usually used for existence proof.

We prove Theorem 1.1 in the next section. In Sect. 3, we briefly discuss some
easy consequences of Theorem 1.1, i.e. some new examples of symmetric harmonic
maps between spheres.

2. Proof of Theorem 1.1

We first change the equation in Sect. 1 into a more convenient form. By a change of
variable: 1 1— > logtgί, the equation is transformed into

^ --- rΛ~ ( s i n ύ f c o s α ^ O , (2.1)
\cos t sin tj

while the corresponding conditions become

ίe(0,f), (2.2)

limα(£) = f, (2.3)

Throughout this section we assume that p,q^l and / L l 5 /2 > 0 are real parameters.
Set f(t) = sinp t cos4 t. It is easy to see that (2. 1 ) is the Euler-Lagrange equation of the
functional:

π.

T, s 2?f .-> A ι s i n 2 α /Ucos 2α\ .. N ,j(a)= ά 2 + 1. 2 + 2

 2 }f(f)dt.
0 \ SIHΓί COS t )

It is not surprising that, up to a constant factor, J(ά) is just the energy of the
mapping u defined by (1.1).

Let X = <j a e if^(O, f): \\ a \\2 = J (a2 + a2}fat < oo \. It is clear that with the inner
0

product
2"
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X is a Hubert space. We remark that if p > 1 and q > 1, then J is well defined and
smooth on X. This is due to the following weighted Sobolev inequality:

(2.4)

where s(t) = sinί (or cost). However, if p— 1 (or q — 1) the inequality fails, and J is
even not everywhere defined on X. In such a case, we still view J as a functional on
X by allowing it to take values of + oo. In view of condition (2.2), we want to
minimize J over the closed convex subset

:0^a(ή^ Vίe(0,f)}.

Lemma 2.1. There exists α 0 eX 0 which minimizes J over X0, i.e.

J(α0) = c0 = inf { J(a) :aEX0}.

Furthermore, if α 0 ΦO or f> then α0 satisfies (2.1) -(2. 3).

Proof. It is not hard to show the existence of α0 by minimizing J directly over X0.
However, then we have to prove α0 is actually a critical point of J on X, i.e. it is a
solution of (2.1). This causes some trouble. It will be more convenient to use the
following trick.

For any aeX, define a*£X0 by

.0, if α(ί)<0.

Next, define G: R x R-^R by

G(ί,α)=| F(ί,α), if O^α^f,

lF(f,0), if α<0,

where

Λ J sin a Λ2 cos β

sin2ί cos2f

Let J*(α)-J(ά2 + G(ί,α))/(ί)Λ Note that F(ί,fl*(ί)) = G(ί,fl(ί)) = G(ί,α*(ί)) for all
o

aeX and ίe(0,f). It follows that

J(α*) - J*(α*) ̂  J*(α), Vα e X.

This implies inf {J*(α): α e Jί} = c0. Now let {a{} be a minimizing sequence in X for
J*. By passing to af if necessary, we may assume at e XQ. Thus, since J*(flf)->c0 and
a{ satisfies (2.2), we see that {αj is bounded in X. It follows that some subsequence
of {αt } converges weakly in X to some α0eJ^0. It is routine to verify that the
functional J is weak-lower-semi-continuous on X, and consequently J*(α0) = c0,
i.e. a0 achieves the infimum of J* on X. Therefore, α0 satisfies the Euler-Lagrange
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equation for J*. Since α 0 e X0, i.e. α0 satisfies (2.2), the equation satisfied by α0 is
exactly (2.1 ) due to the fact that J* and J coincide on X0. Now, if a0 φ 0 or f , then by
Lemma 5.5 of [S], α0 also satisfies (2.3). (Note the condition that \ά ̂ C in
Lemma 5.5 of [S] is unnecessary, since it is implied by Lemma 5.1 in [H].) This
completes the proof of Lemma 2.1.

As an immediate consequence of Lemma 2.1 we have

Lemma 2.2. // c0<min{J(0), J(f)}, then there exists a solution to (2.1)-(2.3).

By a direct computation, we see the assumption (1.2), which will be assumed
throughout this section, is equivalent to J(0)£ΞJ(f). Thus, the condition
c0 < min { J(0), J(f )} in Lemma 2.2 can be simplified to c0 < J(0). We will verify this
condition through considerations of the second variation of J at the constant
critical point 0:

~2

2I(υ) = d2J(Q) (υ, v) = 2 J (ύ2 + Q(t)υ2}f(t)dt ,
o

where Q(t) = λi esc2 ί — λ 2 sec2 1.

Lemma 2.3. // there exists vεX such that v^O and I(v)<Q, then c0< J(0).

Proof. We may assume q>l, since otherwise q = l and ,7(0) =oc, the lemma is
trivially true. Let vMεX be such that vM(t) = v(t) if υ(f) < M, and vM(t) = M if
ι (ί) ̂  M. Then one checks easily that I(vM) -» J(ι ) as M -» oo . It follows that I(vM) < 0
for sufficiently large M. Fixing such a large M, we have

~J(SVM)

2

= 0 and —-y
) as

= 2I(υM)<0.
s=0

Therefore, J(svM)<J(Q) for small s>0. But VM is nonnegative and bounded, so
svMeX0 for small s>0. It follows from the definition of c0 that c0<J(0).

Lemma 2.4. // (q - 1 )2 < 4λ2, ίfeen c0 < J(0).

Proof. Let ι; = sinsίcos" l'ί, where s>0 and r<(g — 1)/2. Then t eJί and υ^O. A
direct computation shows

φ) - Ci to2 - 4r - 1 - 4^2)s2 + C2s + C3] ,

where C^O, and C2, C3 do not depend on 5. If (g — 1)2<4/125 we may choose r
close to (g — 1)/2 so that the coefficient of s2 is negative. Then letting s be sufficiently
large, we see /(u)<0. It follows from Lemma 2.3 that c0< J(0).

Next, we consider the case where (q— I)2 ^4/l2. For this case we have to solve
an eigenvalue problem as follows. Let

Formally, if μ0 is finite and some v^eX achieves the value μ0, then y0 is a solution
of the following Euler-Lagrange equation:

(2.5)
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where the constant μ appears as a Lagrange multiplier. Our method to determine
the exact value of μ0 relies on the fortunate fact that we can explicitly solve (2.5)
with some v0 e X and constant μ. Then we are able to show μ = μ0.

Set ι;0 = sin sfcos~ rί, where

Note that s>0 and r<(q — l)/2, so v0εX. One can easily verify that v0 satisfies
Eq. (2.5) with the constant

Lemma 2.5. // (q -1)2 ̂  4λ2 and

c0<J(0).

/ It is easy to verify I(v0) = μ $ v l f ( t ) d l . Thus, φ0)<0 iff μ<0. But it is also
o

easy to see that μ<0 is equivalent to (2.6). Hence, if (2.6) holds, then we have
/(t;0)<0 and the lemma follows from Lemma 2.3.

Combining Lemmas 2.2, 2.4, and 2.5, we conclude that if the condition of
Theorem 1.1 is satisfied, then there exists a solution to (2.1)-(2.3). By Smith ([S]),
this solution gives rise to an analytic harmonic map of the form (1.1). This
completes the proof of sufficiency part of Theorem 1.1.

It remains to prove the necessary part of Theorem 1.1. We have to show if
(q — \)2^ 4/1 2 while (2.6) does not hold, then no solutions can exist. In such a case,
we know from the proof of Lemma 2.5 that μ^O.

Lemma 2.6. μ0 = μ.
~2

Proof. Note first that since I(v0) — μ J VQ/dt, we have μ ̂  μ0 by the definition of μ0.o
We need only to show the converse.

For small ε>0, let Hε be the subspace of X consisting of functions with
supports in [ε,f — ε]. Let

f

Since on [ε,f — ε]Q(ί) is bounded, one proves in a standard way that με is achieved
by some vε E HE which satisfies

- (f(t)vε} + Q(t)f(t)υe = μj(t)υε , υe>Q, on (ε, f - ε) ,

(2.7)

We claim με>μ. Indeed, multiplying Eqs. (2.5) (with v = vQ) and (2.7) by vε and v0

respectively and integrating by parts leads to

ΊL
2

(μit-μ)lvQvεf(t)dt=fύQvί
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This is because vε is positive in the interior of the interval and it is zero at the
endpoints, hence ί)ε(ε)>0 and ι5ε(f — ε)<0. Since the integral on the left is positive,
we see με > μ.

Next, we claim that

με-^μ0? as ε-»0. (2.8)

If (2.8) holds, then letting ε-»0 in the inequality με > μ, we get μ0 ̂  μ, completing the
proof. To show (2.8) we notice that Hε C H&, C X, for ε > ε' > 0. So με is increasing in ε
and με^μ0 Therefore, as ε-»0, Iimμε^μ0. On the other hand, for each we X with
j w2fdt = 1, let wε = 7/gW, where ?/ε is a continuous function such that ηε — 0 on [0, ε]
and [f — ε, f ], τ/ε = 1 on [2ε, f — 2ε], and it is linear otherwise. Then vvε e Hε, and one
can check that wε-»w in X and /(wε)-»/(w) as ε->0. But we have 7(wε)^με $w2fdt.
Letting ε->0 we get /(w) ̂  limμε. Since w is taken arbitrarily, we see μ0 g; limμε. This
proves (2.8), and also the lemma.

Lemma 2.7. // μ0 > 0, then there exists δ>0 such that

I(v)^δ\\v\\2 , V u e * . (2.9)

Recall that in the expression of I(v\ the potential Q(t) depends continuously
onλ = (λί,λ2). Let g* be the potential corresponding to /l* = (l — ̂ "U, and let μ$
be the corresponding eigenvalue, where δ > 0 is a sufficiently small constant. Then
μ$ can be arbitrarily close to μ0. So we have

/(ϋ) = ̂  J ύ2fdt + (l-δ)$(v2 + Q*v2}fdt

The following is just the mountain pass theorem in our version.

Lemma 2.8. Suppose that p>\ and μ0 > 0. // c0 < J(0), then there exists a solution b
of (2.1)-(2.3) with J(b)> J(0).

Proof. By Lemma 2.2, c0 < J(0) implies c0 is achieved by some α0 which is a solution
to (2.1)-(2.3). We will use the trick employed in the proof of Lemma 2.1 to prove
the existence of b.

Let YQ = {aeX:0^a(t)^a0(t)9 ίe(0,f)}. For any aeX define α*e70, by

if

a*(t) = a(t), if 0^fl(ί)^α0(09

l O , if α(ί)<0.

Then define G:RxR-^Rby

fF(ί,α0(ί)), if

G(ί,α) = F(ί,α), if

if

F ί , α ,

LF(ί,0),

where F(ί, α) is the same as in the proof of Lemma 2.1. Instead of J, we consider the
functional κ

= ](ά2 + G(t,a))f(t)dt.
o
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Since p> 1 and q>l, both J and J* are smooth on X. One easily checks J(β*)
= J*(β*) by the above definitions. On the other hand, we derive from the
minimizing property of a0 that

J*(α*)^J*(α), V α e X . (2.9)

Let Γ = {yeC([0,l],Jiί):y(0) = 0, y(l) = Λ0} be the set of all continuous paths
joining 0 and α0 in Z. Set

c = inf max J*(y(t)).

We claim that c > J(0). Let y be any path in Γ. Note that γ* is also a path in Γ. By
(2.9), max J*^ max J*. On the other hand, γ*(t)eY0 and we have J*(y*(tj)

γ γ*

= J(y*(t)). By Lemma 2.7 and the Taylor expansion,

, as α->0.

Therefore, we may take £>0 with ε< ||α0|| such that J(ά)'^J(0)-\-δl for

aeSε={aeX:\\a\\=κ}9

where δ1 =δε2/2. It is clear that the path y* must intersect with Sε. It follows that
max J*^J(0) + δι. Hence, max J*> J(0)-\-δl for all yeF, and by definition

y* y

Now choose a minimizing sequence {yt} in Γ such that maxJ*-»cas z->oo. By
y t

passing to yf if necessary, we may assume yiCY0. From the proof of the de-
formation lemma in critical point theory (cf. [P]), we know there exists a{ e yt and

such that J*(αί) = max J*, H^-^H^O and dJ*(fcί)-^0. Note J*(a^->c, and

hence J*(bt)-^c. In the sequel we will prove that {bt} subconverges to some b<=X
(which means J* satisfies a sort of Palais-Smale condition). Then it is clear that
dJ*(b) = 0, i.e. b is a critical point of J*, and J*(b) = c. Since a{ e 70 for each ί, we see
b E Y0. But J* and J coincide on 70, so b is also a critical point of J with J(f?)
= c > J(0). Clearly b is not one of the two constant critical points 0 and f, since J(O)
<J(b) and %φ Y0. It follows from [S] that b is a solution to (2.1)-(2.3).

It remains to show the subconvergence of {fcj. From J(ai)^C and β e 70 we
derive that {at} is bounded in X. Since bi — ai-^>Q in Jί, we see {ί?f} is bounded in X.
Thus, some subsequence of {i?J, still denoted by {fcj, converges weakly to some ft
in X. The weak convergence implies

$(bi-bj)2fdt-+0, as ίj->oo. (2.10)

[Unless otherwise specified, integrals will always be over (0,f).] On the other hand,

-^) = ̂ ^

i - 6 jJ/Λ + J β sin at cos α .̂ - a^fdt + o(l ) ,

where 0(1) denotes any quantity going to zero as zj ->oo. This is because α t — bt ->0
in X and (2.4) holds in our case, also because α f, ΩJ e yo and G(ί, α f) = F(ί, αf).



648 W.-Y. Ding

Interchanging the roles of i and j in the above equality, we get another similar
equality. Subtracting the second equality from the first one gives

j (bι - bj)2fdt + J ^(sinfl; cosα, - sinα,- cosα,-) (at - a^fdt = 0(1) .

The absolute value of the second integral on the left is dominated by

- --ε

f|β|(fl ί-«//Λ = ί+ ί + 2 f \Q\(at-aj)2fdt
0 f-ε

_π

^ f + f \Q\\a0\
2fdt + C(ε)S(ai-aj)

2fdt,

° !-«
where ε > 0 is small. The first two integrals on the right-hand side of the above
inequality can be made arbitrarily small by taking ε sufficiently small, then fixing ε
and letting ij be sufficiently large; the last integral can be arbitrarily small too.
This shows l\Q\(ai-aj)

2fdt = o(l), hence \(bί-b^2fdt = o(\} too. This and (2.10)
then show {fcj converges strongly in X. The proof of Lemma 2.8 is completed.

The next lemma is a crucial observation.

Lemma 2.9. Suppose a is any solution to (2.1)-(2.3), then J(a)<J(ΰ).

Proof. Note first that

J(α) - J(0) - J (a2 + Q(t) sin2 a) fat .

Writing Eq. (2.1) in the following form:

— (f(t)ά) =f(t)Q(t) sin a cos a ,

we see that

By the asymptotic analysis for the solutions of (2.1)-(2.3) near t = 0 and f in [S], the
first term on the right side of the above equality vanishes. It follows that

J(a) - J(0) -j(l - sec2 a)ά2fdt < 0 .

The following lemma completes the proof of Theorem 1.1.

Lemma 2.10. Suppose that μ0^0. Then (2.1)-(2.3) has no solutions.

Proof. Consider first the case where p>\ and μ0 > 0. Suppose there is a solution a
of (2.1)-(2.3). By Lemma 2.9, J(α)< J(0), which implies c0 < J(0). Then Lemma 2.8
guarantees the existence of another solution b of (2.1)-(2.3) with J(b)> J(0),
contradicting Lemma 2.9. This proves the lemma in the case p>\ and μ0 > 0.

For the remaining case, the existence of a solution of (2.1)- (2.3) still implies
c0 < J(0) by Lemma 2.9. Note that the condition c0 < J(0) is open, i.e. it is satisfied
by the functional J with nearby parameters p,q,λ^λ2. However, we can find
nearby parameters with p > 1 and μ0 > 0, for which (2.1)-(2.3) has no solution and
hence c0^J(0), a contradiction. This proves the lemma completely.
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3. Discussions

We can apply Theorem 1.1 to get many new examples of symmetric harmonic
maps between spheres. But we will not try to present a complete list of these. We
would like only to point out the following interesting consequence of Theorem 1.1.

Corollary 3.1. Let f:Sp-*Sm and g\Sq-*Sn be two homogeneous harmonic poly-
nomial maps with the same homogeneity k; then there exists a harmonic map
homotopic to /* g.

Proof. We apply Theorem 1.1 to the case where λ± = k(k + p — \) and
λ2 = k(k + q — \). In such a case (1.2) is equivalent to q^p. Thus we need only to
verify (2.6) under the assumption (q — l)2^4λ2, which implies q>\. By a simple
computation we see (2.6) is equivalent to the following two inequalities:

(ii) (;Lι + ;l2)2

For the present case, these can be reduced to (i)' (q — \)(p — \) + 2k(q — p)>§, and
(ii)' (2k + p + q~2)2>(p + q-2)(q-p). Since q^p^ 1, q> 1, and fe> 1, (i)' and (ii)'
are clearly true.

There is a class of homogeneous harmonic maps of homogeneity 2 arising from
orthogonal multiplications (cf. [E-L], (8.4)). By Corollary 3.1, the join of any
two maps in this class is homotopic to a harmonic map.

On the other hand, from the nonexistence part of Theorem 1.1 we also see the
limitation of finding harmonic maps by Smith's constructions. Therefore, to
accomplish the task of representing harmonically πk(Sn) ([Y], Problem Section,
φ 1 12), one has to seek for other approaches to the problem, either making use of
the symmetries of the Euclidean spheres in a different way or exploring deeper
results in analysis.

Note. After this paper was finished, Prof. J. Eells kindly informed the author that
similar results had been obtained by V. Pettinati and A. Ratto in their recent paper
"Existence and non-existence results for harmonic maps between spheres," using
completely different methods.
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