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Abstract. We consider eigenvalues Eλ of the Hamiltonian Hλ= — Δ+ V+
λW, W compactly supported, in the / -> oo limit. For W ̂  0 we find monotonic
convergence of Eλ to the eigenvalues of a limiting operator H^ (associated with
an exterior Dirichlet problem), and we estimate the rate of convergence for
1-dimensional systems. In 1-dimensional systems with W^09 or with W
changing sign, we do not find convergence. Instead, we find a cascade
phenomenon, in which, as Λ,->oo, each eigenvalue Eλ stays near a Dirichlet

eigenvalue for a long interval (of length 0(^/1)) of the scaling range, quickly
drops to the next lower Dirichlet eigenvalue, stays there for a long interval,
drops again, and so on. As a result, for most large values of λ the discrete
spectrum of Hλ is close to that of H^, but when λ reaches a transition region,
the entire spectrum quickly shifts down by one. We also explore the behavior
of several explicit models, as λ-+ oo.

1. introduction

In quantum mechanics one frequently encounters Hamiltonians of the form
Hλ — H0 -f λW, where H0 describes a well-understood system (the "background"
or "free" Hamiltonian), W describes any of various interactions in the system (e.g.
interacting particles, and external fields, etc.), and / (the "coupling constant")

measures the strength of the interaction W. In this paper we consider Hamiltonians
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HQ — — A -\- V(x) on R v and compactly supported perturbations W(x), in the λ -> oo
limit. In particular we consider the behavior of specific eigenvalues Eλ of Hλ as a
function of λ for large λ.

Large-coupling problems (sometimes called "singular perturbations"), have
appeared in a variety of context. We give some examples.

Harrell [12] studied the large-coupling limit of the Hill operator Hλ =
— A + λW(x\ with periodic W on R. (This is, strictly speaking, not an eigenvalue
problem at all, as Hλ has a continuous spectrum made of bands and gaps.) He
showed that, as /t->oo, all the bands shrink at an exponential rate to certain
limiting expressions, which coincide with eigenvalues of a harmonic oscillator.

Another class of operators, studied by Ashbaugh and Harrell [4], are
Schrodinger operators of the form Hλ= — A + V + λW on Rv, where the support
of W is restricted to the exterior of a bounded region in Rv. It was shown (under
certain regularity assumptions on the behavior of W at oo) that each eigenvalue
Eλ of Hλ converges to a limiting value E0, an eigenvalue of the interior
Dirichlet problem. Moreover, Eλ was shown to admit a Puiseux-type expansion
Eλ = ̂ anλ~rn in certain negative fractional powers of λ.

n

Operators of the form H0 + λW9W compactly supported, have appeared as
mathematical models of semiconductors with impurities [23, 33]. The background
Hamiltonian here is a Hill (Bloch) operator H0 = — Δ + V on Rv or Zv with a
periodic or quasiperiodic potential V, reflecting the periodic or quasiperiodic
arrangement of atoms in a crystalline lattice. W represents the effect of an localized
impurity, λ measures the "depth of impurity levels" (see [33]).

In this last case, the spectrum of the Hill operator H0 is well known to exhibit
a band and gap structure, characterized by continuous energy intervals separated
by gaps. Adding a perturbation λW typically results in eigenvalues Eλ appearing
in the gaps, and one is interested in the behavior of Eλ as / varies in R. One
interesting question is whether the range of Eλ covers the spectral gaps oϊH0. This
question was recently addressed by Deift and Hempel (see [2,8, 10, 13,20]).

In many of these examples of large coupling, it was demonstrated that each
Eλ converges as λ -+ oo to a limiting value E^ , and that the limiting values ("pinning"
or "trapping" levels) are eigenvalues of a limiting operator H^. In the case of
interest to us, namely localized perturbations λW of Schrodinger operators — A + V
on Rv, the natural candidate for H^ is — Δ + V restricted to RV\Σ (Σ denoting
the support of W) with a Dirichlet condition on the boundary of Σ. We call the
set of eigenvalues of this Dirichlet operator {E^}.

In this paper, we ask whether each Eλ converges to an E^ as Λ-^ oo, and if so
at what rate?

In Sect. 2 we show that, for repulsive potentials W Ξ> 0, the eigenvalues of Hλ

do converge to those of H^, as a consequence of the monotonic convergence in
norm of the resolvent (Hλ — z)~1 to the pseudoresolvent (H^ — z)-1©0. In Sect. 3
we narrow our scope to 1 -dimensional problems, and calculate the rate at which

In Sect. 4 we see that, for W attractive or of mixed sign, resolvent convergence
fails in any meaningful sense. Instead we see a new and intriguing phenomenon
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Fig. 1.1. The cascade phenomenon

of cascading eigenvalues. This cascade phenomenon, shown in Fig. 1.1, is defined
precisely in Sect. 5, but roughly it means that each eigenvalue Eλ as a function of

λ spends most of the scaling range (increasing intervals of length 0(^/λ)) in the vicinity
of Dirichlet levels {E^}. These almost flat regions (plateaus) on the curve E = Eλ

are followed by relatively short intervals of rapid transition, where Eλ drops down
from one Dirichlet level to the next lower one. The pattern repeats itself (and
becomes asymptotically more pronounced as λ->oo) until Eλ hits the lowest
(ground state) Dirichlet level, or reaches the bottom of a spectral gap, after which
it goes to — cc or disappears. This phenomenon may be roughly understood as a
partial decoupling of the interior and exterior problems, together with the
no-crossing rule for eigenvalue trajectories.

It should be noted that a special case of the cascade phenomenon was first
observed by ZeΓdovich [36] in a different context (energy levels in a distorted
Coulomb potential), and is known in the physics literature as the ZeΓdovich
phenomenon [11,21,24].

For semiconductors with deep level impurities, the cascade phenomenon could
provide a possible mechanism for experimentally observed pinning of energy
eigenvalue levels as λ-»oo [23,33], and would identify these levels as exterior
Dirichlet eigenvalues. Although the eigenvalues Eλ do not in fact converge to
anything, the large size of the plateaus compared to the transition regions indicates
that experiments at large λ are likely to find eigenvalues near all the Dirichlet levels,
and nowhere else.

In Sect. 5 we study in detail various features of the cascade phenomenon in
attractive potentials W. This analysis includes the size and location of the plateaus
and transition regions, approximate shapes of the eigenvalue trajectories, and
separations at near-crossings of neighboring eigenvalue trajectories. In Sect. 6 we
extend this analysis to the entirely new case of potentials W that change sign.

After the detailed study of Schrδdinger operators with localized perturbations
in Sects. 2-6, we turn to some other examples and models. In Sect. 7 we consider
a perturbation of point support, W = ± δ(x)9 on the periodic background of the
diatomic Kronig-Penney model [27]. In this example the cascade phenomenon
disappears, and we get norm-resolvent convergence of Hλ to a limiting operator,
for both cases W = ± δ(x). This is consistent with the results of Sects. 5-6, in which
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we see that all essential features of the cascade phenomenon (rates of convergence,
location of the transition regions, etc.) depend on a certain integral that vanishes
as W-*±δ(x\ The dependence is such that, as the integral goes to zero, all
transitions move to oo, so the first plateau stretches over the entire range [0, oo)
of the scaling parameter λ.

In Sect. 8 we consider Dirac operators. Under certain circumstances eigenvalue
trapping occurs, but the cascade phenomenon is never seen.

The different parts of this paper use very different methods to treat somewhat
different cases. Sections 2 and 4 treat resolvent convergence in v dimensions utilizing
mostly functional analytic tools. Sections 3,5, and 6 treat 1 -dimensional systems,
with H0 = - d2/dx2 + V and supp(P^) - [0, /], and exploit WKB machinery. (The
general v-dimensional case of attractive and mixed perturbations remains open,
largely due to technical difficulties involved in a multidimensional WKB approach).
Sections 7 and 8 deal with specific models and involve explicit calculations.

We tried to organize this paper so that these various parts could, in principle,
be read independently.

2. The Repulsive Case in v Dimensions

In this section we consider the case W^ 0, A-> oo. Our main hypotheses read:
(H.2.1) FeL°°(Rv) real-valued, veN.
(H.2.2) 0 ̂  VFeLGO(Rv) with Σ0:= {xeRv | W(x) Φ 0} bounded.

Given (H.2.1) and (H.2.2) we define in L2(RV):

H0=-Δ + V, Hλ = H0 + λW, λeR, (2.1)

where A denotes the usual Laplacian on the standard L2-Sobolev space H2(RV).
Next we introduce the Dirichlet Laplacian on an arbitrary set Jί c R v as

follows: Let H1(RV) denote the standard L2-Sobolev space and introduce

(2.2)
and

tf £ = Q(-Δf) (2-3)

Now the Dirichlet Laplacian — Δ^9 as an operator in Jf^, is defined as the
operator with quadratic form domain Q( — Δp) and form

h(g):= \\Vg\\l gεQ(-Δ *). (2.4)

We also define in jf *v°

and

on ^ * 0 ® {L2(Rv)n(^°)J-}, zeC\σ(HJ.
(2.6)

Under minimal regularity conditions on ΣQ, e.g. \dΣQ\ = 0 and Rv\^0 obeying

a cone condition, one can show that Co>(Rv\Σ0) is dense in Q( — Δ*^Σ°) and
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one gets equality with the more conventional Dirichlet Laplacian [26].
The following is essentially in Kato [18]:

Theorem 2.1. Assume (H.2.1) and (H.2.2). Then, as λ-» oo, the resolvent (Hλ — z)~ 1

converges in norm to the pseudoresolvent R^fy

zeC\σ(HJ. (2.7)
λ-» oo

Proof. By the monotone convergence of forms [19], slightly generalized [29,30],
we obtain strong convergence of (Hλ — z)"1 to jR^z) since

β( - 4 5 o ) = {gεH*(R*)\(g, Wg) = 0}. (2.8)

Next let - c> 0 be large enough such that HQ^c + l. Define in L2(RV)

Cλ^(Hλ~cΓl~R^(c\ λ^O. (2.9)

Then
O^C λ ^C 0 , λ^Q. (2.10)

Norm convergence now follows from two facts:

(i) C0 is compact as follows from standard arguments [5, 18].
(ii) Let C be a compact operator in a (separable, complex) Hubert space and

[An}neN a sequence of operators satisfying 0 g An ^ C, neN and s — lim >4n = A.

Then lim \\An-A\\=Q (see, e.g. [19], p. 455).
n-> oo

Remark 2.2. The pseudoresolvent (cf. e.g. [15, 32]) R^z) formally is the resolvent
of an improper operator of the type H00@{co}. These improper operators
are the mathematical realization of the physicists' notion of operators with hard
cores (in our case the hard core is Σ0). The standard calculus of self-adjoint
operators and quadratic forms can be extended to improper ones, as discussed in
[16,17,25,29,30].

Remark 2.3. By using the ideas of [5] (who consider the case W=χΣ ,x^
being the characteristic function of the subset J\r c Rv), one can show that
e~tHλ - — > e~tH^®Oin trace norm.

λ-»oo

Theorem 2.1 then yields our main result for this section. Let σess( ) and σd(-)
denote the essential and discrete spectra, respectively.

Theorem 2.4. Assume (H.2.1) and (#.2.2), and choose an interval [α, b] c R\σess(H0).
Let ^oo := σ(H ^ ) n (α, b) denote the set of all (discrete) eigenvalues ofH^ in (α, b). Then

(i) σ(Jfί 0 0 )=limσ(H A ). (2.11)
λ~* 00

(ii) σm(Ha))= lim σm(Hλ) = σess(H0). (2.12)

(iii) For any £^6^^, there exist £Ae(α,£00)nσd(Hλ) such that E^E^ as λ]ao. If
m^ denotes the multiplicity ofE^ then, for λ>0 large enough, there are precisely
m^ eigenvalues Eλ of Hλ (counting multiplicities) near E^.
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Proof, (i) and (ii) simply follow from the strong spectral mapping theorem [26]
together with Theorem 9.5 of [35]. The second equality of (2.12) is a consequence
of the fact that W is relatively compact with respect to H0. The assertions in (iii)
are a simple consequence of (2.7): First of all we recall that all eigenvalues of Hλ

in (α, b) are monotonically increasing with respect to λ. Moreover, by (2.7), spectral
projections PH ((c9d)) of Hλ converge in norm to the projection PH ((c, <f))©0
associated with H^ 0 {00} as Λ,-> oo by choosing c9d sufficiently close to E^ such
that σ(HJn(c,d) = {E^

\\PHλ((c,d))-PHgo((c,d))®0\\ .0. (2.13)
λ-» oo

In particular, for λ > 0 large enough,

rank [PH/M))] - rank [PH JM))] = m^ (2.14)

concluding the proof.

Remark 2.5. By a standard procedure one could relax the conditions V, WeLco(Rv)
and admit local singularities [26].

Remark 2.6. As λ -» oo, the eigenvalues of Hλ either converge to elements of $'x or,
if ̂  = 0, σ(Hλ}r\(a,b} = φ for λ > 0 large enough. In either case the Birman-
Schwinger kernel W1/2(H0 - E)'1 W1/2, Ee(a,b) has only a finite number of
negative eigenvalues. (By compactness it has infinitely many positive eigenvalues
accumulating at zero.) This is only apparently in conflict with the completeness
result in [2,8,13,20] (see also [10]), where for all Ee(a9b) an infinite sequence
λj-+co (depending on E) with the property Eeσd(Hλj),jeN has been established.
The reason is that our condition W ̂  0 explicitly violates the crucial assumption
VF_(x)^μ>0 for x in some open ball of radius ε>0 in [2,8,10,13]. (Here
W±(x):= [\W(x)\ ± W(x)']/2 denote the positive and negative parts of W.)

3. The Repulsive Case in One Dimensions

In this section we illustrate the results of the foregoing section by means of
one-dimensional considerations. We also estimate the rate at which the eigenvalues
of Hλ converge to those of H^.

Example 3.1. Let FeL°°(R) be real-valued and define H0 = - d2/dx2 + V in L2(R).
Assume E^φσ^HQ) and E^ >inf(σess(H0)). By WeyΓs limit point/circle clas-
sification there exist two (linearly independent) real solutions fQ>±(E^9x) such that

HO/O± = ^oo/o ± (distributional sense), /0±eL2([R, ± oo)), for all ReR.
(3.1)

Since E^ > inf (σess(H0)), oscillation theorems [9] imply that both /0± have
infinitely many zeroes on R. Choose x+ such that /0t + (Eao,x + ) = 0, let x _ < x + ,
and define W(x) = χΓ x_> x + ](x) and Hλ = H0 + λW, λ > 0 in L2(R). Then obviously
Theorem 2.1 applies. In particular, we have the direct sum decomposition
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where

//± = -^'±co)-f V, (3.3)

_^±,±cc)=_^_? ®(-Δfr>±^) = {geH2((x±,±co)Mx±) = 0}. (3.4)

Define /±:=/0,±l (x+,±oo) BY construction, H + f +=£„/+, f+e®(H+). If, by
accident, we also have /_(£«,, x _ ) = 0, then #_/_ =E 0 0/_,/_e^(fί_), and so
E^Eσά(H^} has multiplicity two. Otherwise (i.e. if /_(£,„, x _ ) ?*0), E^tσd(H^} is
simple. In either case Theorem 2.6 applies.

Remark 3.2.

a) Clearly the above construction fails if E^ <inf(σ(/f0)) since then both
/0±(£00,.x),xeR have no zeroes at all.

b) If V is periodic, (i.e., for some a > 0, V(x + α) = V(x), for all x), then Floquet
theory implies

f0t±(E^x) = e^P±(x)9 α>0, P±(x + α) = P±(x) (3.5)

and generically #0 has infinitely many spectral gaps.
c) Although H^ might have degenerate eigenvalues as explained above, Hλ has

only simple eigenvalues since Theorem II.1.5 of [28] applies.
d) Instead of the projection χΣ in Hλ, we may take any 0 rg WeLco(R) of suitable

compact support. For simplicity assume that supp(W) consists of a finite union
of compact intervals with x _ := inf (supp(tΦO), x + := sup(supp(J/F)). Then simply
translate W as a whole to the left or right (keeping the background potential
V fixed) such that x_ or x+ coincide with one of the (infinitely many) zeroes
of /0>+ (or /o,-) Then again E^σd(H^) and the above construction works.

e) At first sight one might think that the above example extends to v ̂  2 dimensions
by choosing a spherically symmetric potential. However, the results of [14]
show that the spectral gaps of the radially symmetric, one-dimensional operators
on the half-line (0, oo) associated with a fixed angular momentum, disappear in
the full Schrodinger operator in L2(RV) (the direct sum over all angular
momenta).

f) The condition FeL°°(R) in Example 3.1 is too restrictive. It can be replaced by
KeL1

1

oc(R) and the additional assumption that the differential expression
— d2/dx2 + V is in the limit point case at ± oo.

We add a few remarks on Dirichlet operators in one dimension. Consider in
;),<Σ = [x_,x + ] J x _ <x+ the Dirichlet Hamiltonian

(3.6)

) = V}, (3.7)

in L2(Σ\ £° = (x_,x + ). (3.8)

Define
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/W*) = (ffαo,D-*Γ1, zeCWH^), (3.10)

where W(f9g) = fg' — f'g denotes the Wronskian o f / and g. Then, by Krein's
theory [9], the corresponding integral kernel of R^iD(z) satisfies

R t X ) t D ( z 9 x 9 x f ) = R0(z9x9x')- Σ ly^^Ro^x^Ro^Xj^l (3.Π)
7,/=±

where
Γ#0(z,x_,.x_) #0(z,x+,;x_)1

y(Z)~LR0(z,x-9x + ) R0(z9x+9x + )]'

In spectral gaps of HQ9W(fΌt-(E)9 f0ί + (E))^Q,EeR\σ(H0) and the eigenvalues
of #00,0 in R\σ(H0) are given by

— / + (£,x + )/ _(£,X-)} — 0. (3.13)

Clearly /0 ±(£,x+) = 0 yields the eigenvalues of H±, whereas {•••} =0 in (3.13)
is responsible for those of H_,+ in R\σ(H0). Krein's theory implies that H^ D can
have at most two eigenvalues (counting multiplicity) in each spectral gap of H0.
(Since H^^ ^ H0, there are no eigenvalues of H^ D below inf (σ(H0)).)

In the special case where x _ , x + ->x0, i.e. where the support of W shrinks to
the point x0 (cf. Sect. 7), one considers

H^-ΛJ^ + K

Let

then

Ώ (7 γ γ/\ _ I? /« v γ /\ 0 0 0 ^ X 0 ^K^^ZjX,^ j - K0(z, x,x j — . (3.16)
K0(z, X 0 ? XQ)

Thus the eigenvalues of H^ in R\σ(H0) are given by

^0(£5x0,x0)-0^>/0,_(£,x0)/0j + (£,x0)-0. (3.17)

Since W(f0^(E)9f0t + (E)) ^0 for £eR\σ(H0), (3.17) is equivalent to

either /0 >_(£,x0) = 0 or /0> + (£,x0) = 0 but not both. (3.18)

(In particular, if V is reflection symmetric about x0 then /0 <_(£,x0) = 0 =
/0>+ (£9x0)5£eR\σ(H0) would violate (3.18). Thus σp(# Jn[R\σ(Ή0)] - 0 in this
special case.) In general, Krein's theory shows that H^ has at most one, simple
eigenvalue in each spectral gap of H0 (except in (- oo, inf [σ(//0)]), since H^^H0).


