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Abstract. We study the dynamics of geometric spin system on the torus with
long-range interaction. As the number of particles goes to infinity, the process
converges to a deterministic, dynamical magnetization field that satisfies an
Euler equation (law of large numbers). Its stable steady states are related to the
limits of the equilibrium measures (Gibbs states) of the finite particle system. A
related equation holds for the magnetization densities, for which the property of
propagation of chaos also is established. We prove a dynamical central limit
theorem with an infinite-dimensional Ornstein—Uhlenbeck process as a limiting
fluctuation process. At the critical temperature of a ferromagnetic phase
transition, both a tighter quantity scaling and a time scaling is required to obtain
convergence to a one-dimensional critical fluctuation process with constant
magnetization fields, which has a non-Gaussian invariant distribution. Similar-
ly, at the phase transition to an antiferromagnetic state with frequency p,, the
fluctuation process with critical scaling converges to a two-dimensional critical
fluctuation process, which consists of fields with frequency p, and has a non-
Gaussian invariant distribution on these fields. Finally, we compute the critical
fluctuation process in the infinite particle limit at a triple point, where a
ferromagnetic and an antiferromagnetic phase transition coincide.

1. Introduction

In this paper, we study the nonequilibrium behaviour of a geometric spin model
with weak interaction in the infinite particle limit. For finite neN, the n-particle
model consists of particles located at the sites 0, 1/n,...,n — 1/n of the unit circle
T=RmodZ. A one-dimensional spin value o(i/n) is associated to each particle,
and the spins interact via a mean-field potential depending on the distance between
the particles.

* Work supported by Deutsche Forschungsgemeinschaft
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In the equilibrium theory, the thermodynamic limit of these geometric models
has been studied recently [7,2], and has shown a variety of interesting phase
transitions. Depending on the parameters, there exist phase transitions to ferro-
magnetic states with constant magnetization or transitions to antiferromagnetic
states with wave-like magnetization functions of any frequency p. Moreover,
secondary phase transitions of first-order occur too (see e.g. the phase diagram in
[6]). We find metastable states near these secondary phase transitions. The nuclea-
tion behaviour of the system can be described, as it switches from one (meta-)
stable state to another stable one ([ 1]).

Here, however, we are interested in the dynamical laws of these models. We
start with a Glauber-type dynamics ([11]) for the n-particle system, where the
spins flip from time to time to another value with a jump intensity depending on
the gradient of the Hamiltonian felt by the particle. Next we establish the asymptotic
dynamics of the magnetization field in the infinite particle limit (Euler equation).
We obtain a similar equation for the density field of the magnetization and show
that a propagation of chaos result holds. Our main results are the infinite particle
limits of the non-critical fluctuation process and at the critical fluctuations, which—-
besides an appropriate scaling of the spin values—require a rescaling of the time in
order to keep track with the stiffness and long time fluctuations of the critical
structure (critical slowing down). As a result, only the critical structure survives
the critical scaling, and in the limit, the critical fluctuation process is a low dimen-
sional process (of the dimension of the null space of the infinitesimal operator at
the critical point), in contrast to the infinite dimensional non-critical fluctuation
process. In fact, the critical fluctuations are of dimension 1 at the critical point of
a ferromagnetic phase transition, while they are of dimension 2 at an antiferro-
magnetic phase transition, and of dimension 3 at a ferro ~ — antiferromagnetic
triple point.

Asymptotic dynamics, propagation of chaos results and non-critical fluctuation
processes for weakly interacting systems have been extensively studied (see e.g.
[17,21-23, 25, 26], to mention just a few). Dawson [3] also obtained a critical
fluctuation process of dimension 1. All these models have a space-independent
weak interaction, and therefore lack a rich structure of phase transitions. In a
recent paper, Fritz obtained the Euler equation for a continuous spin model on
a lattice with nearest neighbour interaction [10].

We are now going to describe our model and the results of the different sections
in more detail. For simplicity, we restrict ourselves here to the case of onc space
dimension (d = 1), though all the results in the later sections are formulated for
arbitrary dimension d.

For the system consisting of n particles, located at the point of the lattice
T,={i/ni=0,...,n— 1}, a spin configuration 6" =n""' ) ¢(x)d, has the internal

xel,

energy

n

—1/2n Y JL(i—j)y/nla(i/n)a(j/n)

Lj=1
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Here, the intensity of the interaction between particles at sites i/n and j/n is
Z[(i—j)/n], with # a smooth real function on T; it depends on the distance
between sites: this is a mean-field model, but it possesses enough geometry for
showing rich behaviour. Here also, J, is the Dirac mass at x and = denotes
convolution. The single spin distribution, denoted by p, is a probability measure
on R with compact support. (Only in the last sections of the paper, when we deal
with the specific situation at the critical point of a phase transition, do we impose
further conditions on p). The dynamical process of the n-particle system is a
spin-flip process where the intensity of flipping the spin o(x) at xeT, to the new
spin value m, is equivalent for large n to

— Bmd/0o(x)H(c") = fm- ¢ *a"(x) (1.2)

with >0 as the inverse temperature, and #(x)= (}(x) + #(—x))/2. More
precisely, the infinitesimal generator L' of the process is

=Y [[f(elim) — f(o)Texp {fm 7 xa"(x) — B F(0)a(x)[a(x) + m]/2n} p(dm),
xel, (13)

where f is a continuous function on the spin configuration space and o|%m is the
flipped configuration which is equal to o except at x, where its value is m. It is
easy to check that the unique invariant distribution for the infinitesimal generator
I’ is the n-particle Gibbs measure Q" with the Hamiltonian H", given by

Q"(do") =exp { — fH"(c")} [ | p(da(x))/Z", (1.4)

xel,

with normalizing constant Z". Q" lives on the n-particle configuration space, which
is a closed subset of the set .# of bounded (with respect to the total variation
norm) Radon measures endowed with the weak-# topology. The cumulant generat-
ing function of the single spin distribution p is defined by

y(r) = log | exp (rm)p(dm). (1.5)

Now, we can state the asymptotic dynamics of the spin-flip processes o/, generated
by L', in the infinite particle limit.

Theorem 1'. The processes o} converge in law on the Skorokhod space 2([0, T7, )
to the magnetization process u,A, where 4 is the Lebesgue measure on T and the
density u,e L*(T) satisfies the deterministic evolution equation

d/fdtu,(x) = exp {y(B7 #u) } ['(BF *u) — u,]. (1.6)

As is to be expected, there is a close connection between (1.6) and the Gibbs states
Q" Indeed, it has been shown in [ 7] that the Q" satisfy a large deviation principle on
A with a rate function

V() = I(u) + BH(w), (1.7)

fildu/di(x)A(dx) if p<i,
I(w)

B 1.8
+ otherwise, (1.8)

with
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where
i{g) =supigr — )} (1.9)
relR
is the Cramer transform of p. The large deviation principle means heuristically that
for a small weak-* neighborhood U(u) of ue.#

“O"U(n)) behaves asymptotically like exp{ —n[V(x) —infV(v)]}.” (1.10)

But the Frechet derivative of u+ V(ul) in the ||| ,-norm is by (1.8) and (1.2)
VV (ui)(x) = i'(u(x)) = B *u(x) = (') (u(x)) — B¢ *u(x), (1.11)

but if '(0) =0, i.e. p has mean zero,

sign (Y'(B.7 *u(x)) — u(x)) = sign (— VV(ud)(x)), (1.12)

since ' is the inverse of 9" by (1.9), and since 7'(0) =0 implies signy'(r) = sign ().

This means that the right-hand side of the evolution equation has the same sign

as — VV(ud). In particular, its paths go downhill with respect to the potential V,

and the stable steady state solutions of (1.6) are exactly the local minima of V.
In Sect. 4, we study the asymptotic dynamics of the density process

7[;’ = n_l Z (S(GT(X),X)’ (1.13)

vel,
which is a probability measure on R x T. Again we give the space Z(R x T) of
all such probability measures the weak-* topology. Notice that since for each
xeT,, ni(dm, {x})=n" "5, is a one-point measure on R, n" and ¢" contain

mathematically the same information. This is however no longer true in the infinite
particle limit.

Theorem 2. n! converges in law to the magnetization density process
hy(m, x)p(dm)A(dx), where h, satisfies the deterministic density evolution equation:

d/dth,(m, x) = exp {mp 7 *u,(x)} — h(m, x)exp {y(B.7 *u(x))}. (1.14)

Equation (1.14) is a disintegrated version of (1.6). In fact, multiplying both sides of
(1.14) with m and integrating with respect to p(dm) gives exactly (1.6). In a similar
way, we define the higher order correlation densities for different sites of T. It is then
easy to show that in the infinite particle limit, these correlation densities satisfy a
propagation of chaos property. (See Theorems 3 and 3 bis of Sect. 4 for details).

Next, we look for a first order approximation to u,, we define the (non-critical)
fluctuation process

C’"=n”2(0;’—u,1). (115)

In order to establish a central limit theorem for these fluctuation processes, we

have not only to work in the space ¢’ of distributions on T, or at least in a Sobolev

space H,, with sufficiently low negative index {see Sect. S for technical details), but

we also need first a law of large number results for the second moment
magnetization fields

(1) =n"1Y% 07 (x)0 (1.16)

xel,
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From Theorem 2/, we see that (¢7)? converge in law on ([0, T], .#) to the second
moment magnetization process v,A, where v, satisfies the deterministic equation

d/dtv, = exp {y(B.F *u,) }[v"(BF *u) + (V' V(B.F *u) — v.], (1.17)
with u, from (1.6). Now, we can state the central limit theorem for the fluctuation
process:

Theorem 4'. If ¢ is sufficiently smooth and [ converges in a Sobolev sense
to some { €&, then the processes (} converge in law to a & -valued diffusion process
(i, given by
i, = —y"(BF *u) expy(BF xu)d*V(u)l,dt .
+ Lexpy(B.7 *u) (" (BF *u) + (VP (BF *u) — 2uy' (B *u,) + 0,1 2dW,.

(1.18)
Here, d?V is the second Frechet derivative of V from (1.7), i.e.
V) =i"w —pF*( (1.19)
and W, is the ¥'-valued Brownian motion with covariance
ECo, Wy, W) =(s )<, ¥ ) (1.20)

for @, ye€=(T).

To get a better understanding of (1.18), let us suppose that u, is a stable steady
state solution of (1.6) and that we are not in a critical situation of a phase transition.
This means that u, is a local minimum of ¥V and that the second derivative d*V
is a non-degenerate, positive definite operator. Then also v, converges to its stable
solution v, = y"(B.# *u,) + (v)*(B_# *u,) such that with u, = y(8_# *u,), (1.18) reduces
to

Al = —y" (B *u)expy(f 7 «u)d*V(u) dt + [2exp (B 7 *u )y"(BF *u,) ] 2dW,.
(1.21)

Thus, {, is a generalized Ornstein—Uhlenbeck process and its unique stationary
distribution is the Gaussian field with mean zero and covariance

E<, (< > =<, (d®V(w,) " ') (1.22)

On the other hand, it is a consequence of (1.10), that the conditional fluctuation
fields of Q" restricted to a neighborhood U(u,) of u,, Q"[d(¢" — u,/n''*)|U(u,)]
converges to the mean zero Gaussian field with covariance (1.22) (see also [9]).

In order to investigate the situation at a critical point of a phase transition,
we must specify our assumptions in order to make sure that a phase transition
indeed occurs.

First, we assume p to be an even probability measure on R with compact
support and that the GHS-inequality hold (cf. [8]), a consequence of which is that
for some K, =2,

0=70)=7(0), 7(0)>0, 0=y(0) = =y271(0), y2¥(0)<0. (123)

Again, ¢ should be sufficiently smooth and symmetric. For a ferromagnetic phase
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transition, we want its Fourier coefficients to satisfy
F0)— #(p)=3o>0 forall pezZ—{0}. (1.24)

From [7] or [2], we know that a phase transition indeed occurs at the critical
inverse temperature

Bo=(7"(0),7(0) . (1.25)

Here, the potential ¥ =V, has a unique minimum at u, =0, but d*V(u,) has a
one-dimensional kernel spanned by the constant function 1. Equation (1.24)
requires that the remainder of the spectrum is positive, bounded away from zero
by B0, We define the critical fluctuation process by

&= nl/ZKOJ:'nl—t/Ko, (1.26)

where the new time scale tn' ~ /%o compensates the effect of critical slowing down,
mentioned above. We decompose £} into its ferromagnetic component 8} = £/(0)A",
where A*=n"1 ) 0, is the discrete Haar measure on n~'Z/Z, and its comple-

xel,

ment 7,
Se=0{+n; (1.27)

Since d?V(0) is not degenerate in the direction of #7, the stronger scaling n'/2Xe,
instead of n'/? at the non-critical fluctuation, has the effect that the processes 7
collapse to the zero process, and the dynamics of 67, in which direction d*V(0) is
degenerate, has to be expanded to higher order terms of 07, For the following
result on critical fluctuations, we need in addition some more complicated
asumptions on the starting configurations &3, for which we refer to Sect. 6, mainly to
insure that #{ already collapses sufficiently fast.

Theorem 5'. The critical fluctuation process & =0} +y! converges in law to the
one~dimensional process £, = 0,(0)A with

df,(0) = y**IAO)L(2K o — DI"(0)* 0~ 17107507 1 (0)de + (2y(0))2dw,,  (1.28)

and with w, as the standard Brownian motion.
The stationary distribution of the process 8,(0) is given by the non-Gaussian
distribution

exp [y K(0)(2(2K)!(y"(0))*X0) " 102K ]d0/Z (1.29)

with normalizing constant Z,. Notice that the surviving process 0,0) in (1.28)
depends only on quantities coming from the cumulant generating function y of
the single spin distribution p. It is invariant from the specific interaction function
F#, except for the implicit assumption that we are indeed at the critical point of
the ferromagnetic second-order phase tramsition. This phenomenon is called
universality.

In first approximation, the time evolution of the system is space-homogeneous,
since the fluctuation process is concentrated on constant densities: this shows that
the ferromagnetic order comes through the fluctuations at the critical temperature.

This kind of result on critical fluctuation processes was first obtained by Dawson
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[5] for a non-geometric model with mean-field interaction, with a one-dimensional
kernel of the second derivative of the large deviation potential V' at the critical
point, this proof is based on a semi-group perturbation theory. Our proofs use
martingale decompositions and martingale inequalities, which allow us in Sect. 7
to treat also critical fluctuations at an antiferromagnetic phase transition, where
the kernel of d*V(0) has dimension 2. However, we have to strengthen the
assumption (1.23) by requiring

Y¥0)<0; ie. Ky=2, (1.30)
and instead of (1.24-25), we now have for #(p,)= #(— Po),

(o) — F(@)28,>0 forall qeZ\{+p,},
By = ("(0) £ (po)) . (1.31)

These conditions assure that we are at the critical point of a second-order phase
transition to an antiferromagnetic state with frequency p, (cf. [2]). This time, we
split the critical fluctuation process £ =n'/*g7,. into the two-dimensional p,-
antiferromagnetic components

o1 = [2Re (E(po)) cos (2mpox) + 21m (£](po)) sin 2mpox) 127dx),  (1.32)
and its complement y: & = @7 + Yo

Here, we again omit the assumptions on the initial configurations.

Theorem 6'. At the critical point of an antiferromagnetic phase transition of frequency
Do, the critical fluctuation process &} converges in law to the two-dimensional
antiferromagnetic process of frequency p,

@(dx) = 2[Re(dpo)) cos (2mppx) + Im (¢(po)) sin (2mpex) JA(dx),  (1.33)
where ¢,(py)eC is given by

d(po) = 7(0)2y"(0)*) ™ @ po) 1> @ (po)dt + (29" (0)) > dwy, (1.34)

with wy the complex Brownian motion.
Again, the stationary distribution of ¢,(p,)eC is non-Gaussian:

exp {y(0)(16(y"(0))") " '|Z|*}dZ/Z, (1.35)

with normalizing Z,. This time, the system at equilibrium behaves in first
approximation as a random sine-like wave, with fixed frequency p,, but whose phase
and magnitude are coupled random processes; here again, the system is brought to
an antiferromagnetic order by its fluctuations.

Finally, we calculate in Sect. 8 the limit of the critical fluctuation process at a
triple point, where a ferromagnetic and an antiferromagnetic phase transition fall
together. This means that for some p, # 0,

FO)= F(po)=F(—po)s FO)— F(@=,>0 forall geZ\{0, +p,} (1.36)

and

Bo=0"(0)7(0)". (1.37)
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Now in the infinite particle limit, the critical fluctuation process has the form
ti(dx) = [ 2,(0) + 2 Re (A(po)) cos (2mpo x) + 2 Im (4,(po)) sin (2mpox) 14(dx),  (1.38)
and (2,(0), 4,(po))eR x C is driven by the coupled stochastic differential equation
df,(0) =y (0)(3!("(0))*) 1 (27(0) + 61 A4, (po) 1) 4 (0)dt + [2y"(0) 12 dw,,
d(po) = Y(0)2(7"(0))*) " H(A7(0) + | A(po) ))(po)dr + [27"(0)]'2dw;

with w, and w{ independent real, respectively complex Brownian motions.
In the appendix, we add a useful proposition on collapsing processes, which
is of interest in its own right.

(1.39)

2. Notations and Main Example

Let T be the d-dimensional torus (R/Z). For any natural number neN we consider
the lattice torus T, =(n"1Z/Z)* with spacing n™!, consisting of the N = n? sites
x=(ky/n,...,kyn), where k;=0,...,n—1forj=1,...,d

To each lattice site xeT,, we associate a real-valued spin o(x), whose ensemble
defines the magnetization field

o"=N"1Y o(x)d. e, 2.1
xeT,

with ¢, the Dirac mass at x and .# = M(T) the set of Radon measures on T. We
endow ./ with the weak-* topology, which makes .# a metrisable space. Let 4"
be the set of all measure of the form (2.1), 4} = {o"€.4",|o(x)| < b for all xeT,},
and M, = {ue,||pn| b}, where |u| means the total variation of u. .#" and
M}, are closed subsets of .#, respectively .#,, and .#, is compact in the weak-*
topology.

We assume the single spin distribution p to be a probability measure on R
with compact support!, say contained in B = [ — b, + b]. (In Sect. 5, we shall impose
further restrictions on p.) Let

7(u) = log [ exp {mu} p(dm) (2.2)

be the logarithm of the moment generating function. y is a convex function
with p(0) = 0. Note that

[ mexp {mu} p(dm) = y'(u) exp y(u), 23)
§m?*exp {mu} p(dm) = [y" (u) + (v'(w))*] exp p(w). 24

Let A be the Lebesgue measure on T and
A=N"1Y 6, (2.5)

! ‘We could also consider distributions p with unbounded support, provided that y is finite on the whole
line and some boundedness assumptions on the flipping rates. Then, proving exponential estimates on the
tail distribution of the process, we are reduced to the case of bounded p. For gaussian spins, i.e. when pisa
Gauss distribution, the assumptions amount to high temperature (one phase situations), since critical
temperature corresponds to explosion of the system
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its discrete analogue on T,. Finally for ce#, meR, we define
alim() = o(\C,(x)) + m/Né.(), (2.6)

where C(x)=(x; —1/2n, x; +1/2n] x -+ x (x,—1/2n,x,;+ 1/2n] = T is the cube
in T with centre x and edge length 1/n.
Now we define the operators L' on €(.#) by

L'fo)= | [f(olim)— f(o)INA"(m, x, 0)p(dm)A"(dx), (2.7)

with
A"(m, x, 6) = exp {Go(x, o) + mG(x, o) + G%(m, x, 6) }, (2.8)
Gy, G BT x M), (2.9)

and
e 7::0’ (2.10)

in a sense to be made precise in the following sections.
We set
A(m, x, ) = exp {Go(x, 0) + mG,(x, 0)}. (2.11)

clearly, there exists a unique Markov process P" on the Skorokhod space
0 =2(R", #), the space of right-continuous, .#-valued functions with left-hand
limits, with I’ as its infinitesimal generator, i.e.

flo)— flog) — j L'f(o)ds=M}(f) is a P"martingale (2.12)
(@,
for all fe¥(.#). This martingale can be written in the integral form
Mi(f) = f [ [f(os-12m) = f(o,-)1A"dm, dx, ds), (2.13)
0.11Bx T

where for o2
A™(dm, dx, ds)(o) = A"(dm, dx, ds)(c) — N A"(m, x, 6, )p(dm)A"(dx)ds

with a pure point process A"(dm, dx, ds)(o). The corresponding increasing process
(see [14], 11.3.9) is

(M(f), M"(f j [ [f(o,lim)— f(e)1*NA"(m, x, 0, )p(dm)A'(dx)ds. (2.14)

O0BxT

Example. The general g-body long-range interaction between the spins of a
magnetic field has the internal energy

H(O- - Z I/J j\jl xl’ : "xj)o-(dxl) O-(dx - Z 1/] <jp >,
(2.15)
where ¢ ;€%(T7). Its Frechet derivative is

VH(o)(x) = — Z 1t Z (fp0® ' ®6,@0% " )eb(T). (2.16)
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Now, let G, be any continuous function on T x .#, with

sup | Golx, 0) — Golx, a[30)| = O(N 1), (2.17)
xeToely

and
G,(x,0)= — BVH(0)(x), (2.18)

where >0 is the inverse temperature. We set

G%(m, x, 6) = Gy(x,a[20) — Gy(x, o) + f{NH(c) — NH(c|%0)

— 6(x)VH(c|"0) + m(VH(c) — VH(c|"0)) }. (2.19)
By (2.15-17), it is easy to check that
sup {|G%(m, x, 0)|;meB, xeT,, ey} = O(N ). (2.20)

The detailed balanced condition (see [27]) shows that the unique invariant
probability distribution for the process P* with infinitesimal generator L', given
by (2.7-8), is the Gibbs state

Q'(ds") = exp { — BNH(0")} [ p(da(x))/Z" 2.21)

xeT,

with ¢” from (2.1) and Z" as normalizing constant. The thermodynamic limit of
(2.21) has been investigated in [7].

3. Asymptotic Dynamics of the Magnetization
Besides (2.9—10), we assume that

G, and G, are Lipschitz-continuous in g€.#, in the total

variation norm, and that 3.1
sup {|G%(m, x, 0)|;meB, xeT,, ae.d}} = o(1) (3.2)
Set
("X dx)=N"') o* (3.3)
yeT,
Theorem 1

(i) Let ofe M}, converge in law to ugyl, ie.
upeLy = {uel”, |ull, <b}.

Then the process (a7),.; converges in law to (u,4), ., where u, €Ly’ is the unique
solution of the mean-field evolution equation?,

d/dtu, = G(u,), (3.4
starting at uq, and

G(u)(x) = exp {Go(x, u) + (G (x, ) } [7(G1(x, ) — u(x)]. (3.5

2 In fact, this convergence holds (in probability) with an exponential rate; refer to [1] for the case of Ising
spins
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(i) Moreover, let (a})* converge in law to some vy,
V€L p2y = {0eL®; 0 <essinfa < esssup « < b*}.
Then, (o})* converges in law to v,A, where v,€L 2, is the unique solution of

dfdtv, = F(u,v,), (3.6)

starting at vy, with
F(u, v)(x) = exp {Go(x, u) + [ Gy (x, ) 1} {y"[G1(x,w)] + ([ G (x, w)])* — v(x) .
(3.7
Proof. The Lipschitz properties of G, and G, imply that (3.4) and (3.6) have unique
solutions. Since y'(y)e( — b, + b) and y"(y) + (7)*(y)e(0, b) for all beR the solutions
u, v, satisfy —b<u,<b, 0<v,<b? In order to show the tightness of (¢7),-,
notice that oje.#} implies ofe M} < M, for all t =0, P"* ae, and that .4, is
compact in its weak-* topology. It suffices therefore to show uniform continuity

in the following form:
For any ge%(T), , ¢ > 0, there exists n,eN and 6 > 0 such that

sup sup PY{|{g,0%,)> —{g,0% 0| >n} <e, (3.8)
nzng 0ty <1y 2(ty+)AT

where 7,1, are stopping times (cf. [16], 1.3.4). From (2.7-13), we get
(g,0%,> —=<g,at>=N"" [ [ g(x)(m—ol_(x)A"(dm, dx,ds)

(t1,02] Bx T
1T g0om— ot A", x, S")pldm)(dx)ds  (3.9)

with the last term being in absolute value less than 2b( g, |4+ 1] ,90 for n
sufficiently large, using (3.2). Therefore, by (2.14)

P'{l<g,0%,) = (g0t )| >0} <0 2EX({g, 0%, — {g,0%,))?)
<8lgl%llA+1]%-0°/n* + N8 [lg %14 + 1] ,-0/m  (3.10)
which is less than ¢ for all neN, if J is sufficiently small. Furthermore, the jump
sizes go to zero uniformly, so any limit law is concentrated on continuous paths.
The tightness of the processes (oﬁ)fg is shown similarly. As in (3.10), we get
by Doob’s inequality
L ~
P"{suplN‘ T g0o0m — ot (x) A"(dm, dx, ds)| > qN - “3} = O(N~17).
t<T OBxT
(3.11)
Hence, outside of a set of very small P"-probability, we have

{g:01) =<g,9%5) + j J gta)(m — ai(x)A"(m, x, a%)p(m)A*(dx)ds + o(1)

0BxT

= (goby+ y [ gx) exp {Golx, o) + %G (x, %))}

(2.3),(3.2)

[Y(G 1 (x, 05)A"(dx) — a5(dx) Jds + o(1).
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But the maps u— G,(., 0)e¥(T), i = 1, 2, are continuous on the (compact) set .#,;
then, from Ascoli’s theorem, their range is a uniformly equicontinuous family of
%(T), and the Riemann sum A" in the last term converges uniformly to the A-integral.
Combining this with (3.5), we derive that with large probability

<g,0?>=<g,0"6>+i<g, G(a%) ) ds + o(1), (3.12)

and so any limit process of (d7),.r must be concentrated on a solution of (3.4),
which is unique however. In the case of (¢")?, we obtain

(g, (7> =<9, (00)*> + (ft) [ g()m? — (0(x))*)A"(m, x, o§)p(dm)2"(dx)ds + o(1)

BxT
= g+ j [ 9(x)exp {Golx, o) + (G (x, a)))
L0"(G(x, 02) + (/)G (x, ))AX) — (2)2(dx)]ds + o(1)
= (. (o> + j (g, F(o%, (6))>ds + (1) (3.13)

This completes the proof of the theorem.

Remark. Point ii) of Theorem 1 follows from Theorem 2, which requires stronger
assumptions.

4. Asymptotic Dynamics of the Densities and Propagation of Chaos
To a magnetization field ¢"e.#}, we associate the empirical magnetization density

T =N"1Y im0 €2(B x T), @4.1)

xeT,

where (B x T) denotes the set of all probability measures on B x T. (B x T) is
compact in the weak-* topology.

We first show that the density process 7" converges to a deterministic density,
governed by the asymptotic magnetization process:

Theorem 2. Assume (3.1-2) and that n}, converge in law to hy(m, x)p(dm)A(dx)e
PB xT), hyeL*(B x T). Then the empirical density process n} converges in law
to h,(m, x)p(dm)A(dx), where the density h,e L*(B x T) is the solution

d/dth,(m, x) = exp {Go(x, u,) + mG(x,u,) } — h,(m, x)exp {Go(x, u,) + (G (x, u,))},
(4.2)

starting at hy; and where u(x) = [ mh(m, x)p(dm) is the solution 0f(3.4) with uy(x) =
lfgmho(m, x)p(dm). ’
Since by (2.9-10)
sup {exp [mG,(x, 0) — W(G(x, 0))];meB, xeT,0el,} = C < o0, 4.3)
0= h(m,x) < C, if this property holds for h,. Therefore h,e L*(B x T) for all t.
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Moreover
[ h(m, x)p(dm) = 1. (4.4)

Proof . Since (4.2)1s linear in h, it has a unique solution in L*(B x T) satisfying (4.4).
Let ge®(B x T). Then

(g:mi ) =<g:m5) + i I Lglm, x) — g(o(x), x)14"(m. x, o9)p(dm)2"(dx)ds

0BxT

! ~
+[ [ N7Lglm, x) — glo?-(x), )1 A"(dm, dx, ds) (4.5)
OBxT
The uniform continuity can now be shown in the same way as is (3.8—10). By the
compactness of Z(B x T), the sequence of processes n; is therefore tight.
Doob’s inequality implies again

; ) N‘][g(m,x)—g(a:_(x),x)]ft"(dm,dx,dsn>nN-1/3}:(9(N—1/3),

P { sup
0BxT
(4.6)

(ST

which gives outside a set of uniformly small probability

(gt =4y, nz>+i[ [ exp{Golx, 0%) + mGi(x, o) }glm, x)pldm)3"(dx)

BxT

= | exp{Golx, 0%) + %G 1(x, 62)) bg(m. x)m(dm, dx}}ds +o(1)

BxT

= <ga 7'[6> + i[ j exp {GO(X> us) + mGl(xa us)}g(ms x)p(dm)i(dx)

Bx1

- j CXp {GO(x9 us) + y(Gl(X7 us))}g(m> X)ng(dm, dX):|dS + O(l)

BxT

+ (9<SUP sup (| Go (X, us) = Go(x, 09)| + G (x, ug) — Gy (x, 0?)[))- 4.7
s<T xel

Since by Theorem 1, the last term converges to zero, uniformly in probability, we

find that any limit =, of the processes n satisfies the following equation, which is

deterministic except for my:

<g, nt> = <g7 7T0> + il: j CXp {GO(X, us) + mGl(x> us) }g(m7 x)p(dm)/l(dx)

BxT

— | exp{Go(x, uy) + (G,(x, uy) yg(m, x)m (dm, dx)}ds. 4.8)

BxT
But the solution of (4.8) is unique, and if n, = hydpdZ, then also w, has a density
h(m, x) with respect to dpdZ, and h, is the solution of (4.2). This completes the
proof. [

Notice that if h,e@(B x T), then h,e€(B x T) for all t > 0. Since the right-hand
side of (4.2) depends only on the single site x, it is obvious that results of the type
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of “propagation of chaos” should hold. In fact, we shall derive two versions of
propagations of chaos. The first one will be at the level of empirical measures. In
analogy to the weak-* topology on 2(B x T), used in Theorem 2, we shall obtain
only a weak version at this level.

The second result is the usual “propagation of chaos” for the random spin
variables a/(x). It says that, if the spins at distinct sites are independently distributed
at t =0, then in the limit n— oo, they continue to behave independently at any
time t > 0 according to a distribution which satisfies (4.2), i.e. they constitute a
sample of the empirical density. Of course, this is not true for finite n, where the
spins are dependent. We shall see that this is a consequence of the first version,
yielding here an original proof of the standard result.

Let x,,...,Xxg be distinct sites in T.

Let ¢, be a sequence of positive numbers with

e,\0 and N 1g 2

n

-0 as n-oo. 4.9)

We define
K ~ K
a=-faw=ffoa 5 o] (10)
i=1 i= yi€Ce, ()N T,
as a positive measure on BX, where C, (x;) are the cubes with center x; and edge
length &,.
Theorem 3. Assume (3.1-2), that o§y converges in law to uy/, and that T} converges

K
in law to Hho(mi,xi)p(dm,-). Then, for t>0, 7« converges in law to
]—[ h,(m;, x;)p(dm;) with h, satisfying (4.2).

Proof First, notice that it is enough to prove the theorem for K =1, since
Hn ), and since (., x;) dp is deterministic. Now, for ge%(B),

t

(g, T (x)) = {g, To(x )>+(§) I e

BxT

= glas)) A (m, y, a)p(dm)A'(dy)ds + M7, (4.11)

where
t

ME=[ T T 0N (g0m = gl () A" dy. s
(4.12)
implies E"((M?)*) = O(N ¢, ) ——»0 by (4.9).
By the same argument as in the proof of the last theorem, we see that 7}(x)
converges in law to a positive measure 7, on B, which satisfies

(g, (%)) = {g, (X)) + i(gg(m) exp(Go + mG)(x, ug)p(dm)

(g, A x)) exp {Go + 7(G ) }(x, us)>d5- (4.13)
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Equation (4.13) is linear in 7, and therefore, has a unique solution, which 1is
7,(x) = h(., x)dp by (4.2) and the initial condition 7y(x) = hy(., x)dp. [

As a consequence of the last result, we get the propagation of chaos for the
random variables ¢}(x): corresponding to the distinct x,,...,x,eT, let x! be
sequences with

x?eT, and limx!=x; for i=1,...,K. 4.14)
Theorem 3 bis. Besides (3.1-2), (4.14), Assume that ¢ conve;ges in law to ugi and

that the distribution of (af(x}),...,ah(x})) converges to H ho )dp as n— oo.

Then, for t>0, the distribution of (o}(x}),...,00(x})) converges to 1_[ h(., x;)dp
with h,(.,x;) from (4.2).

Proof. Without loss of generality, we may add the assumption that []7z§(x;)
X i
converges in law to [ ] ho(., x;)dp: indeed, this assumption may be achieved via
i=1
the change in the initial distribution of particles in proportion (%), then being
without any influence on the asymptotic distribution of (a}(x}),..., a/(x%)).
First, we regard the case K = 1. Let ge%(B).
Using (4.11) and a similar expression for g(o}(x7)), it is casy to get the following
inequality:
|E"g(at(x1)) — E"<{g, T (x1) )| S |E"g(a(x)) — E"{g, To(x1) )|

+£(2l|gllx sup [ A", x,.) = A"y )

yeCy,(x1)
+ 114" o | E"g(a(x)) — E" (g, T(x,) ) )ds. (4.15)

Hence, Gronwall’s lemma together with the assumptions on the initial distributions
and Theorem 3 implies

lim E"g(a}(x})) = lim E" g, 7(x1) > = [ g(m)h,(m, x, )p(dm). (4.16)

For the general case, we take g4, ..., gx€%(B) and n so large that C, (x,),...,C,, (xg)
are all disjoint. Similar to (4.15), we get

K
E" H g(oi(x})) — E 11 {9 ﬁ?(xj»l

=

K K
E* 11 g/o80) = £ 1] <9, ﬁz(xj»l

K 1
+Z g[zn“qz”ao sup HA" 9 7>)~An(9y’)“oo

Jj=1 i=1 yeCp, (X))

+ gl 14" E"Hg E"H<gn 7(x;) >I

+ 14" o | E"[ Tgiou(x)) E”]—[<gn {ED) >|st (4.17)
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By an induction hypothesis, the second integrand goes to zero uniformly in s, and
we conclude by the same argument with Gronwall’s lemma as above, that

K K K
lim E* ]:[1 gj(o7(x})) = lim E” Ul (g Tj(x;)) = _l:l1 §gimyh,(m;, x;)p(dm;),

n

(4.18)
which proves the theorem.
5. Non-Critical Fluctuations
For reR, we introduce the Sobolev space
H, = {pe@™(T); |ull, < + o}, (5.1)
with
lull? =Y (1 +1pPY1ap), (5.2)
peZd
where [i(p) are the Fourier coefficients of the distribution ue@*(T)
fip) = {exp (2mip.), uy, peZ’. (5.3)

Here, the brackets {.,.» denote the duality pairing. H, is a Hilbert space with
scalar product

vy, =3, (1+[plP) ip)i(p)eR, (5.4)

cZ
and H,, H _, are then dual spaces.p Obviously, for r, =27, 20,
E(M=H,= OH,,c_:H,ngn SH,=I’cH_,<H_,<H_ _,=%"T),
" (5.5)
and the embedding H, < H, for any r = s is Hilbert—Schmidt, whenever r — s > d/2,
due to the fact that

C_,=Y (1+|p/»"<oo ifandonlyif r>d/2. (5.6)

peZ

—r

In particular, [|6,[|2, =Y (1+|p|*)™"=C_,, so that

p

pS{ueH , |u| -, =CU2b} for r>dj2 (5.7)
and
[A—2")2,= Zd(l+|p|2)"!N_1 Y. exp (2zipx) — do{p}|*
peZ xeT,
= ) (L+lp)yr=C n%, (5.8)
penz)’
p¥O0

for some constant C'_,.

We first recall some probabilistic facts on H_,-valued processes. Let
2_,=9([0,0),H_,). For r>d/2, the H_,-valued Brownian motion W, with
covariance

E(<gls VVrl>'<gza Wt2>)=(t1 /\tZ)'<g1’g2>> (59)
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d1,9,€H,, is well-defined on €2 _, (cf. [12] ch. 3, th. 3.1). We shall use the following
tightness criterion on Q_,,r>d/2: a sequence of processes (I with laws P" on
2([0, T], H_,) is tight if
(i) there exists #,d/2 <1 <r, such that

for each ¢ > 0 we find K > 0 with

SUPP"{SUP I¢s Ilz-rf;K}ée, (5.10)
n s<T
and
(i) for all geH,, ¢ >0, n >0 there exists 0 > 0 such that
sup sup P"{<g,¢%,> —<g. &0 >nf e (5.11)

0SS S( +)AT

These conditions are an immediate consequence of Mitoma’s result (see [20]
Theorem 4.1 and Remark 1. Notice that (5.11) implies the uniform r-continuity of
P and that {¢éeH _,; [ £]|%, < K} has compact closure in H_,3).

We need to strengthen the assumptions made in (2.9-10):
(i) There exists r, > d/2 and a map dG from L;° n H, into the space of continuous
linear operators on H _, such that

[<g, G — g, Gud)) — (g, dGw)(u—ul)>| = llgll, .ol p —u il -,,) (512)
uniformly in geH,,, ueLy’ nH,, peH _, , and

sup  sup [[dGull -/l pll -, < + 0. (5.13)

uely’ NH,  peH

Here, G(p) is the formal (and clear) extension of G given in (3.5) as a function from
H_, toH_,..
(i) G, and G, are bounded continuous functions from

Myn{peH_,; |pull-,,£bC_,} into H,,

ro =

and G satisfies

sup [ Gh(m,., p)ll,, = o(N"12). (5.14)

meB,ue

Finally, we recall some facts on Sobolev spaces. Notice that by the interpolation
theorem and Sobolev’s Theorem for ry > d/2,

lg-hlle = Crolg o thll + gl 11 o) = CLllgl, TAllL,  (5.15)
so that H, is an algebra (cf. [24] IL, 2.1). In (5.15), we used that
lgle =190 = C2 gl (5.16)
p

which also shows that H, < 4(T), if r, > d/2.

ro =

Moreover, for any ¥ *-function ¢ on R, ¢(g)eH,, for geH, and
le@)l,, = v(lgll,) (5.17)

* Indeed, any bounded set in H_,, is conditionally compact in H_,; see [29], Lemma 10, p. 169
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for some continuous function* . In particular,

l9@1) = @@92) o = Crllgr — 9215, (5.18)

for all g,,g, with | g, Il,,, g2 1,, = M. As a consequence of (5.14-18), we obtain
that the solutions u, and v, of (3.3) and (3.5) satisfy

wely nH,, veLgynH,, (5.19)

for all teR™ as soon as u, and v, do, and are uniformly bounded in H,,.
Now, we are ready to study the asymptotics of the non-critical fluctuation
processes

{(*=NY*o?—u)eH_,,. (5.20)

Theorem 4. We assume (5.12-14), ogedy, uoely nH, ,voeLl 20 H,, and
that {1 = NY2(o? — u,) converge in law to {,eH _, with

—ro

sup E"I(502,, < (5.21)

Let r>ry. Then on 2([0, T], H_,), the fluctuation processes (} (5.20) converge in
law to the process {, satisfying
d¢, = dG(u,)¢ dt + (B(u, v,))'/*-dW, (5.22)
with the H _,-valued Brownian motion W, from (5.9) and
B(u, v)(x) = exp {Go(x, u) + p(Gy(x, u))}
LG (xw) + )Z(Gl(x, u)) = 2u(x) y(G4(x,u)) + v(x)]. (5.23)
Proof. We first notice that (5.22) implies
d{g,{,> = (dG(u))*g,{,>dt + (g Blu,, v,)"/*, dW,>. (5.24)
Therefore, if TF, is the semigroup on H,, with generator dG(u,)*, the adjoint of

dG(u,), we have for 0<s<t<T:

P({g,{yedyl() = (RT?‘,g,B(uvv) THg>dr,y— <Ts,g,Cs>>dy, (5.25)

where p(t, y) = 2nt)” Y2 exp(— y?/2t) is the heat kernel.

This shows that the process {; is uniquely determined by the following martin-
gale problem: for fe@2(R") and g,eH,, for i=1,...,k, keN, we have with ()=
f(g1,0),...,<g £)) that

) — j L(ug, v,) f(¢,)ds is a P-martingale, (5.26)

where
- k k
L )] Q) = 3. 57 (0)<9, A6 + 123 EFT (<9 Bl v)g>  (527)

(cf. [15] Theorem 1.4).

4 Estimates (5.17, 18) may be obtained using Littlewood—Paley decomposition of g (refer to [28])
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a) We first prove tightness. From (2.12-13) and (3.4), we obtain the martingale
decomposition

(L) = <g. o)+ [NV ] gt)
| Jaon s oty oxptaminas) - G [as
B

ENTVE ] g m — o7 (x)) A (dm, dx, d). (528)
OBxT
Set

=inf {5; | (1|2, = M2} (5.29)

—ro =

Then, for t, <t, <1}, [to’s formula yields

NN = 18002,

+ 21\[1/23g < 27 i[An(m" s J:')(m/ln() — O':l())p(dm) - G(us)> ds

~ro

+ Ijg [ Ilm—a2(x))d, | 2 A(m, x, a%)p(dm) " (dx)ds

LBxT
t2 —~
+§ G+ N2 —ab (x))0, 12, — 1L I12,,)A%(dm, dx, ds).
LiBxT
(5.30)
The second term of the right-hand side of (5.30) gives

|second term| = ‘2N”2 [ <00 Gom) — Gl - ds
ty
+2N12 f< © [[A"m, ., 0%)(mdA" — do)
ty B

— A(m, ., o")(md). — dag)]dp> ds

~ro

= 2TI<CS,dG(us)CZ>~,Ol+o(1|cg||2_,0+1)ds

(5.12~14—18) 11

+ N2 =2 7r(,2tj2 SN ol 15; A'(m,..a9ympldm) |, ds

< anfaeE, + s (5.31)
9) Ty

(5.8-13-15-1

Also the integrand of the third term of (5.30) is bounded, by C,/2 say. Therefore
t/\rx,,

18 120 £ C g (1CE12,, + Dds

is a submartingale, respectively a supermartingale. Taking expectations of this
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supermartingale and using Gromwall’s lemma together with (5.21), we get

E"(JI LY |!3,0)=Aiim E'(JIC, a0 12,,) = Coet (5.32)

gl/\‘r

for all t = T and n = n,, where n, depends only on the values in (5.7) and (5.11-18).
By Doob’s submartingale inequality, we get

P"{Sup 12,2 }é P”{SUP<HC2’ 12, + Cxi(lléé' 125+ 1)d8> 2K}

t<T (ST

<K [E”(HC” 12,0+ f( (s, + 1 S]

<K '[2C,eT+C,Tl<e (5.33)

for K large enough. This shows (5.10).
Next, let 1, <1, <(1, +J) A T be stopping times and geH, < H,,.
Applying similar inequalities as in (5.28), to (5.31), we find

(g0 =0y = § [<g,dGa )ty + gl 2,y + 1)+ o) ]ds
N2 gx)m — o7 () Ar(dm, dx, ds). (5.34)

E'({g. 0t =D s 6En[(72 ~11)T(C3|lgllfo 32,

T1

g IZe(I 2, + )+0(1))dsj|

+m[’fgz<x>(m~a:<x>)2A"<m, X, o3)p(dm)2"(dx)ds J

S Cullgl2 (e T + 157 + Cs gl f=b?3, (5.35)
which implies for ¢ sufficiently small

P'(<g, 08, =G IDm < 2E(Cg. (L = D) e (5.36)

This shows the tightness of the fluctuation processes (7.
b) In order to characterize the limit process of {} by the martingale problem
(5.25), we apply Ito’s formula to

TEH=F({g1, 80 (g CD), [e3(RY), gieH, < H,, for i=1,..k

We write M? for M"(f(...,NY2{g,0—u),...)) from (2.13) and use estimates
similar to (5.31).

T =F +ii{8fé)jg (N2

i=1

[ "(m, x, a5)(m — o (x))p(dm)A"(dx) — G(us)/l(dX)J
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+ [ [fC.<ga 88 + N7 12gi(x)(m — o3(x)),.)
— T = BTN g (x)m — 02(x))]
*NA"(m, x, a?)p(dm)/l"(dx)}ds + M}

~

=T+ Y, ST o 0y s

+1/2§Zf0] ) | g:i(x)g;(x)(m— a}(x))?
Bx1

- AMm, x, a¥)p(dm)ANdx)ds + M7

+i[o( 1E o 1)+ oNP2 27— 2] ) ds

from Taylor formula. Developing the term containing [m — ¢"(x)]% and expressing
fm"e"“p(dm), i=1,2,in terms of y, we obtain
B

f(m=f(c:s>+i L(us,vo.?(cz)dwM;’+i[a( U2 e+ 1)

1
+O(NTTT) 4 (9< Y. 1Gio) = Giu)
=0

Mx

1<g:9;exp {Golus) + PG (uy)}, vh — (09)*)

1

]

i,j

+ o uilt_m>:| (5.37)

The last integral vanishes in the limit n— co, and so any limit process {, of {}
satisfies the martingale problem (5.26), which has the unique solution (5.22). This
completes the proof of Theorem 4.

We review the example of Sect. 2 in the light of the last theorem. Let

Go(x,0) = folg1*0(X),..., gx*a(x)). (5.38)

with f,e@"1* Y(R¥), g;eH,,. We also assume that in (2.16) #,eH, (T/),j=1,....,q
Then both G, and G, are continuous bounded functions from .#,n{ucH _,,,
fu-,, £bC_, } into H, . Then G, given in (2.19), satisfies

sup | Ghm,., @I, = O(N ). (5.39)

mEB,yeu//Z

Thus Theorem 4 applies to our example.

6. Critical Fluctuations at the Ferromagnetic Phase Transition

Here, we consider the special case of a translation invariant, two-body interaction
without external field. In the context of our example of Sect. 2, this means
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q:25 f1=0, /z(an’)://(X—Y)a

(6.1)
VH(o)(x) = — ¢ *0a(x) = | #(x — y)o(dy)

with the symmetrization #(x) = (#'(x) + #'( — x))/2. We know that if p is symmetric
and satisfies the GHS-inequality (see below), if (5.1) holds, and

FO)— F(p)=56,>0 forall pez\{0}, (6.2)

then the Gibbs states to the Hamiltonian (2.15) have a second order phase transition
at the critical inverse temperature

Bo=0"(0)7(0) " (6.3)

This is the first phase transition as the temperature decreases from the high-
temperature region. The new phase, which appears immediately below the critical
temperature fi; !, is ferromagnetic, ie. it has constant non-zero magnetization.
In order to study critical fluctuations of the dynamical model, we make the following
assumptions:

(Al) Let p be a symmetric measure on R with support contained in [ — b, b], b >0,
and let p satisfy the GHS-condition:

3(x)<0 for xe[0, ). (6.4)

Since y is convex and symmetric with y”(0) > 0, (6.4) implies that there exists K, = 2,
such that

70 =7(0)=0, y"(0)>0, yPO)=--- =y2*"D0)=0, y**0)<0. (6.5)
(A2) Assume
Go=0, Gy(x,0)=—BVH(0)(x) = fo.f *0(x) (6.6)

with f, from (6.3) and ¢ satisfying (6.2).
Moreover, we require

FeH,, forsome r,>d(l1—1/Ky)=d/2, (6.7)
which yields by (5.16)
[ 75000 =Cpll 750l = Cooll I o lloll - (6.8)

such that G, is a continuous bounded function from
ﬂbm{luEH—roa ”/’L”~r0§bc—ro} into Hro'
We also require

sup || Ghm, ., )], = o(N 1 712K, (6.9)

msB,pEle

which is satisfied if we define G% by (2.19) (see 5.39)).
The critical fluctuation process is defined by

g = NV2Kogh oy H _, (.M, (6.10)
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We split &7 into its ferromagnetic and non-ferromagnetic components:

0y =0, np=¢r— &), (6.11)
07 and #} are orthogonal in (H _,, {*)-,,). Notice that ¢"e.#" implies
é"p)=6"(p+nqg) forall p,qeZf, (6.12)
and
N
F " (p) = FA(p)6"(p). pel? (6.13)

Theorem 5. Besides assumptions (A1) and (A2), we suppose for the starting configur-
ations £} that

(1) apeMy, 0% converges in law to some 0,y4; (6.14)
(i) EMns >, £ Cyo, ™ for all large n, (6.15)
where A" > A" > K, — 1 and &, an increasing (to infinity) sequence with
N~ 2K+ A= UKy =10 gnd o, N~ 1Ko (6.16)
(iii) E(Il(05()* =" (0) A" %) < C,y (6.17)
where A > 1 and &, a sequence with
NU-VKIF g o1 0, o, N1~ 1Ko, (6.18)

Let r>r,.
Then the critical ﬂuctuatiorl process & converges in law on 2([0,T], H_,) to
the ferromagnetic process &, = 0(0)4, where 0(0)eR is given by

d6,(0) = y*59(0)/[(2K, — 1)!y(0)**0 11025~ (0)dt + (29" (0))2dw,,  (6.19)
starting at 6,, and where w, is the standard Brownian motion.

Proof. (a) Tightness: we first establish the key estimate (6.25). We start with the
semimartingale decomposition of {g, &} with geH, :

{9, &> =<g,0">+<g,m>=<g, &> + QN“”“‘" [ g(x)A"(m, x, 671 -11x0)

BxT

tNl—l/Ko

“(m — a1 -1xe(x) ) p(dm)A"(dx)ds + N~ 12K [ g(x)
0 BxT

~

“(m — a_(x))A"(dm, dx, ds). (6.20)
By Ito’s formula, we get for s <t <}, =inf{t, [ /]| _,, = M}

dlngl2,,=2<ng, N1~ 12Koexpy {Bo 7 aiyi- e )} (7' (Bo F %0y - ukl-)) A"
— Oyt e) ) peds [ m — gy - umo(x)) (0, — A7) )12

BxT o
- A™Mm, x, 0%y -1xe)p(dm)A™(dx)ds + o(1)[ 1 + || #t ]l -, 1ds + dAMS,
(6.21)
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where
tN1-l/Ko
M= [ [ [liniy-a-uxo+ N7OT2K 0 — 67 (x))(6, — A" |12,
0 BxT
— lInty-a-mal|,,JA"(dm, dx, ds). (6.22)

We estimate the first integral of the right-hand side of (6.21), using (6.8), (5.15-17),
and

Y(2) =7"(0)z + 0z ),
first term of (6.21)
=2[N1'”K°(<'1§',? "O)BoF *niA" =0y + OUMS I, [ ES 112, N 1K)
O -po 1 ESNES™ ) + oM Ins - I €2 -, 15,
where the scalar product {.,.)_, is equal to

Y (14 [pl2) | #%(p) 2Ly (0o 7 Mp) — 11,

since #Ai(p)=0 foimz)ll pe(nZ)®. From /)J’ =y F(p+ng) and (6.2), we
obtain the rough estimate -
FAp) < F(0)— 58, forall penz’ and n=n,,
which implies by (6.3)
V(0o S 2" (p) — 1= —2/37(0)Bodo, p&ENZ?, nZ=ny.
Therefore, assuming O(N ~ /%M ?) < 1/87"(0)f,0, for n large, first integrand of (6.21)
< — N1 VR3/4y"(0)Bodo M5 112, + CoM) (115 1] —, (6.24)

for n = ny(M). The second integrand of (6.21) is bounded by some constant C,.
With C3(M) = C(M)-M + C,, 6 =3/4y"(0)f,6, >0 and M}, = M} — M?, we have
for t; <t, <1}y, n = ng(M), ,

e 12, < i 120 — I(N1 VRS nS)2,, — Co(M))ds + MY, ., (6.25)

The drift term in the last member is strongly attractive to zero. To (6.25), we apply
the proposition on collapsing processes, given in the appendix, with m = N1~ /Ko,
Equations (6.16) and (6.15)\imply (A.2) and (A.3), and since here Y = B x T and

Jilm, x)=2N"0 712l (m — oy 1mo(x)) (05 — 27))
+ NTCTYED (g -k ()3, — A7) |12 (6.26)
gr(dm, dx) = N2~ VKo A(m, x, 6" - 1yxa) p(dm) A"(dx), (6.27)
it is easy to check that
Sup| f7(m, x)| < 4bN "~ 1ZKICUZ f[yn| 4 h2C_, N2
S Cy(M)N~ (712K, (6.28)
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[ 1ftm x)2gdm, dx) < Cs(lini|2,, + N~ HE), (6.29)

BxT
which are both sharper than required by (A.5) and (A.8). Therefore
P”{ sup 72, > Cé(M)N“'”KO)”OtJl}§8 (6.30)
th/\I';w

for all large n. Since Co(M) < N~ VK004V for Jarge n, we find that the sets

An={ sup [yt |2,, < NU- 1Ko anlgl} (6.31)

(ST ATy

have P"-probabilities greater than 1 — ¢ for n = ny(M, ¢).

Similarly to (6.21-23), we investigate the ferromagnetic component 07 in ¢; <
t, £ T A thy, using (5.20), (6.8) and the expression y/(Z) = y"(0)Z + y*¥(0)z**o~ 1/
(2K, — D! + O(Z*%°). We have

10312, ~||9I‘,llz-m+ZIIZ[(Q(Nl_”""ll(%’ll-mllV"(O)l?of*@?i”—9§'|l-m)

+ <0n (ZKO)(O)/ 2K, — 1)'(ﬁof*é" 2K0_1)j’>—r0
o) 0211 —y €71 o + N VK0LO, fexpp(Bo F #0i-1o(r) — 1}
OO0 S #1ITY oy + ONTHE O3 E21 20

+O(N TR0 -, | E211 2500 ds + f I 1om— oty -umo(x)2" | -y

o
LBxT

“Am, x, 0”1 - uxo)p(dm)A(dx)ds + M7, ., (6.32)

where

tlefl/Ko

ML= [ [ 0% ke + NTOT 12K gt (x))an )2,

¢ N Ko gy

— 10"~ uka || 2, ) A(dm, dx, ds). (6.33)
By (6.3) and (5.10), we have the estimates
N 1K | 3(0) 7 < OAOM" — 020)" |,
= N1 71K (0)B o £ AH0)Bo £ A0) — F(O)] | 040)2" | —,
SNPTHE OBl F N A" = Al = 1051 -y = (9(N*'0+1 VR O3l ),
(6.34)

N*7HECOL, (exp p(Bo f # 0y~ ko)) = (1" (0)Bo f #1i2" — 12> -
=ON'72EN 07—y [ €801 - o lImE 112 ), (6.35)
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and, using &7 = 607 + 5",
05, YN0V (2K o — DI(Bo F +L3) 0710y,

/\

— 7)(21(0)(0)/(2I<0 . l)lﬁéxo 1f/1" 2Ko 19:(0)21(0 ” /1"’
(6.8)

12,

OO N5 2 In 2 g + 1051 - I3 12570, (6.36)

since ¢ *n/;'/l\"(O) :ﬁ(O)ﬁg‘(O) =0 and (6.12) implies {0}, #*nii")_, =0. The
second integral in (6.32) is again bounded by (¢, — t,)C, with C, independent of
M. Hence

” 9 ” 2. < ” 0 —ro +2 f y(ZKo) 0)/(2K0 _ 1)1/321(0 1//1"(0)21(0 - 1@2(0)21(0 “ yu “ z_rods

+§[(9 (NTrosim o (N2 4 D) IRl 2, + I 125070

+ N~ UKo g NT12K0) 4 o(1)M2]ds + C,(t, — 1) + M. ., (6.37)

where the constants in the term ¢, depend on M. The first condition of (6.16)
shows that we can find n,(e, M) = ny(e, M) such that on the sets A4, from (6.31),
the second integrand in (6.37) is less than 1 for all n=n,(e, M), and the first
integrand is non-positive, thanks to y?X9(0)<0. Equation (6.14) implies
Pr{]16%]%,, = Cg} <¢ for Cg large enough and for all n, by which, together with
(6.37), we obtain for n = n (e, M),

{16512, = Cs}n 4, ﬂ{ sup [107]2,,= (C7+1)+C8+C9}

t<TArM
E{ sup Mtgcg} (6.38)
t§T/\1;l
But
P"{ sup M">cg}<c9 2E(M7 %) S C52Chp <, (6.39)
t<T/\rM

where C,, is independent of n and M and Cq = (C,,/¢)'/?. By (6.31) and (6.38-39),
we finally get for M > 1+ T(C,; + 1)+ Cg + Cy

{T"méT}={ sup [[&/12,, 2z M }S{ sup llmll~,o>1}uf2\A u {10512,

t<T Aty t<TAty

z Cg}u{ll05)12,, = Csjn 4, ﬂ{ sup lIB"II—rO_Cs+T(C7+1)}

t<ST Aty
(6.40)

which show P"{t}, < T} < 4e.

Hence, the condition (5.10) is satisfied. In order to establish (5.11) for &, it is
enough to show it for 87, since (6.30) and (6.40) show that the sequence of processes
n? converges in law to #, =0.
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Thus, we have, for 0< 7, <1, (1, + ) A T,

(g, 0, — 0> = GI(0) | N' =K — g7 umalx)]

Tt

A", x, 0" - uka)p(dm)A(dx)ds + M, (6.41)
with
R N rZNl —1/Ko -
M7 ., =gi"0) [ NTUTRROIm — gt (x)]A"(dm, dx,ds). (6.42)
rlNl —1/Ko

After the same expansion of the first integral as in (6.32-37), we have for large n
Um0 0% — 02,07 S Co(M)(r, — 1) + 2AMY, )7, (6.43)
such that by (6.40)
Pr{|<g, 0%, — 07 )1 >np <de + P{|1 .1 <g, 0%, — 07, )1 > n}
<de+ Co(M)S?*/n* + C10/n* <S¢ (6.44)
for n = n,(e, M) and ¢ sufficiently small. This completes the proof of the tightness of
the critical fluctuation process &".

b) Before we can characterize the limit process of £", we need a precise control for
the convergence of the (speeded-up) process (¢7)* given by (3.3):

X! = (o~ 1/ko)? — Y (0)A"eH _,,. (6.45)

We claim that for some n(e)

sup P"{ sup || X2, > N~ UKoy2A oc,;"‘”} <e (6.46)

n=n(e) ngAz')L,

2

—~rod

Using Ito’s formula for || X7 ||
we get for 7, <17, Sty

and computing Sobolev-norm estimates as above,

—ro —ro —ro

1X 12, = X712, — 2N Ko X2

14 o(N 1K) 4 (N~ VKol en2 ) ]ds
+ O(N YRty — 1) + M,

ty

SUXL N2, = J NPT UROX2, 4 Dds + M7, (6.49)

~ro
1y

for t, £ and n=n(M). Applying the proposition on collapsing processes to
I X7, [%,, with &, from (6.18), we see that (6.17) corresponds to (A.3) and

(6.49) to (A.4). Here,
Sim, x) = 2N "X [m? — (0 1mel(X))? 10,

+ N2 [m* — (o)1 -vxe(x))*10, | 2,, = OIN ),
and

g"(dm, dx) = N*~ YKo A%(m, x, 61~ 1xo) p(dm)A"(dx),
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such that (A.5) and (A.8) are also satisfied. Therefore, the proposition on collapsing
processes implies (6.46).

We now compute the limit of &. It is enough to compute the limit of the one
dimensional process. En0) = 07(0), since &7 = 0" +n7, where u! converges to 0,
and 07 = 07(0)A" = 0XO)[2" — A1 + 07(0)4 with | 67O)[A" — A]|| g = O(N1/Ko7ro)
going to 0. Let fe%¥R), and

t =1y Adnf{g [In) ]2, > N EI g m

Anf{t | X712, > N VKA g =123, (6.50)
from (6.30-31, 40, 46), we have P*{f < T} < 6¢. Define the martingale
t Nl—l/l(o

Mit = [ [ [f(Ea-ua(0) + N7V — 7 (x)])

1 NV VRO g T
— [(Ey-a-1x0(0))1 A"(dm, dx, ds). (6.51)
Using (2.12, 13), we write 1to’s formula for f(0%(0)) = f(10)), 1, <t,

IIA

N
T.
5]

SERO0) = fELO) + [ f1(EX0) [ {m— ol um(x) NI 712K

2% Bx 1T

“A"(m, x, 7y - uxo)p(dm)A"(dx)ds

+ f [ LAE0) + N~ 12K fm — g7 - s(x) ) — f(E5(0))

11BxT
_f( (0))17”—6 1- 1,Kn(x)}N~(1—1/2KO)]
NZTVE A, x, 6y - uo)p(dm) A (dx)ds + M.

= £ )+ j (EopN o
Cexp (o #0711k, (N KO T )" — EIN K0 - o(1))ds

+ j [1/2f"(E0)) | {m—o(x)}?A(m, x, o7y - 1x0) p(dm) "(dx)

BxT
+o(1)]ds + M., (6.52)

using Taylor’s formula for the term between [ ] and replacing 4" with A. In the first
integrand of (6.52), we expand y" and the exponential term as in (6.31-37), and we
conclude that this integrand is equal to

FE0)EA0)/(2K g — 1) [BoJ 2'(0)05(0) 1%
+ Op(NT 2R3 12 + [0l -r) + 0pr(D).
This yields for t <1,

J01(0) = 1(6:,0) +ff (G20 02K o — DI[BoF (0)F0) T s

+1/2 f 1702002y (0)ds + 0y(1) + ML,
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t1,t2

From (6.52) and (2.14), sup (M™% )> < C,,(t, — t,), which shows that the

martingales M}:/  are uniformly integrable; we then conclude that any limit

process 0,(0) of §7(0) solves the martingale problem:
1(0,0)) - £(0,0)) — if/(és(()))v<2"°’(0>/(21<o — DI[Bo.F(0)0,(0) 17K~ 1ds

ty .
—1/2] f"(040))2y"(0)ds is a martingale,
ty
which is equivalent to (6.19). This completes the proof of Thgorem 5.
The unique invariant probability measure of the process 6,(0)eR from (6.19) is
vy(dx) = exp (y25N0)/[2(2K)!(7"(0))* K0 ]x*R)dx/Z, (6.53)

where Z, is the normalization constant.

7. Critical Fluctuations at an Antiferromagnetic Phase Transition

Instead of the critical fluctuations at the ferromagnetic phase transition, we now
study critical fluctuations at the point of an antiferromagnetic transition with
frequency p, # 0. This means that instead of (6.2) and (6.3), we now have

F(po)=F(—po)>0 and F(po)— #(q)=3,>0 forall geZ\{+p,},

(7.1
and R
Boo = ("(0).7(po)) " (7.2)
In addition, we strengthen assumption (A1) of the last section by requiring
7¥(0) <0, (7.3)

ie. Kqg=21n (6.5). For example, this is true for Ising spins with
p=(0,+3_)/2, where "(0)=1 and »*0)= —2.

We keep the assumption (A2) of the last section with K,=2. We now split
the critical fluctuation process

&l =N"atyn (7.4)

into the py-antiferromagnetic component and its complement
edx) = 2[Re(;{\;'(po)) cos(2npox) + Im (f\’.}{po))sin(2np0x)]}f‘(dx). (7.5)
Wildx) = £i(dx) — @ii(dx). (7.6)

Theorem 6. Let (7.1--2), (A1) with(7.3) and (A.2) hold. For the starting configurations,
we assume

(1) obeMy, and @(po) = N”gg(po) converges in law to some @o(po); (7.7
(i1) for some k> 1 and an increasing sequence o, with

N'" 9 150, and N~ '2,—0, (7.8)

n
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we have
EMo )2, = Co, ™ (1.9)
and
E"(II((af())> = ") A" 25,) £ Cor, © (7.10)

for all large n. Then the critical fluctuation process converges in law to the pg-
antiferromagnetic process,

@(dx) = 2[Re (@(po)) cos (2npox) + Im (@,(po) sin (2mpox) JA(dx),  (7.11)
where ¢,(po)eC satisfies the complex diffusion equation
ddpo) = 7M(0)/2"(0)*| ¢.(po)I* P(po)dt + (29" (0))! 2w, (7.12)
starting at ¢o(p,). Here, w denotes a complex-valued Brownian motion.

Proof. Since the proof follows the same lines as that of the last section, we will
give only the main estimates. Like in (6.21-25), we obtain for ¢, <t, <71}, =
inf {&; |&7] -, = M},

TWE 2 =12 12, + 2§ INY2CYE (OB g 5 WS =) + OUIWE] -, M)

+ oM ISl - I €SI - o dds + O(D)(E; — 1) + OF,, (7.13)
with the martingale
1N1/2
Q= gm f? Ll ly-12 + N 734 m — ol (x))(0,-2 cos 2mpo(x —))A"[|12,,
— iz |2, JAdm, dx, ds). (7.14)

Using (7.1-2), we have

v”(O)ﬁpof/K\"(q)—lé*1/27"(0)13,,050 for all ge(Z/nZ)\{ + po}, (7.15)
and

T 12, S W12, f — NV2"(0)B, 00 W12, + C3(M))ds + QF, .
(7.16)

By (7.8-9) and estimates, similar to (6.28-29), we see that the assumptions of the
proposition of the Appendix with m = N'/? are satisfied, so that

Pn{ sup, 17 ll—ro>N”4“a;”2}éP"{ sup 7112, > CAMIN">a; }<g

I§TATM t<T/\rM
(7.17)

for all n = ny(M, ¢). For the p,-antiferromagnetic component and t; <, <1}, we
get the estimate

los 2=l +2I[C”(N T2 l)2,,)

+ <% 7 P0)3UByy S 20D
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+ O3 o WS 1 o 15112 00) + ON T2 @5l - 1 E21121,)

+ o) @2 - ol €21 - 1ds + O)(t, — t1) + OF, (7.18)
~ 1aN1/2
0= J | Cll@iy-12 4+ N~¥4m — a§(x))2 cos (2mpo(x — )A"[|2,,

tiNU/2 gyt

— l @t |12, 1 A%dm, dx, ds). (7.19)

We calculate
YO(0)/31 5, @8, (F xR A"y = ?‘4’(0)/3%20;/”\"(1’0)3 |#%(po)l*

© Y (A +1po+ql) <0, (7.20)
ae(n2)’
since y)(0) < 0. Therefore, using (7.17), we find that for n = ny(e, M),
lor 12 S @bl +(Co+ Dt + 05, (7.21)

with C, independent of M and t < 7},. Reasoning in the same way as in (6.38-40),
we conclude from (7.17) and (7.21) that

Pt < T} <4e (7.22)

for M large enough and n = n,(e, M). The modulus of continuity of ¢! is shown
to be uniform in probability in the same way as in (6.41-44). Thus, by (5.10-11),
the sequence of processes &} is tight in £2. Of course, (6.46) also holds here. Thus,
it only remains to identify the limit process of the critical fluctuations &7\

Since ¥/} converges to zero, we need only to investigate the limits of ¢!, which
are clearly concentrated on the set of processes with values in V, , the linear space
spanned by cos 2np,-x, sin27p,y-x. Let fe%7(R?), g;eV,, for j=1,2, and set

Fwy=f({gu, 1>, g2 1)), peb=(TY. (7.23)

Again, we may restrict ourselves to t; <t, <{ with

t=1 AInf{t Y72 v [(oina()? =y (DA 12, > NV, 2], (7.24)

and
P {t<T}<6c for nzn,(e, M) (7.25)
Now, with M/ from (6.51), we get
Flok)=Tlon) +;Za,f PHLYN0)/3! 85,9, (F % @34 + 04,(1)]ds
+1/2 f 25;7 DL +0(1)12y"(0)[{gi g;> + 0p(1)1ds + MY,

Y (7.26)
Now
(G (I = ¥ R F o))

qe(Z/nZ)

AN 3 7
= Y gA' g, + 92+ q3) Uf q:)0"(q;

91,92:93€{ £ Po}

>|
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i

3 (po)3171p0) 22 Re (GX(po) (o)) + 2 Re (G130 " (po)) ]
F3po)[319"(po) 12 <g, 0" + 0p(1))]. (7.27)
6),

any limit process ¢, of ¢! satisfies the martingale problem

I

Hence, by (7.25,2

flo,)— flo,)— j[;ED”(rpsw‘“(ov[zw(OPJsqx(po)sz<gk, S

+1/2 2 (027" (0)<gs, g)}ds, (7.28)
i,J
which is equivalent to (7.12). This completes the proof.
The unique invariant probability measure of the process ¢,(py)eC is
vy(dz) = exp {y¥(0)/[16y"(0)*]|z|*}dz/Z, (7.29)

with normalization constant Z,.

8. Critical Fluctuations at a Triple Point

Let us suppose that we are at a triple point where a ferromagnetic second-order
phase transition and an antiferromagnetic one of frequency p, occur simulta-
neously. This means that

FO0)=F(po)=F(—po)>0 and F(0)— #(q)=5,>0 (8.1)
for all geZ*\{0, + p,}, and
Bo = (7"(0).£(0) ' = (7"(0)#(po)) . (8.2)

We continue to let assumptions (A1) and (A2) from Sect. 6 hold, with (7.3), ie.
K, =2, like in the last section. The surviving component of the critical fluctuation
process &) from (7.4) is now

pitdx) = E1(0)A"(dx) + 2[Re (£](po)) cos (2pox) + Im (E}(po)) sin (27pex) 1A"(dx),

(8.3)
vildx) = £{(dx) — pi(dx). (8.4)
Theorem 7. Let (8.1-2), (AI) with (7.3), and (A2) from Sect. 6 hold. Assume
() odeM?y, and uy converges in law to pg; (8.5)
(ii) Equations (7.8) and (7.9) hold, together with
E" v %5, S Craty ™. (8.6)

ro =

Then &} converges in law to the mixed-phase process

pldx) = [,(0)A(dx) + 2[Re (4,(po)) cos (2mpox) + Im (A,(po)) sin (27pox) 1A(dx).
8.7)

where (4,(0), 2(po)) satisfies the coupled stochastic equation
df,(0) = y(0)/[31(7"(0))*(4.(0)* + 6] &u(po) 1) 20)dt + [2y"(0)]"2dw,, (8.8)
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dp(po) = 7 (0)/[20" (0’ 1&O) + | 4(po)[))alpo)dt + [2y"(0) ] 2dw; (8.9)

starting at (fo(0), fig(po)), where w, and w; are independent real, respectively
complex-valued Brownian motions.

Proof. Again, we give only the main estimates and formulas, the arguments being
the same as in the proof of Sect. 6.
For t, <t, =1}, we have

12
Ve 12 v = Ve 1240 + 25 [NY2C0s, y" (0B f #vid" = Vi) 4+ OCIVEI - M)

o) [lvell™ M1ds + O(1)(t, — £,) + RY, (8.10)
with
taN1/2
R L= [ [ [Iviy-me+ N73%m — oy (x))(0x — A" — 208 (2npolx —))A" | 2,
tNY2gy
” sz 12 H *ro] Zn(dma dx> dS) (81 1)

This time, (7.15) holds for all ge(Z/nZ)"\{0, + p,}; as above, we obtain

e 12 = e 12— [NV (0)Bodo 12 [ - + Ca(M))ds + RY, 1, (8.12)

with some martingale R"; the proposition of the appendix yields

P”{ sup ]lv?||2_,0>N”4"o¢,j”2}<s (8.13)
(STAty
for all n=ny(M, ¢).

From the semi-martingale decomposition for |u}|2,,, we derive estimates
similar to (7.18, 19); combining the arguments of (7. 20) and of (8.16) below, we
prove 3¥(0)/3! B3 s, (# %2 _,, <0: hence ||| -y = 1ol -y, +(Ca + 1t +
R}y, which implies, like in (6.38-40), P"{t} <T}<4¢ for large M and
n=n,(e, M). u} is shown to have a modulus of continuity uniform in probability,
such that by (5.10-11) ¢! is tight. The inequality (6.46) still holds. We only need to
characterize the limits of £7; they are continuous processes, with values in V5 the
linear space spanned by 1, cos2np,-x, and sin2np,-x. Let [e@3(R?), g,eV; for
j=1,2,3, and define

F = f({gs, 1>, Cga 1), g i), ue€=(T). (8.14)

We define 1 as in (7.25) with ¥/ replaced by v/, such that (7.26) still holds, because
of (8.13), and we get for t; <t, <f{,

Flur) = fur, +tIZ@fus [<g;,7P(0)/3! B3I =2 A" + opf(1) ] ds

+1/2 fzé’f.-j\f/(#?)(l +0(1))2y"(0)[< s ;> + on(1)1ds + M7,

tyd,j

(8.15)
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with M/ " from (6.51) with K, =2. We compute

t1,l2

3 —
(g (F*plPimy=" ) G, + 45 + 4) l:[/(q i)

91,92:93€10, £ po}
= gIOLF000) + 6 70,70 1p) S0(0)] B
N “20n 5 YR - - P -
+ 6Re [gA"(po)(£*(0),7 (o) (O)ﬁ (Po) + Z(Po) 1"(Po) 1“1 (Po)) ]
+ 6Re [7272p0) #(0)7 (1o i OR(po)
+ 2Re [ 3po) 7 2 (po )i (po) . (8.16)

Taking the limit n— oo, the last two terms vanish, and we get a limit process u,
given by (8.7-9), since this is the only solution to the martingale problem

Flu) = Tl = f [ZO/ (1 y P(O)/[3107(0)* T{(123(0) + 6] A4(po) 1) (0)2,(0)

+3(2(0)> + 1 A(po) 1)< g; — 9,000 s> } + 1/225;;’ (15)2y"(0)

{90)g,(0) + 2Re (gAi(pO)ng‘(pO))}jldS' (8.17)

The proof of Theorem 7 is complete.

Appendix. A Proposition on Collapsing Processes

Proposition
(i) Let X" =0 be a sequence of positive semimartingales with

dX7=Spdt + [ fiL (WIA™(dt, dy) — gi'(dy)dt]. (A1)

Here ST and f7* are adapted processes, A™ is a point process on some measurable
space Y with compensator g(dy)dt. Let x > 1 and let o, be an increasing sequence
with

mt*q, 1 -0, o, m -0, (A.2)
EMXE) < Ciay ™ forall m. (A.3)
Furthermore, 1™ are stopping times such that for te[0,7™], m =1,
SP< —moX7?+C,, 0>0 (A4)
sup [T Camy (A.5)
weyeY <"
i (f7)*gddy) = Cs. (A.6)

(Here, and in the sequel, C,; are constants independent of m and X'). Then for any
¢ >0, there exists C4 >0 and m, such that

sup P"‘{ sup  X"> Cy(m*a,t v o,m 1)}:\.8. (A7)

mzmg 0<t<TA"
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(1) If instead of (A.6), we have even
f(f"'()) gldy) S Cs(X7" +m™ 1), (A8)

then we get instead of (A.7),

sup P’”{ sup  X!"> Cgm!'/a,,* } <. (A.9)

mzmg ogrng’"

Proof. (We drop the superscript m everywhere). Let i be a smooth, positive,
increasing, convex function on R with

G <hy)Sa+7) (A.10)
and

sup sup h'(y; +y,)/h'(y,)=C; < . (A.11)

yieR ‘)’2?§C4
Equation (A.11) implies h(y, + y,) — h(y;) — W' (y1)y, < 172K (y,)C,y3 for all
v, £C, andall yeR. (A.12)
Now for I=1,....,[Tm]+1land t<I/m A T A 7, let

Z'=h(X,)= h(ame""""“(X — C,/om) —

fozze”""s ”j|f )29, dy)ds> (A.13)

Ito’s formula gives
A2 =R'(X )oe®™  md X, — C, + 8,)
+ I h(X, + ) = R(X ) = B(X )0, 0 f 4 Coa2e ™ 70( £(1))*) 1gdy)

+ f[h (X + /) = WX ) HA(dy, d1) — g.(dy)dr). (A.14)

Using (A.5), mt — [ <0 and (A.12), the first two terms in (A.14) are non-positive,
such that Z! are positive supermartingales on t <i/m A T A 7. Doob’s inequality
and (A.3) yield

[mT]+1 [(Tm] +1
P’( U { sup Zﬁ>;n;7‘1})§i1f117 Y EZ)EnT+Da+Cq)<Ze
=1 (<UmAT A 1=1
(A.15)

for n sufficiently small. But  sup  Z!'<mn ™! is equivalent to

t<ImAaTAzt

%™ X, = Cyfom) < h T Homy ! +C7§dme’2‘“'"s ”flfs (WI?g,(dy)ds (A.16)

forall t <l/m A T A v. Il we restrict ¢ to the interval [[— 1/m, [/m A T A 1], we see
that by (A.10) and (A.6), respectively (A.8), (A.16) implies
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X, ZC0 'm™ 4+ eh Y my~ V!
+€°Cra,sup [ | £i(1)2g,(dy)e*?™ P — e 2% /4ém

sSt Y

1
SC 67 'mTt + CgmMra, t + Cgamm”(sust + m_l), (A.17)

st

where the first component in the last bracket refers to the condition (A.6) and the
second to (A.8). Thus by (A.2),

mT]+ 1
N { sup Zf§m11_1}£{sust§C26“1m*1+C8m‘/Ka;1

=1 t<mAaTat st

1
+ Cgocmm’1<sup Xs—i—m"l)}

sSt

5% -1 -1
m ot v oo, m
g{ sup Xs§clo<ml/,/ gt >}

t£TAT m
(A.18)
for m sufficiently large. (A.15) and (A.18) prove (A.7), respectively (A.9).
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