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Symmetric Harmonic Maps Between Spheres
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Abstract. Necessary and sufficient conditions for the existence of symmetric
harmonic maps between spheres are established.

1. Introduction

In [S], Smith studied the problem of existence of harmonic maps between
Euclidean spheres. The harmonic maps he constructed are of very special type.
Starting from two homogeneous harmonic polynomial maps f:S?—S™ of
homogeneity k and g: S7—S" of homogeneity /, Smith sought for harmonic maps
from §774" ! into §™*"*! which are of the following form:

u(x, y)= <sina(t)f <]x;|>’ cosa(t)g <|-i—|>) (1.1)

where xe RP*1, yeRY*!, with |x]>+|y[*=1, t=Ilog(|x|/|y]), and a(t) is a real
function with range in [0, 5]. It is proved that if a(r) satisfies the following equation:

t
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PE— ——;—sinacosa=0,
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together with the conditions

and

tlim a(t)=0, tlim a(t)y=1%,
then the map defined in (1.1) is actually an analytic harmonic map. Here
Ai=k(k+p—1)and i,=I(+q—1). It is obvious that such a map is homotopic
to the join fxg of f and g [which is defined by (1.1) with sina(f)=]x| and
cosa(t)=|yl].

Smith proved that if (p—1)* <44, and (g—1)* <4/, or p=g and /., = /,, then
there exists a harmonic map homotopic to f * g. Quite recently, Ratto [R] showed
that the same conclusion holds provided 4, =p <5. In this paper, we completely
solve the problem of existence of harmonic maps of Smith’s type. Our main result is
the following:
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Theorem. Assume that
g—=1)Z2(p—1). (1.2)

For the existence of a harmonic map of the form (1.1) it is necessary and sufficient
that either (i) (q—1)* <44, or (i) (g—1)*=44,, and

V(=1 +42, +/(g—1)>—42, <p+q—2.

One should note that (1.2) is not a restriction, since it can always be assumed by
interchanging the roles of f/ and g whenever necessary.

We will use variational methods to prove Theorem 1.1. For the existence part
of the theorem, essentially we obtain our harmonic maps by minimizing the energy
over the class of mappings of the form (1.1). The only difficulty here is to show the
energy-minimizing map is different from two specific weakly harmonic maps
[corresponding to a(t)=0 and % in (1.1)]. This is overcome by a complete analysis
of the stability of the two weakly harmonic maps as critical points of the energy.
The proof of the nonexistence part of the theorem seems more interesting, since it
relies on the mountains pass theorem which is usually used for existence proof.

We prove Theorem 1.1 in the next section. In Sect. 3, we briefly discuss some
easy consequences of Theorem 1.1, i.e. some new examples of symmetric harmonic
maps between spheres.

2. Proof of Theorem 1.1

We first change the equation in Sect. 1 into a more convenient form. By a change of
variable: ¢ +— logtgt, the equation is transformed into

a+(pctgt—qtgt)a+<co)s 7 %)sinacosazo, (2.1)

while the corresponding conditions become
O=an=3, 1€(0,3), 22
1ijr(} a(t)=0, linz a(t)=%, (2.3)

%

2

Throughout this section we assume that p,¢g=1and 4, /., >0 are real parameters.
Set f(t)=sin?t cos’t. Itis easy to see that (2.1) is the Euler-Lagrange equation of the
functional:

Ja)=]\4a sin?t cos?t

sy
2 e )lsma J,cos?a
0

> f(ryde.

It is not surprising that, up to a constant factor, J(a) is just the energy of the
mapping u defined by (1.1).

n
2

Let X = {aeH}oc(O,2 fal?= j a2+ a?) fdt<oo} Itis clear that with the inner

product .
2

(a,b)= [ (ab+ab)fdt,
0
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X is a Hilbert space. We remark that if p>1 and g > 1, then J is well defined and
smooth on X. This is due to the following weighted Sobolev inequality:

a2

——fOdt<Clal?, VaeX, (2.4)
s*(t)

where s(t)=sint (or cost). However, if p=1 (or ¢=1) the inequality fails, and J is
even not everywhere defined on X. In such a case, we still view J as a functional on
X by allowing it to take values of + cc. In view of condition (2.2), we want to
minimize J over the closed convex subset

Xo={aeX:0=a()<% Vte(0,%)}.

Ot N3

Lemma 2.1. There exists a,€ X, which minimizes J over X, i.e.
J(ag)=co=inf{J(a):ae X} .
Furthermore, if aq=£0 or 3, then a, satisfies (2.1)-(2.3).

Proof. Tt is not hard to show the existence of a, by minimizing J directly over X,
However, then we have to prove a, is actually a critical point of J on X, i.e.itis a
solution of (2.1). This causes some trouble. 1t will be more convenient to use the
following trick.

For any ae X, define a* e X, by

5, if a(t)>3,
a*(t)=q alt), if 0=a()=73,
0, if a(t)<0.

Next, define G: R x R—>R by
F@.3), if a>3,
G(t,a)=1 F(t,a), if 0=as<i,
F(t,0), if a<O0,
where
Jysinfa 2, cos’a

F(t,a)= — - .
(t,q) sin’t cos?t

%
Let J*(a)= [ (a® + G(t,a))f(t)dt. Note that F(z, a*(t)) = G(t, a(1)) = G(t, a*(1)) for all
0
ae X and te€(0,%). It follows that
J(@¥)=J*a*)J*(a), VaeX.

This implies inf{J*(a):a€ X} =c,. Now let {a;} be a minimizing sequence in X for
J*. By passing to af if necessary, we may assume g, € X o. Thus, since J*(a;)—c, and
a; satisfies (2.2), we see that {a;} is bounded in X. It follows that some subsequence
of {a;} converges weakly in X to some a,€ X, It is routine to verify that the
functional J is weak-lower-semi-continuous on X, and consequently J*(agy)=c,,
i.e. ay achieves the infimum of J* on X. Therefore, a, satisfies the Euler-Lagrange
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equation for J*. Since a, € X, 1.€. a, satisfies (2.2), the equation satisfied by a, is
exactly (2.1) due to the fact that J* and J coincide on X ,. Now, if a, =0 or 3, then by
Lemma 5.5 of [S], a, also satisfies (2.3). (Note the condition that |¢|<C in
Lemma 5.5 of [S] is unnecessary, since it is implied by Lemma 5.1 in [H].) This
completes the proof of Lemma 2.1.

As an immediate consequence of Lemma 2.1 we have

Lemma 2.2. If ¢, <min{J(0),J(5)}, then there exists a solution to (2.1)—(2.3).

By a direct computation, we see the assumption (1.2), which will be assumed
throughout this section, is equivalent to J(0)=<J(3). Thus, the condition
¢o<min{J(0),J(3)} in Lemma 2.2 can be simplified to ¢, <J(0). We will verify this
condition through considerations of the second variation of J at the constant
critical point 0:

21(v)=d*J(0) (v,v) = 2] 2+ Q) f(0)dt

where Q(t)= A, csc?t — A, sec?1.

Lemma 2.3. If there exists ve X such that v=0 and I(v)<O0, then ¢, <J(0).

Proof. We may assume ¢g> 1, since otherwise ¢=1 and J(0)=cc, the lemma is
trivially true. Let vy, € X be such that vy, (t)=uv(t) if v(t)<M, and vy,(tH)=M if
v(t)Z M. Then one checks easily that I(v,,)— I(v) as M — co. It follows that I(v,,) <0
for sufficiently large M. Fixing such a large M, we have

d J(svy)| =0 and ¢ J(svy)| =2I(v,) <0

ds " s=0_ ds? " s=0— . .
Therefore, J(sv,,)<J(0) for small s>0. But v, is nonnegative and bounded, so
svp € X for small s>0. It follows from the definition of ¢, that ¢, <J(0).

Lemma 2.4. If (q—1)?<4,, then c,<J(0).

Proof. Let v=sin®tcos "t, where s>0 and r<(g—1)/2. Then ve X and v=0. A
direct computation shows

I(t)=C,[(g*—4r—1—4,)s* + Cy5+ C;],

where C, >0, and C,, C5 do not depend on s. If (4—1)*<4/,, we may choose r
close to (¢ — 1)/2 so that the coefficient of s? is negative. Then letting s be sufficiently
large, we sec 1(v)<0. It follows from Lemma 2.3 that ¢, < J(0).

Next, we consider the case where (q— 1)*=4/,. For this case we have to solve
an eigenvalue problem as follows. Let

Lo =inf{[(v) velX, ?vzf(t)dt = 1} .

Formally, if 41, is finite and some v, € X achieves the value pu,, then v is a solution
of the following Euler-Lagrange equation:

d

— LU0+ 0 =pf (0. 23
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where the constant u appears as a Lagrange multiplier. Our method to determine
the exact value of p, relies on the fortunate fact that we can explicitly solve (2.5)
with some v, € X and constant p. Then we are able to show p= .

Set vy =sin’t cos ™ "t, where

=3[/ (p—1)?+4%, —(p—1]1, r=3g—1)—)(g—1)*—44,].

Note that s>0 and r<(g—1)/2, so v,€ X. One can easily verify that v, satisfies
Eq. (2.5) with the constant

p=(r—s)>—(r—s)(p+9).
Lemma 2.5. If (¢—1)*=44, and

V(p—172+44 +)/(g—1)* 44, <p+q—2, (2.6)

then cy, < J(0).

125_
Proof. It is easy to verify I(v)=u [ v3f(t)dt. Thus, I(v,) <0 iff £ <0. But it is also
0

easy to see that u<0 is equivalent to (2.6). Hence, if (2.6) holds, then we have
I(vy)<0 and the lemma follows from Lemma 2.3.

Combining Lemmas 2.2, 2.4, and 2.5, we conclude that if the condition of
Theorem 1.1 is satisfied, then there exists a solution to (2.1)—(2.3). By Smith ([S]),
this solution gives rise to an analytic harmonic map of the form (1.1). This
completes the proof of sufficiency part of Theorem 1.1.

It remains to prove the necessary part of Theorem 1.1. We have to show if
(g—1)* =44, while (2.6) does not hold, then no solutions can exist. In such a case,
we know from the proof of Lemma 2.5 that u>0.

Lemma 2.6. 1, =pu.

_72£
Proof. Note first that since I(v,)= u | v3 fdt, we have u= p, by the definition of .
0

We need only to show the converse.
For small ¢>0, let H, be the subspace of X consisting of functions with
supports in [¢,5—¢]. Let

ua=inf{l(v):veHC, ?vzf(t)dtzl}.
0

Since on [&,5—¢]Q(t) is bounded, one proves in a standard way that p, is achieved
by some v, € H, which satisfies

0+ QOO = [, 6,0, 0n (5 0),

2.7
03(8) = UC(ZZE - 8) =0. ( )

We claim p, > p. Indeed, multiplying Eqgs. (2.5) (with v=10,) and (2.7) by v, and v,
respectively and integrating by parts leads to

o e— N3

(1, = 1) § 0o, f(D)dE = fog0,|, >0
2 &
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This is because v, is positive in the interior of the interval and it is zero at the
endpoints, hence v,(¢)>0 and 0,3 —¢) <O0. Since the integral on the left is positive,
we see y, > U.

Next, we claim that

U= o, as &e—0. (2.8)

If(2.8) holds, then letting ¢ —0 in the inequality x, > p, we get u, = pt, completing the
proof. To show (2.8) we notice that H,C H,. C X, for e>¢'>0. So p, is increasing in ¢
and p, = p,. Therefore, as ¢—0, lim 1, = 1o. On the other hand, for each we X with
[wifdt=1,let w,=n,w, where 1, is a continuous function such that ,=0 on [0, ¢]
and [5—¢,5],n,=10n[2¢,%5—2¢], and it is linear otherwise. Then w, € H,, and one
can check that w,—w in X and I(w,)—1(w) as ¢—0. But we have I(w,) =y, [ w*fdt.
Letting ¢—0 we get I(w) = lim y,. Since w is taken arbitrarily, we see yo = lim y,. This
proves (2.8), and also the lemma.

Lemma 2.7. If p,>0, then there exists 0>0 such that
I(v)=6|v]|*, VveX. (2.9)

Proof. Recall that in the expression of I(v), the potential Q(t) depends continuously
on A=(4, 4,). Let Q* be the potential corresponding to A*=(1—9)" !4, and let
be the corresponding eigenvalue, where 0 > 0 is a sufficiently small constant. Then
ud can be arbitrarily close to u,. So we have

I(v)=34 [o*fdt +(1—90) [ (0* + Q*v?) fdt
> 6 ] 62fdt+(1— Sk [v*fde 2 5]1v]>.
The following is just the mountain pass theorem in our version.

Lemma 2.8. Suppose that p>1 and u,> 0. If ¢, <J(0), then there exists a solution b
of (2.1)—(2.3) with J(b)> J(0).

Proof. By Lemma 2.2, ¢, < J(0) implies c, is achieved by some a, which is a solution
to (2.1)—(2.3). We will use the trick employed in the proof of Lemma 2.1 to prove
the existence of b.

Let Yo={aeX:0=a(t)<a(t), t(0,%)}. For any ae X define a* € Y,, by

aO(t) > lf a(l) > aO(t) 5
a*(1) :{ a(t), it 0=a(t)=a(t),
0, if a(t)<0.
Then define G: R x R—R by
F(t,ao(t)), 1f  a>act),
G(t,a)=1 F(t,a), if 0=<a=ayt),
F(1,0), if a<0,

where F(t, a) is the same as in the proof of Lemma 2.1. Instead of J, we consider the
functional

J*a)= [ (a*>+ G(t,a) f(t)dt .

O N3
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Since p>1 and ¢>1, both J and J* are smooth on X. One easily checks J(a*)
=J*(a*) by the above definitions. On the other hand, we derive from the
minimizing property of a, that

J¥a*)<J*a), VaeX. (2.9
Let I'={yeC([0,1], X):7(0)=0, y(1)=a,} be the set of all continuous paths
joining 0 and a, in X. Set

¢=1inf max J*(y(t)).
yel 1[0,1]

We claim that ¢ > J(0). Let y be any path in I'. Note that y* is also a path in I'. By
(2.9), maxJ*=maxJ* On the other hand, y*(t)e ¥, and we have J*(y*(t))
Y 7*

=J(y*(t)). By Lemma 2.7 and the Taylor expansion,

J(@)=J(0)+1(a)+o||al|?)
>JO)+6lal*+o(|al?), as a—0.

Therefore, we may take ¢>0 with e<|ay| such that J(a)=J(0)+ 6, for
acS,={acX:|al=¢},

where 8, = d¢?/2. It is clear that the path y* must intersect with S,. It follows that
max J*>J(0)+6,. Hence, maxJ*>J(0)+0, for all yel', and by definition
v b

c=2J(0)+0,.
Now choose a minimizing sequence {y;} in I’ such that max J*—¢ asi—o0. By

Y
passing to y¥ if necessary, we may assume y,CY,. From the proof of the de-
formation lemma in critical point theory (cf. [P]), we know there exists a; € y; and

b;e X such that J*(a;)=max J*, ||a;—b,;|| >0 and dJ*(b;)—0. Note J*(a;)—¢, and
T

hence J*(b;)—¢. In the sequel we will prove that {b;} subconverges to some be X
(which means J* satisfies a sort of Palais-Smale condition). Then it is clear that
dJ*(b)=0,1i.e. b s a critical point of J*, and J*(b)=¢. Since g; € Y, for each i, we see
be Y, But J* and J coincide on Y,, so b is also a critical point of J with J(b)
=¢>J(0). Clearly b is not one of the two constant critical points 0 and , since J(0)
< J(b) and ¢ Y,. It follows from [S] that b is a solution to (2.1)—(2.3).

It remains to show the subconvergence of {b;}. From J(a;)<C and g;€ Y, we
derive that {g;} is bounded in X. Since b;— a;—0 in X, we see {b;} is bounded in X.
Thus, some subsequence of {b;}, still denoted by {b;}, converges weakly to some b
in X. The weak convergence implies

f(b;—b)’fdt—0, as ij-o0. (2.10)

[Unless otherwise specified, integrals will always be over (0,%).] On the other hand,
.. .. 106G
o(1)=3dJ*(b;) (b;— b)) =] [bi(b;— b))+ 5 5 L) (b= byl fdt

:jBi(Bi—Bj)de—jQsinaicosai(ai~aj)fdt+0(1),

where o(1) denotes any quantity going to zero as i,j » co. This is because a;— b, —0
in X and (2.4) holds in our case, also because a,a;e Y, and G(t,a;)=F(t,a,).
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Interchanging the roles of i and j in the above equality, we get another similar

equality. Subtracting the second equality from the first one gives
j(Bi—Bj)zfdt—l—jQ(sina,-cosa,.—sinajcosaj)(a,-—aj)fdt:0(1).

The absolute value of the second integral on the left is dominated by

Zz_.
2

+ [ 1Ql(a;—ay?*fdt

&

| = NA

7101 (@, —afde =] +

N1

2

EI 101 lao|?fdt + C(e) | (a;—ay)’fdt,

2 &

where ¢>0 is small. The first two integrals on the right-hand side of the above
inequality can be made arbitrarily small by taking ¢ sufficiently small, then fixing ¢
and letting i,j be sufficiently large; the last integral can be arbitrarily small too.
This shows [|Q|(a;—a;)*fdt=0(1), hence [ (b;—b)*fdt=0(1) too. This and (2.10)
then show {b;} converges strongly in X. The proof of Lemma 2.8 is completed.

The next lemma is a crucial observation.

si+
0

Lemma 2.9. Suppose a is any solution to (2.1)—(2.3), then J(a)<J(0).
Proof. Note first that

J(a)—J(0)=[(a*+ Q(t)sin?a)fdt .
Writing Eq. (2.1) in the following form:

%(f(t)d) =f(t)Q(t)sinacosa,

we see that
[Qsin?afdt=|tgad(fa)=fatgal2 — | a*sec*afd:.

By the asymptotic analysis for the solutions of (2.1)-(2.3) near t =0 and 5 in [ S], the
first term on the right side of the above equality vanishes. It follows that

J(a)—J(0)=[(1 —sec?a)a*fdt <0.
The following lemma completes the proof of Theorem 1.1.
Lemma 2.10. Suppose that uy,=0. Then (2.1)—(2.3) has no solutions.

Proof. Consider first the case where p>1 and u,>0. Suppose there is a solution a
of (2.1)—(2.3). By Lemma 2.9, J(a) < J(0), which implies c, < J(0). Then Lemma 2.8
guarantees the existence of another solution b of (2.1)—(2.3) with J(b)> J(0),
contradicting Lemma 2.9. This proves the lemma in the case p>1 and p,>0.

For the remaining case, the existence of a solution of (2.1)-(2.3) still implies
¢o<J(0) by Lemma 2.9. Note that the condition ¢, <J(0) is open, i.e. it is satisfied
by the functional J with nearby parameters p,q, 4, 4,. However, we can find
nearby parameters with p>1 and p, >0, for which (2.1)—(2.3) has no solution and
hence ¢, =J(0), a contradiction. This proves the lemma completely.
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3. Discussions

We can apply Theorem 1.1 to get many new examples of symmetric harmonic
maps between spheres. But we will not try to present a complete list of these. We
would like only to point out the following interesting consequence of Theorem 1.1.

Corollary 3.1. Let f:S?—S™ and g:S%—S" be two homogeneous harmonic poly-
nomial maps with the same homogeneity k; then there exists a harmonic map
homotopic to f*g.

Proof. We apply Theorem 1.1 to the case where /,=k(k+p—1) and
Ay =k(k+q—1). In such a case (1.2) is equivalent to g = p. Thus we need only to
verify (2.6) under the assumption (q—1)* 2 4/,, which implies ¢> 1. By a simple
computation we see (2.6) is equivalent to the following two inequalities:

(1) (P—=1g—1)+22,—4)>0,
(i) (21 + 20> (p+q—2) [Z1lg—1)=7r(p— D]

For the present case, these can be reduced to (i) (g—1) (p—1)+2k(g—p)>0, and
(i) Qk+p+qg—2)*>(p+g—2)(q—p). Since g=p=1,g>1,and k> 1, (i) and (iiy
are clearly true.

There is a class of homogeneous harmonic maps of homogeneity 2 arising from
orthogonal multiplications (cf. [E-L], (8.4)). By Corollary 3.1, the join of any
two maps in this class is homotopic to a harmonic map.

On the other hand, from the nonexistence part of Theorem 1.1 we also see the
limitation of finding harmonic maps by Smith’s constructions. Therefore, to
accomplish the task of representing harmonically 7,(S") ([Y], Problem Section,
# 112), one has to seek for other approaches to the problem, either making use of
the symmetries of the Euclidean spheres in a different way or exploring deeper
results in analysis.

Note. After this paper was finished, Prof. J. Eells kindly informed the author that
similar results had been obtained by V. Pettinati and A. Ratto in their recent paper
“Existence and non-existence results for harmonic maps between spheres,” using
completely different methods.
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