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Abstract. We study the dynamics of geometric spin system on the torus with
long-range interaction. As the number of particles goes to infinity, the process
converges to a deterministic, dynamical magnetization field that satisfies an
Euler equation (law of large numbers). Its stable steady states are related to 'the
limits of the equilibrium measures (Gibbs states) of the finite particle system. A
related equation holds for the magnetization densities, for which the property of
propagation of chaos also is established. We prove a dynamical central limit
theorem with an infinite-dimensional Ornstein-Uhlenbeck process as a limiting
fluctuation process. At the critical temperature of a ferromagnetic phase
transition, both a tighter quantity scaling and a time scaling is required to obtain
convergence to a one-dimensional critical fluctuation process with constant
magnetization fields, which has a non-Gaussian invariant distribution. Similar-
ly, at the phase transition to an antiferromagnetic state with frequency p0, the
fluctuation process with critical scaling converges to a two-dimensional critical
fluctuation process, which consists of fields with frequency p0 and has a non-
Gaussian invariant distribution on these fields. Finally, we compute the critical
fluctuation process in the infinite particle limit at a triple point, where a
ferromagnetic and an antiferromagnetic phase transition coincide.

1. Introduction

In this paper, we study the nonequilibrium behaviour of a geometric spin model
with weak interaction in the infinite particle limit. For finite neM, the rc-particle
model consists of particles located at the sites 0, l/«,..., n — l/n of the unit circle
T = IR mod Z. A one-dimensional spin value σ(i/ή) is associated to each particle,
and the spins interact via a mean-field potential depending on the distance between
the particles.
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In the equilibrium theory, the thermodynamic limit of these geometric models
has been studied recently [7, 2], and has shown a variety of interesting phase
transitions. Depending on the parameters, there exist phase transitions to ferro-
magnetic states with constant magnetization or transitions to antiferromagnetic
states with wave-like magnetization functions of any frequency p. Moreover,
secondary phase transitions of first-order occur too (see e.g. the phase diagram in
[6]). We find metastable states near these secondary phase transitions. The nuclea-
tion behaviour of the system can be described, as it switches from one (meta-)
stable state to another stable one ([!]).

Here, however, we are interested in the dynamical laws of these models. We
start with a Glauber- type dynamics ([11]) for the n-particle system, where the
spins flip from time to time to another value with a jump intensity depending on
the gradient of the Hamiltonian felt by the particle. Next we establish the asymptotic
dynamics of the magnetization field in the infinite particle limit (Euler equation).
We obtain a similar equation for the density field of the magnetization and show
that a propagation of chaos result holds. Our main results are the infinite particle
limits of the non-critical fluctuation process and at the critical fluctuations, which —
besides an appropriate scaling of the spin values — require a rescaling of the time in
order to keep track with the stiffness and long time fluctuations of the critical
structure (critical slowing down). As a result, only the critical structure survives
the critical scaling, and in the limit, the critical fluctuation process is a low dimen-
sional process (of the dimension of the null space of the infinitesimal operator at
the critical point), in contrast to the infinite dimensional non-critical fluctuation
process. In fact, the critical fluctuations are of dimension 1 at the critical point of
a ferromagnetic phase transition, while they are of dimension 2 at an antiferro-
magnetic phase transition, and of dimension 3 at a ferro ~ — antiferromagnetic
triple point.

Asymptotic dynamics, propagation of chaos results and non-critical fluctuation
processes for weakly interacting systems have been extensively studied (see e.g.
[17,21-23, 25, 26], to mention just a few). Dawson [3] also obtained a critical
fluctuation process of dimension 1. All these models have a space-independent
weak interaction, and therefore lack a rich structure of phase transitions. In a
recent paper, Fritz obtained the Euler equation for a continuous spin model on
a lattice with nearest neighbour interaction [10].

We are now going to describe our model and the results of the different sections
in more detail. For simplicity, we restrict ourselves here to the case of one space
dimension (d = 1), though all the results in the later sections are formulated for
arbitrary dimension d.

For the system consisting of n particles, located at the point of the lattice
Jn = {i/n, i = 0, . . . , n — 1}, a spin configuration σ" = n~ 1 £ cr(x)<5x has the internal

ΛETn

energy

(1.1)
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Here, the intensity of the interaction between particles at sites i/n and j/n is
/\_(i—j}/ri], with / a smooth real function on T; it depends on the distance
between sites: this is a mean-field model, but it possesses enough geometry for
showing rich behaviour. Here also, δx is the Dirac mass at x and * denotes
convolution. The single spin distribution, denoted by p, is a probability measure
on IR with compact support. (Only in the last sections of the paper, when we deal
with the specific situation at the critical point of a phase transition, do we impose
further conditions on p). The dynamical process of the n-particle system is a
spin-flip process where the intensity of flipping the spin σ(x) at xeJn to the new
spin value m, is equivalent for large n to

- βmd/dσ(x)H(σn) = βm /*σn(x) (1.2)

with β > 0 as the inverse temperature, and /(x) = (/(x) -f /( — x))/2. More
precisely, the infinitesimal generator L" of the process is

L"/(ff) = Σ ί [/(* M - /(σ)] exp {βm/ * σ"(x) - β/(0)σ(x)lσ(x) + m\/2n} p(dm),
XίΊa

(1.3)

where / is a continuous function on the spin configuration space and σ|"m is the
flipped configuration which is equal to σ except at x, where its value is m. It is
easy to check that the unique invariant distribution for the infinitesimal generator
Ln is the rc-particle Gibbs measure Qn with the Hamiltonian //", given by

Qn(dσn] = exp { - βHn(σn}} \\ p(dσ(x))/Zn, (1.4)
xeTn

with normalizing constant Zn. Qn lives on the n-particle configuration space, which
is a closed subset of the set Jl of bounded (with respect to the total variation
norm) Radon measures endowed with the weak-* topology. The cumulant generat-
ing function of the single spin distribution p is defined by

y(r) = logf exp(rw)p(dm). (1.5)
(R

Now, we can state the asymptotic dynamics of the spin-flip processes σ", generated
by L", in the infinite particle limit.

Theorem !'„ The processes σ" converge in law on the Skorokhod space ^([0, T], Jί)
to the magnetization process utλ, where λ is the Lebesgue measure on T and the
density utEU°(Ύ) satisfies the deterministic evolution equation

d/dtut(x) = exp {y(β/*ut)}[y'(β/*ut) - ut~\. (1.6)

As is to be expected, there is a close connection between (1.6) and the Gibbs states
Qn. Indeed, it has been shown in [7] that the Qn satisfy a large deviation principle on
Jί with a rate function

βH(μ), (1.7)
with

([i(dμ/dλ(x))λ(dx) if μ«λ,

, . (1=8)
+00 otherwise,
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where
ite) = sup{ςrr-y(r)} (1.9)

reR

is the Cramer transform of p. The large deviation principle means heuristically that
for a small weak-* neighborhood U(μ) of μεJt

"g"(L/(μ)) behaves asymptotically like exp { - n[V(μ) - inf F(v)] }." (1 .10)
V

But the Frechet derivative of u\^ V(uλ) in the || || ^-norm is by (1.8) and (1.2)

VV(uλ)(x) = i'(u(x}) - β/*u(x) = (/)- \u(x)) - β/ * w(x), (1.11)

but if y'(0) = 0, i.e. p has mean zero,

sign(/G8/*M(x)) - w(x)) - sign( - VK(ιd)(x)), (1.12)

since z' is the inverse of / by (1.9), and since /(0)~0 implies sign y '(r) = sign (r).
This means that the right-hand side of the evolution equation has the same sign
as — W(uλ). In particular, its paths go downhill with respect to the potential V,
and the stable steady state solutions of (1.6) are exactly the local minima of V.

In Sect. 4, we study the asymptotic dynamics of the density process

which is a probability measure on [R x T. Again we give the space ^(IR x T) of
all such probability measures the weak-* topology. Notice that since for each
xeJn, π"(dm,{x}) = n~ΐδ(σn(χ}) is a one-point measure on 1R, πn and σn contain
mathematically the same information. This is however no longer true in the infinite
particle limit.

Theorem 2'. π" converges in law to the magnetization density process
ht(m, x)p(dm)λ(dx), where ht satisfies the deterministic density evolution equation:

x) = exp {mj8/*tφ)} - ft,(m, x)exp {y(β/*ut(x))}. (1.14)

Equation (1.14) is a disintegrated version of (1.6). In fact, multiplying both sides of
(1.14) with m and integrating with respect to p(dm) gives exactly (1.6). In a similar
way, we define the higher order correlation densities for different sites of T. It is then
easy to show that in the infinite particle limit, these correlation densities satisfy a
propagation of chaos property. (See Theorems 3 and 3 bis of Sect. 4 for details).

Next, we look for a first order approximation to ur; we define the (non-critical)
fluctuation process

ζnt = nll2(σn

t-utλ). (1.15)

In order to establish a central limit theorem for these fluctuation processes, we
have not only to work in the space φ1 of distributions on T, or at least in a Sobolev
space Hro with sufficiently low negative index (see Sect. 5 for technical details), but
we also need first a law of large number results for the second moment
magnetization fields

(σn}2 = n ~ σ 2 ( χ } δ χ < (U6)
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From Theorem 2', we see that (σ")2 converge in law on (̂[0, T], M) to the second
moment magnetization process vtλ9 where vt satisfies the deterministic equation

d/dtvt = exp {y(β/*ut)}lf(β/*ut) + (y'}2(β/*ut) - vtl (1.17)

with ut from (1.6). Now, we can state the central limit theorem for the fluctuation
process:

Theorem 4'. // / is sufficiently smooth and ζo converges in a Sobolev sense
to some (Oey, then the processes ζ" converge in law to a ̂ ' -valued diffusion process
ζt, given by

dζt = -y"(β/*ut)expy(β/*ut)d2V(ut)ζtdt .

+ [_πpy(β/*ut)(y"(β/*ut) + (y')2(β/*ut) - 2uty'(β/*ut) + vt^
2dWt.

(1.18)

Here, d2V is the second Frechet derivative of V from (1.7), i.e.

d2V(u)ζ = i"(u)ζ-β/*ζ, (1.19)

and Wt is the ^'-valued Brownian motion with covariance

E<φ, W8W, Wty = (s Λ t)<φ, I/O (1.20)

for ^,^6^°°(T).
To get a better understanding of (1.18), let us suppose that ue is a stable steady

state solution of (1.6) and that we are not in a critical situation of a phase transition.
This means that ue is a local minimum of V and that the second derivative d2 V
is a non-degenerate, positive definite operator. Then also vt converges to its stable
solution ve = y"(β/*ue) + (y')2(β/*ue) such that with ue = γ'(β/*ue), (1.18) reduces
to

dζt=-y''(βS*Ue)expy(βS*Ue)d2V(ue)ζJt + ̂
(1.21)

Thus, ζf is a generalized Ornstein-Uhlenbeck process and its unique stationary
distribution is the Gaussian field with mean zero and covariance

On the other hand, it is a consequence of (1.10), that the conditional fluctuation
fields of Q\ restricted to a neighborhood U(ue) of ue, Qn{_d(σn - ue/n1/2)\U(ue)]
converges to the mean zero Gaussian field with covariance (1.22) (see also [9]).

In order to investigate the situation at a critical point of a phase transition,
we must specify our assumptions in order to make sure that a phase transition
indeed occurs.

First, we assume p to be an even probability measure on (R with compact
support and that the GHS-inequality hold (cf. [8]), a consequence of which is that
for some K0 ^ 2,

0 = y(0) = y'(0), y"(0) > 0, 0 - y(3)(0) = . . = y{2K°~ X)(0), y(2*o)(0) < 0. (1.23)

Again, / should be sufficiently smooth and symmetric. For a ferromagnetic phase
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transition, we want its Fourier coefficients to satisfy

/(O) - /(p) ̂  <50 >0 for all peZ-{0}. (1.24)

From [7] or [2], we know that a phase transition indeed occurs at the critical
inverse temperature

l (1.25)

Here, the potential V = Vβo has a unique minimum at ue = ΰ, but d2V(ue) has a
one-dimensional kernel spanned by the constant function H . Equation (1.24)
requires that the remainder of the spectrum is positive, bounded away from zero
by j80<50. We define the critical fluctuation process by

£i = n1/2*Xni-i/*,, (1.26)

where the new time scale tnl~ί/κ° compensates the effect of critical slowing down,
mentioned above. We decompose ξ? into its ferromagnetic component θ" =
where λn = n~l £ δx is the discrete Haar measure on rc^Z/Z, and its comple-

\eJn

ment η",

ξt=θn

t+ηn

t. (1.27)

Since d2V(Q) is not degenerate in the direction of ηf, the stronger scaling n1/2K°,
instead of n1/2 at the non-critical fluctuation, has the effect that the processes ηn

t

collapse to the zero process, and the dynamics of θ", in which direction d2 7(0) is
degenerate, has to be expanded to higher order terms of θ". For the following
result on critical fluctuations, we need in addition some more complicated
asumptions on the starting configurations ξ"0, for which we refer to Sect. 6, mainly to
insure that ηn

Q already collapses sufficiently fast.

Theorem 5'. The critical fluctuation process ξn

t = θn

t 4- ηn

t converges in law to the
one-dimensional process ξt = θt(0)λ with

d§t(0) = γ<2*o)(0)[(2K0 - l^/ίO))2*0-1]-1^0-1^)^ + (2/'(0))1/2</wfϊ (1.28)

and with wt as the standard Brownian motion.
The stationary distribution of the process θt(0) is given by the non-Gaussian

distribution

exp [y(2K°\0)(2(2K0)l(γff(0))2K°Γ lθ2KQ]dθ/Zl9 (1.29)

with normalizing constant Zv. Notice that the surviving process 6 (̂0) in (1.28)
depends only on quantities coming from the cumulant generating function γ of
the single spin distribution p. It is invariant from the specific interaction function
</, except for the implicit assumption that we are indeed at the critical point of
the ferromagnetic second-order phase transition. This phenomenon is called
universality.

In first approximation, the time evolution of the system is space-homogeneous,
since the fluctuation process is concentrated on constant densities: this shows that
the ferromagnetic order comes through the fluctuations at the critical temperature.

This kind of result on critical fluctuation processes was first obtained by Dawson
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[5] for a non-geometric model with mean-field interaction, with a one-dimensional
kernel of the second derivative of the large deviation potential V at the critical
point, this proof is based on a semi-group perturbation theory. Our proofs use
martingale decompositions and martingale inequalities, which allow us in Sect. 7
to treat also critical fluctuations at an antiferromagnetic phase transition, where
the kernel of d2V(0) has dimension 2. However, we have to strengthen the
assumption (1.23) by requiring

/4>(0)<0; i.e. K0 = 2, (1.30)

and instead of (1.24-25), we now have for /(p0) = /( — p0),

for all geZ\{±p 0},

)"1. (1.31)

These conditions assure that we are at the critical point of a second-order phase
transition to an antiferromagnetic state with frequency p0 (cf. [2]). This time, we
split the critical fluctuation process ξn

t = n1/4σ^1/2 into the two-dimensional p0-
antiferromagnetic components

φn

t = [2 Re (ς%0)) cos (2πpΌx) 4- 2 Im (ξ»(pQ)) sin (2πp0x)]λn(dx), (1.32)

and its complement ψt'.ξ? = φ? -f Ψ?.
Here, we again omit the assumptions on the initial configurations.

Theorem 6'. At the critical point of an antiferromagnetic phase transition of frequency
PQ, the critical fluctuation process ξ" converges in law to the two-dimensional
antiferromagnetic process of frequency p0

φt(dx) = 2[Re (φt(p0)) cos (2πppx) + Im (φt(p0)) sin (2πp0x)]λ(dx)9 (1.33)

where φt(p0)GC is given by

dφt(p0) = y(4)(OX2//(0)3)-1 |φ f(p0)l20f(Po)Λ + (2yf/m1/2dw^ (1.34)

with wf the complex Brownian motion.
Again, the stationary distribution of φr(p0)eC is non-Gaussian:

(1.35)

with normalizing Z2. This time, the system at equilibrium behaves in first
approximation as a random sine-like wave, with fixed frequency p0, but whose phase
and magnitude are coupled random processes; here again, the system is brought to
an antiferromagnetic order by its fluctuations.

Finally, we calculate in Sect. 8 the limit of the critical fluctuation process at a
triple point, where a ferromagnetic and an antiferromagnetic phase transition fall
together. This means that for some p0 ^ 0,

/(0) = /(p0) = /(-Po), /(0)-/fo)^0>0 for all qeZ\{Q,±Po} (1.36)

and

1. (1.37)
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Now in the infinite particle limit, the critical fluctuation process has the form

μ,(dx) = [μr(0) + 2 Re (μt(Po)) cos (2πp0x) + 2 Im (/i,(p0)) sin (2πp0x)]A(dx), (1.38)

and (μ,(0), //,(p0))elR x C is driven by the coupled stochastic differential equation

dμ,(0) = y<4>(0)(3!(r"(0))3Γ '(#(()) + 6\μt(Pΰ)\2)μ,(0)dt + [2/'(0)]1/2dwr,

^A(Po) = 7(4)(0)(2(y"(0))3)-1(/lt

2(0) + IA(p0)l2)A(Po)Λ + [2y"(0)]1/2dwf

with w, and wf independent real, respectively complex Brownian motions.
In the appendix, we add a useful proposition on collapsing processes, which

is of interest in its own right.

2. Notations and Main Example

Let T be the d-dimensional torus (U/T)d. For any natural number neN we consider
the lattice torus Ύ n = (n~1Z/Z)d with spacing n"1, consisting of the N = nd sites
x = ( k 1 / n , . . . , kd/n\ where kj = 0,..., n — 1 for j = 1,..., d.

To each lattice site xeTn, we associate a real-valued spin σ(x\ whose ensemble
defines the magnetization field

σ» = N-1ΣΦ)^ε^r, (2.1)
xeJn

with δx the Dirac mass at x and Jt = M(ΊΓ) the set of Radon measures on T. We
endow Jί with the weak-* topology, which makes Jl a metrisable space. Let Jin

be the set of all measure of the form (2.1), Jίn

b = {σnεJίn, \σ(x)\ ^ b for all xεJn},
and Jib — {μeJt, \\μ\\ ^b}, where | |μ| | means the total variation of μ. Jίn and
Jίn

b are closed subsets of Jί, respectively Mb, and Jίb is compact in the weak-*
topology.

We assume the single spin distribution p to be a probability measure on IR
with compact support1, say contained in B = [ — £?, + b]. (In Sect. 5, we shall impose
further restrictions on p.) Let

y(ύ) = log jexp {mu}p(dm) (2.2)

be the logarithm of the moment generating function, y is a convex function
with γ(0) = 0. Note that

J m exp {mu}p(dm) = y'(u) exp y(u\ (2.3)

J m2 exp {mu}p(dm) = [y» + (/(u))2] exp y(u\ (2.4)

Let /I be the Lebesgue measure on T and

λn = N-^δx (2.5)

1 We could also consider distributions p with unbounded support, provided that y is finite on the whole
line and some boundedness assumptions on the flipping rates. Then, proving exponential estimates on the
tail distribution of the process, we are reduced to the case of bounded p. For gaussian spins, i.e. when p is a
Gauss distribution, the assumptions amount to high temperature (one phase situations), since critical
temperature corresponds to explosion of the system
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its discrete analogue on Ύn. Finally for σ<EM, meίR, we define

σ|χ ) = σ( \Cn(x)) + m/Nδx( )9 (2.6)

where Cn(x) = (x^ - l/2n, x^_ + l/2ri] x ••• x (xd ~ l/2w, xd + l/2n] c T is the cube
in T with centre x and edge length 1/n.

Now we define the operators L" on ^(Jί) by

£"/(*) = J U(^\nM-f(σ}-}NAn(m,^σ}p(dm)λn(dx\ (2.7)
B x T

with

^rt(m, x, σ) - exp {G0(x, σ) + mG^x, σ) + G$(m, x, σ)}, (2.8)

G0, Gte^(T x ^ST), (2.9)
and

GΠ

2 >0, (2.10)
«->• 00

in a sense to be made precise in the following sections.
We set

A(m, x, σ) — exp (G0(x, σ) + mG^x, σ)}. (2.11)

clearly, there exists a unique Markov process Pn on the Skorokhod space
Ω — @(U + , Jt\ the space of right-continuous, ^-valued functions with left-hand
limits, with D as its infinitesimal generator, i.e.

/K)-/(σ0)- I L"/(ff,)ds = M?(/) is a P"-martingale (2.12)
<0,t]

for all fe^(Jί). This martingale can be written in the integral form

M ΐ ( f ) = J I ίf(σs_\n

xm)-f(σs_)-]Λn(dm,dX,ds), (2.13)
(0,ί]βχT

where for σeΩ

An(dm, dx9 ds)(σ) = Λn(dm, dx, ds)(σ) - NAn(m, x, σs)p(dm)λn(dx)ds

with a pure point process An(dm, dx9 ds)(σ). The corresponding increasing process
(see [14], II.3.9) is

λn(dx)ds^ (2.14)

Example. The general ^-body long-range interaction between the spins of a
magnetic field has the internal energy

(2.15)

where / ^ ( T 7'). Its Frechet derivative is

VH(σ)(x)= - Σ 1/j! Σ </j^® ί-1®δx®σ^- |>e«'(T). (2.16)
7=1 i = l
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Now, let G0 be any continuous function on T x Jt, with

sup |G0(x,σ)-G0(x,σ|;θ)| = ίP(Af-1), (2.17)
xeTn,σe^

and
G,(x,σ)= -βVH(σ)(x), (2.18)

where β > 0 is the inverse temperature. We set

G5(m, x, σ) - G0(x, σ n

xΰ) - G0(x, σ) + β{NH(σ] - NH(σ\n

xty

- σ(x)VH(σ\n

xO) + m(VH(σ] - VH(σβO))}. (2.19)

By (2.15-17), it is easy to check that

sup { I G$(m, x, σ)|; me£, xeT,, σ<=Jίn

b} = (9(N~l). (2.20)

The detailed balanced condition (see [27]) shows that the unique invariant
probability distribution for the process Pn with infinitesimal generator Lw, given
by (2.7-8), is the Gibbs state

Q"(dσn) = exp { - βNH(σn}} Π p(dσ(x))/Zn (2.21)
xeTπ

with σ" from (2.1) and Z" as normalizing constant. The thermodynamic limit of
(2.21) has been investigated in [7].

3. Asymptotic Dynamics of the Magnetization

Besides (2.9-10), we assume that

GO and G! are Lipschitz-continuous in σ<=Jίb in the total

variation norm, and that (3.1)

sup { I G£(w, x, σ)\;meB, xeTn, σe.^} = 0(1) (3.2)
Set

(σ*)2(dx) = N-1Σσ2(y)δy(dx). (3.3)
yeJn

Theorem 1
(i) Let σn

0£Jίl converge in /αw to u0λ, i.e.

Then the process (σ")t<Γ converges in law to (utλ)t<τ, where uteL^ is the unique
solution of the mean-field evolution equation2,

d/dtut = G(ut\ (3.4)

starting at uQ, and

G(u)(x) = exp {G0(x, u) + y(G1(x9 u))} [/(G^x, u)) - φ)]. (3.5)

2 In fact, this convergence holds (in probability) with an exponential rate; refer to [1] for the case of Ising
spins
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(ii) Moreover, let (σn

0)
2 converge in law to some v0λ,

Then, (σ")2 converges in law to vtλ, where vteL^^2] is the unique solution of

d/dtvt = F(ut, υt\ (3.6)
starting at vθ9 with

F(u, υ)(x) = exp {G0(x, u) + y^G^x, w)]} {/[G^x, «)] + (/[G^x, w)])2 - φc)}.
(3.7)

Proo/. The Lipschitz properties of G0 and Gί imply that (3.4) and (3.6) have unique
solutions. Since y'(y)e( -b,+b) and y"(y) + (/)2(y)e(0, b2) for all frelR the solutions
ut,vt, satisfy — b^ut^b, 0^vt^b2. In order to show the tightness of (σ")t = τ,
notice that ^M\ implies <fltM\^Mb for all ί^O, P" a.e., and that ^b is
compact in its weak-* topology. It suffices therefore to show uniform continuity
in the following form:

For any 0e#(ΊΓ), η, ε > 0, there exists n 0 eN and δ > 0 such that

sup sup P " { | < g f , σ ; 2 > - < g f , σ τ

B

n > | > f / } g β , (3.8)
n ^ π 0 0 ^ τ 1 ^ τ 2 ^ ( τ 1 + < 5 ) Λ T

where τ l 5 τ 2 are stopping times (cf. [16], 1.3.4). From (2.7-13), we get

<^^2>-<^,<> = N-1 j J ^(x)(m-σs

+ j 0(x)(m - σ"s(x))A"(m, x, σ'^p(dm)λ"(dx)ds (3.9)
*ι B x T

with the last term being in absolute value less than 2 f c | | g f | | 0 0 1|^1 + 1 H ^ - 5 for n
sufficiently large, using (3.2). Therefore, by (2.14)

which is less than ε for all nεN, if δ is sufficiently small. Furthermore, the jump
sizes go to zero uniformly, so any limit law is concentrated on continuous paths.

The tightness of the processes (σ")2<τis shown similarly. As in (3.10), we get
by Doob's inequality

„
P N s u p l Λ Γ 1 ! J g(x)(m~σn

s_(x))Λn(dm,dx,ds)\>ηN-ί/3\=:(9(N-1/3).
I ί^Γ θ 5 x T J

(3.11)

Hence, outside of a set of very small /""-probability, we have

<^,σ^> = < ί/,σ"0> + } J g(x}(m-σ

n

s(x})An(m,x,σ

n

s)p(m}λn(dx}ds + o(\}
0 BxJ

(2.3),(3.2) 0T

[/(G^x, σ;))λ"(dx) - σ"s(dx)-]ds + o(l).
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But the maps μι-» G;(., μ)e^(T), / = 1, 2, are continuous on the (compact) set Jtb\
then, from Ascoli's theorem, their range is a uniformly equicontinuous family of
#(T), and the Riemann sum λn in the last term converges uniformly to the ^-integral.
Combining this with (3.5), we derive that with large probability

<0, σ?> = <0, σ"0> + J <0, G(σ«)>^ + 0(1), (3.12)
o

and so any limit process of (σ")^Γmust be concentrated on a solution of (3.4),
which is unique however. In the case of (σ")2, we obtain

<g, K)2 > = <β, K)2 > + ίί β(x)(m2 - (σ"s(x))2)A"(m, x,
O f i x T

(2.4)

- W)2(dx)]ds + 0(1)

(3.13)

This completes the proof of the theorem.

Remark. Point ii) of Theorem 1 follows from Theorem 2, which requires stronger
assumptions.

4. Asymptotic Dynamics of the Densities and Propagation of Chaos

To a magnetization field σnzJtn

b, we associate the empirical magnetization density

T), (4.1)

where 0>(B x T) denotes the set of all probability measures on B x T. 0>(B x T) is
compact in the weak-* topology.

We first show that the density process π" converges to a deterministic density,
governed by the asymptotic magnetization process:

Theorem 2. Assume (3.1-2) and that πn

Q converge in law to h0(m,x)p(dm)λ(dx)e
&(B x T), /z0eL°°(f? x T). Then the empirical density process π" converges in law
to ht(m9x)p(dm)λ(dx), where the density hteLGO(B x T) is the solution

d/dtht(m, x) = exp {G0(.x, ut) + wG^x, ut)} — ht(m, x) exp {G0(x, ut) + ̂ (G^x, u t ) ) } ,
(4.2)

starting at /z0; and where ut(x) = Jm/z t(m5 x)p(dm) is the solution of (3.4) with w0(x) =
B

\mh0(m,x)p(dm).

Since by (2.9-10)

sup {exp [wG^x, σ) - γ(G1(x9 σ))]; meB, xeϊ, aeJ^b} = C < oo, (4.3)

0 ̂  /i^m, x) ̂  C, ι/ ί/ίί's property holds for h0. Therefore htELco(B x T) for all t.
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Moreover

Jft ί(m,x)p(dm)=l. (4.4)

Proof. Since (4.2) is linear in /z, it has a unique solution in L^(B x T) satisfying (4.4).
Let ge^(Bx T). Then

O β x f

+ } j N-^^m.xJ-sfίσ -ίxXx)]^11^,^^). (4.5)
O β χ T

The uniform continuity can now be shown in the same way as is (3.8-10). By the
compactness of 3P(B x T), the sequence of processes π" is therefore tight.

Doob's inequality implies again

ί r ~ 1
P^sup J J N~}lg(m,x}~g(σn

s^(x},x)']Λn(dm,dx,ds)\>ηN~1/3^(9(N-1/3\
I t^T O β x T J

(4.6)
which gives outside a set of uniformly small probability

o | _ ΰ χ τ

exp (G0(x, σϊ) + y(Gί(x9 σ"s))}g(m, x)π"s(dm, dx) Ids

\ exp {G0(x, MS) + wG^x, us)}g(m, x)ρ(dm)λ(dx)

(9( supsup(|G0(x,Mβ)-G0(x,σ;)H-|G1(x,u s)-G1(xX)|) . (4.7)

Since by Theorem 1, the last term converges to zero, uniformly in probability, we
find that any limit πs of the processes π" satisfies the following equation, which is
deterministic except for π0:

t Γ
<#, π t> = <0, π 0> + j J exp {G0(x, us) + mG^x, us)}g(m, x)p(dm)λ(dx)

1

But the solution of (4.8) is unique, and if π0 = h0dpdλ, then also πt has a density
/ιf(m, x) with respect to dpdA, and ht is the solution of (4.2). This completes the
proof. Π

Notice that if h0E^(B x T), then htE^(B x T) for all t > 0. Since the right-hand
side of (4.2) depends only on the single site x, it is obvious that results of the type



544 F. Comets and Th. Eisele

of "propagation of chaos" should hold. In fact, we shall derive two versions of
propagations of chaos. The first one will be at the level of empirical measures. In
analogy to the weak-* topology on &(B x T), used in Theorem 2, we shall obtain
only a weak version at this level.

The second result is the usual "propagation of chaos" for the random spin
variables σ"(x). It says that, if the spins at distinct sites are independently distributed
at t = Q, then in the limit n->oo, they continue to behave independently at any
time t > 0 according to a distribution which satisfies (4.2), i.e. they constitute a
sample of the empirical density. Of course, this is not true for finite n, where the
spins are dependent. We shall see that this is a consequence of the first version,
yielding here an original proof of the standard result.

Let xl9..., xκ be distinct sites in T.
Let sn be a sequence of positive numbers with

ε w \ 0 and 7V~1ε^2 d->0 as n-^oo. (4.9)

We define

yieCEn(xi)nJn

as a positive measure on Bκ, where Cεπ(x;) are the cubes with center xt and edge
length en.

Theorem 3. Assume (3.1-2), that σn

0 converges in law to u0λ, and that πn

0 converges
K

in law to Y[ /z0(
mi? xi)p(amι) Then, for t > 0, π" converges in law to

ί= 1
K

Y[ ht(mh xi)p(dmi) with ht satisfying (4.2).
ί ~ i

Proof. First, notice that it is enough to prove the theorem for K = 1, since
π" = ΠπJ'fo), and since h(., x f) dp is deterministic. Now, for

J ίc ix)(y)ε-"(g(m)
O β x ϊ ' "

- g(σn

s(y)))An(m, y, σn

s)p(dm)λ"(dy)ds + M"t, (4.1
where

(4.12)

implies £"((M?)2) - (9(N~l^2d) - >Q by (4.9).

By the same argument as in the proof of the last theorem, we see that π"(x)
converges in law to a positive measure πt on B, which satisfies

ί f c<0, πt(x)> = <0, π0(x)> + J I J #(ra)exp(G0 + mGj(x, us)ρ(dm)
0\B
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Equation (4.13) is linear in π, and therefore, has a unique solution, which is
π,(χ) = ht(. , x)dp by (4.2) and the initial condition π0(x) = h0(. , x)dp. Π

As a consequence of the last result, we get the propagation of chaos for the
random variables σ"(x): corresponding to the distinct x !,..., xkeT, let x" be
sequences with

x?ETn and l imx^Xf for i = !,...,£. (4.14)

Theorem 3 bis. Besides (3.1-2), (4.14), Assume that σn

0 converges in law to u0λ and
K

that the distribution of (σS(xϊ), . . . , σSW)) converges to γ[ h0(., x^dp as n-+ao.
> = 1 K

Then, for t > 0, ί/ie distribution of (σn

t(x\ ), . . ., σ"(xj)) converges to

with / ι t (. ,Xi) /rom (4.2).

Proof. Without loss of generality, we may add the assumption that fjπ^Xί)

x
converges in law to f j hQ(.,x^dp: indeed, this assumption may be achieved via

ι = l

the change in the initial distribution of particles in proportion @(ε*), then being
without any influence on the asymptotic distribution of (σ"(x"), . . . , σ"(x£)).

First, we regard the case K = 1. Let ge^(B).
Using (4.11) and a similar expression for g(σ"(x\)\ it is easy to get the following

inequality:

\Eng(σn

t(x\}} - E » ( g , π^xjy \ ^ Eng(σn

0(xl)) - En(g, πl(x^\

sup

(4.15)

Hence, GronwalΓs lemma together with the assumptions on the initial distributions
and Theorem 3 implies

#, πflxj) = \g(m)ht(m, x^dm). (4.16)

For the general case, we take 0 l 5 . . . , gκE^(B) and n so large that Cen(xt), . . . , C£M(XK)
are all disjoint. Similar to (4.15), we get

E"

sup

(4.17)
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By an induction hypothesis, the second integrand goes to zero uniformly in s, and
we conclude by the same argument with GronwalΓs lemma as above, that

K K K
limE" Y[ Cj(σt(χtj)) = limEn Y[ (g^π"(Xj)) = ]~[ ^gj(mj)ht(mpXj)p(dnij),

" J=i " J=1 J=1 (4.18)

which proves the theorem.

5. Non-Critical Fluctuations

For re(R, we introduce the Sobolev space

Hr = {μ6^GO(T)/; | |μ| | r < + oo}, (5.1)
with

pe/

where μ(p) are the Fourier coefficients of the distribution

μ(pH<exp(2πφ.),μ>, peZd. (5.3)

Here, the brackets <.,.> denote the duality pairing. Hr is a Hubert space with
scalar product

<μ,v> r = £ (1 + \p\2Yμ(p)v(p)eU, (5.4)
PeZd

and Hr, H^r are then dual spaces. Obviously, for r2 ̂  rv ^ 0,

^(J) = H^ = ̂ Hr^Hr2^Hn^H0 = L2^H^^H_r2^H^=^(jy,

(5.5)

and the embedding Hr c Hs for any r^sis Hubert-Schmidt, whenever r — s > d/2,
due to the fact that

C_r= Σ (l + |p|2p<oo if and only if r > d/2. (5.6)
peZd

In particular, ||δx | |?. r = X( l + |p|Tr - C_ r, so that
P

for r>d/2, (5.7)

and

|μ-λ"||i r= Σ α + l p l T Ί Λ T 1 Σ exp(2πφx)-<50{p}|2

peZd X6T,;

^ Σ (l + l / ? l T r ^ C ' _ r n - 2 r , (5.8)
pe=(n/)d

p^O

for some constant C'_r.
We first recall some probabilistic facts on H_r- valued processes. Let

ί2_r = ̂ ([0, GO), H_r). For r > d/2, the H_r-valued Brownian motion Wt with
covariance

(5.9)
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gl9 g2eHr, is well-defined on ί2_r (cf. [12] ch. 3, th. 3.1). We shall use the following
tightness criterion on Ω_r,r>d/2: a sequence of processes ζ" with laws P" on
®([0, Γ],#_ r)is tight if
(i) there exists r', d/2 < r' < r, such that

for each ε > 0 we find K > 0 with

Ί
iε , (5.10)

and
(ii) for all geHn ε > 0, η > 0 there exists δ > 0 such that

sup sup P"{\<g,ξ"τ2>-<g,ξ"τίy\>η}£ε. (5.11)
n 0 ^ τ 1 ^ τ 2 g ( τ 1 + δ ) Λ T

These conditions are an immediate consequence of Mitoma's result (see [20]
Theorem 4.1 and Remark 1. Notice that (5.11) implies the uniform r-continuity of
P" and that {ξε/f_ r,; \\ξ\\2-r> < K} has compact closure in //_ r

3).
We need to strengthen the assumptions made in (2.9-10):

(i) There exists r0 > d/2 and a map dG from L£° n Hro into the space of continuous
linear operators on H_ro such that

|<£,G(μ)>-<£,G(td)>-<2,rfG^ (5.12)

uniformly in geHro, ueL£ r\HYQ, μe//_ r o, and

sup sup | | r fG(φ| |_ r o / | |μ | |_ r o <+oo. (5.13)
uεLj°nίfΓ o,ιeJΪ_ r o

Here, G(μ) is the formal (and clear) extension of G given in (3.5) as a function from

H-,o to tf_ro.
(ii) G0 and G! are bounded continuous functions from

.Jίbn{μeH_ro \\μ\\_ro^bC_ro} into Hro,

and G"2 satisfies

sup | |G5(/n,.>μ)| |Γ O = o(JV-1'2). (5.14)
meB,μeJίfr

Finally, we recall some facts on Sobolev spaces. Notice that by the interpolation
theorem and Sobolev's Theorem for r0 > d/29

A|L)gC r " 0 | | f f | | r o | |A | | r o , (5.15)

so that Hro is an algebra (cf. [24] II, 2.1). In (5.15), we used that

f | |w (5.16)
P

which also shows that Hro c ̂ (T), if r0 > d/2.
Moreover, for any ^-function φ on [R, φ(g}eHro for geHro and

Indeed, any bounded set in H_ r , is conditionally compact in H_ r ; see [29], Lemma 10, p. 169
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for some continuous function4 ψ. In particular,

\\φ(ffι)-φ(d2)L0^CM\\gι-g2\\ro (5.18)

for all 0 l 9 02 with I l 0 ι L0» \\92\\rΌ^M. As a consequence of (5.14-18), we obtain
that the solutions ut and vt of (3.3) and (3.5) satisfy

(5.19)

for all teU+ as soon as w0 and v0 do, and are uniformly bounded in Hro.
Now, we are ready to study the asymptotics of the non-critical fluctuation

processes

C? = ΛΓ1 / 2(c7Γ-«r)eH. r o. (5.20)

Theorem 4. We assume (5.12-14), σ"0eJίn

b, u0εL£ nHro,v0εL$fb2]nHro and
that Co = N1/2(σn

0 — u0) converge in law to ζ0εH-ro with

supE'HCS || 2_,0< oo. (5.21)
n

Let r>rQ. Then on ^([0, T], H-r), the fluctuation processes ζ" (5.20) converge in
law to the process ζt satisfying

dζt = dG(ut)ζtdt + (B(u, vt))V2 dWt (5.22)

with the H-r-valued Brownian motion Wtfrom (5.9) and

B(w, v)(x) = exp {G0(x, M) + yίG^x, M))}

•[/'(Gjίx, H)) + (/)2(Gι(x9 M)) - 2ιι(x)-/(G1(x, M)) + φ)]. (5.23)

Proof. We first notice that (5.22) implies

. (5.24)

Therefore, if T*r is the semigroup on Hro with generator dG(ut)*, the adjoint of
dG(ut\ we have for 0 ̂  5 ̂  ί ̂  T:

- p( ί< Γ*ίflf, β(wτ, ϋτ) T*tg>dτ, y - < T* t f lf, ζsj\dy, (5.25)

where p(ί, y) = (2πί)~ 1/2 exp ( - j;2/2ί) is the heat kernel.
This shows that the process ζs is uniquely determined by the following martin-

gale problem: for /e«£(Rfc) and g^H^ for i = 1, . . . , fe, feeN, we have with 7(0 =
/«gf 1 ,0, . . . ,<f l f k ,C»that

7(Cf ) ~ } L(us, vs)f(ζs) ds is a P-martingale, (5.26)
o

where

L(u, v)f(ζ) = t ^(0<flfi, dG(u)ζy + l/2Σ$$f(ζKgi9 B(u9 v)9jy (5.27)
i = l i,j

(cf. [15] Theorem 1.4).

4 Estimates (5.17,18) may be obtained using Littlewood-Paley decomposition of g (refer to [28])
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a) We first prove tightness. From (2.12-13) and (3.4), we obtain the martingale
decomposition

o T

An(m, x, σn

s)(m - σ"s(x))p(dm)λn(dx) -G(us)(dx) Ids

J g(λ)(m - σs"_ (x))Λn(dm, dx, ds).

Set

Then, for ^ < ί2 rg τ"M, Ito's formula yields

I ) rn I I 2 _ \\rn ι ι 2
II W2 H -i o ~ I' ^ » f ι 'I ~ro

+ 2N 1 / 2J (c;,
ίi \

4? J | | (m-< || 2-roX"(m, x, σ1)p(dm}λn(dx}ds

i i 2-,0

The second term of the right-hand side of (5.30) gives

[second term| =

+ 2N1/2 J ( £ J,ILA H (m, . , σn

a)(mdλn - dσn

s)
ίi \ B

- A(m,., σJXwdA - dσ^dp } ds

(5.12-14-18) ίi

+ N 1 / 2 μ"-λ | |_, ΐ 2j | |ζ; ι ι_ r o ι ι j/ i"(m,.χ;
Ϊ2

tl

(5.28)

(5.29)

(5.30)

(5.31)
(5.8- 13-15- 19)

Also the integrand of the third term of (5.30) is bounded, by C1/2 say. Therefore

is a submartingale, respectively a supermartingale. Taking expectations of this
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supermartingale and using GromwalΓs lemma together with (5.21), we get

£ " ( I I C Γ I I - r o ) = lim £"(lkT A t " M l l-r 0 )^C 2 e r " (5.32)
M-» oo

for all ί ̂  T and n ̂  n0, where n0 depends only on the values in (5.7) and (5.11-18).
By Doob's submartingale inequality, we get

(5.33)

for X large enough. This shows (5.10).
Next, let τi^τ2^ (τl + δ) Λ T be stopping times and geHr a Hro.
Applying similar inequalities as in (5.28), to (5.31), we find

2

ΛΓ 1/2 J gf(χ)(m - σ"5- (x))Λn(dm, dx, ds).

4- 2£Ί J g2(x)(m - σn

s(x))2 An(m, x, σn

s)p(dm}λn(dx)d

^ C4 1| ^ ||?0(β

c^ -f l)^2 + C5 I I ^ ll^b^, (5.35)

which implies for 5 sufficiently small

-C? 1>l>^^^ 2£"«^C 2-C? 1> 2)^^ (5.36)

This shows the tightness of the fluctuation processes ζ".
b) In order to characterize the limit process of ζ" by the martingale problem

(5.25), we apply Ito's formula to

We write M" for M?(/( . . . ,N 1 / 2 <gf ί ,σ-M>, . . . ) ) from (2.13) and use estimates
similar to (5.31).

^ ^ t k C ^ _,

O i = l I ' S J

• f >l"(m, x, σ")(m - σ"(x))ρ(dm)λn(dx) - G(us)λ(dx)
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+ ί Lf( ,<9i^",> + N-ll2gt(x)(m-σβ

s(X)),.)
β x T

- f(ζ") ~ ΰJ(ζ"s)N-i/2

gi(x)(m - σ"s(xm

•NAn(m, x, σn

s)p(dπί)λn(dx) \ds + Mn

t

', £ —
= /(Co) + f Σ dJ(ttK9i>dG(us)ζn

sydι
t K

Σ
i = l

.nf^\\2
(ίϊ) ί 9ι(x)gj(x)(m-σ"s(x))

0 0 5 x II

• A"(m, x, σn

s}p(dm)λn(dx}ds + M"t

ro + 1) + o(Nίl2 1| 1" - λ || _ r o)]<fa

from Taylor formula. Developing the term containing [m — σ"(.x)]2, and expressing
§mlenσ p(dm), i — 1, 2, in terms of y, we obtain

M» + }Γo(
0 [_

'.;=!

. (5.37)

The last integral vanishes in the limit w->oo, and so any limit process ζt of ζ"
satisfies the martingale problem (5.26), which has the unique solution (5.22). This
completes the proof of Theorem 4.

We review the example of Sect. 2 in the light of the last theorem. Let

G0(x, σ) = /0(0ι *σ(x), - . . , gk*σ(x)) (5.38)

with f0ε%[ro] + 1(Uk\ gt£Hro. We also assume that in (2.16) /jeHro(JJ)J=l,...,q.
Then both G0 and G1 are continuous bounded functions from ^b

\\μ-ro ^ bC,ro] into Hro. Then Gn

2, given in (2.19), satisfies

sup | |G$(ro,.,μ)| | r o = 0(N-^ (5.39)
meβ,μey/5

Thus Theorem 4 applies to our example.

6. Critical Fluctuations at the Ferromagnetic Phase Transition

Here, we consider the special case of a translation invariant, two-body interaction
without external field. In the context of our example of Sect. 2, this means
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, , , ,
VH(σ)(x) = - / * σ(x) = f /(x - j')σ(dy)

T

with the symmetrization /(x) = (/'(x) + </'( — x))/2. We know that if p is symmetric
and satisfies the GHS-inequality (see below), if (5.1) holds, and

/(0)-/(p)^<50>0 for all peZd\{0}, (6.2)

then the Gibbs states to the Hamiltonian (2.15) have a second order phase transition
at the critical inverse temperature

J80 = (7//(0)/(0))-1. (6.3)

This is the first phase transition as the temperature decreases from the high-
temperature region. The new phase, which appears immediately below the critical
temperature β^1, is ferromagnetic, i.e. it has constant non-zero magnetization.
In order to study critical fluctuations of the dynamical model, we make the following
assumptions:

(Al) Let p be a symmetric measure on U with support contained in [ — fc, ί?]? b > 0,
and let p satisfy the GHS-condition:

y ( 3 )(x)^0 for x e [0,oo). (6.4)

Since y is convex and symmetric with y"(0) > 0, (6.4) implies that there exists K0 ̂  2,
such that

y (0) - /(O) - 0, /'(O) > 0, y(3)(0) ----- y(2K° ~ υ(0) - 0, y(2Xo)(0) < 0. (6.5)

(A2) Assume

GO = 0, GΛx, σ) = - β0VH(σ)(x) = β0/*σ(x) (6.6)

with β0 from (6.3) and / satisfying (6.2).
Moreover, we require

/e#2ro for some r0>d(l-l/K0)^d/2, (6.7)

which yields by (5.16)

| l/* σ |LgC r o | | /*σ | | r o gC r o | | / | | 2 r o | |σ | |_ r o ) (6.8)

such that G1 is a continuous bounded function from

^r t n{/z6H_ Γ o ) | | μ | | _ r o ^fcC_ r o } into Hro.

We also require

sup |G"2(m,.,μ)| | r o = o(Λr(1-1/2Ko)). (6.9)

which is satisfied if we define G\ by (2.19) (see 5.39)).
The critical fluctuation process is defined by

^ι-ι/χo6/ί_ r on^". (6.10)
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We split ξ" into its ferromagnetic and non-ferromagnetic components:

(6.Π)
θ" and η" are orthogonal in (#_ro, < >_ r o). Notice that σneJίn implies

σn(p) = σn(p + nq) for all p,qεZ.d, (6.12)

and ^̂

(6.13)

Theorem 5. Besides assumptions (Al) and (A2\ we suppose for the starting configur-

ations £o that

(i) σ^eJίn

b, Θn

0 converges in law to some Θ0λ; (6.14)

(ϋ) E" || ίfo U2^ g C2αn^ for all large n, (6.15)

w/ίer<? JΓ > JΓX > KQ — I and ΰn an increasing (to infinity) sequence with

^(i-2/Ko) + (i-ι/Ko)/^α-ι^ 0 ? and ^jv-^-^oj^Q; (6.16)

(iii) £"( || (σ"0( ))2 - /W || 240) ̂  C3αf , (6.17)

where 3C > 1 αnrf απ α sequence with

^-^oV^-i^o, α^1-1/*0-^. (6.18)

Lβί r >r0.
ί/ie critical fluctuation process ξn

t converges in law on ^([0, T],H_r) to

the ferromagnetic process ξt = Θt(0)λ9 where θr(0)e(R is given by

dθt(0) = γ(2Ko\0)/l(2K0 - iγ.y^^-^θ^-ψjdt + (2y"(0))1/2dwί? (6.19)

starting at Θ0, and where wt is the standard Brownίan motion.

Proof, (a) Tightness: we first establish the key estimate (6.25). We start with the

semimartingale decomposition of <#, ξ"> with geHro:

0 βxT

f f
0 βxT

-(m - σϊ_(x))ΛΛ(ί/m, dx, ds). (6.20)

By Ito's formula, we get for s < t ̂  τn

M = inf {ί, || ξn

t || _ r o ̂  M}

/*σy-ι/^0}(/(^

σy-ι/«0>_P 0ds+ ί | |(m-σ^ι-ιMx))(^-A")||2_ r o

ΰ x T

4n(m, x, σn

sNι-nκ0)p(dm)λn(dx)ds + o(l)[l + | | ^ / J | | _ r o]rf5 + dMn

s,

(6.21)
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where
tNl-l/Ko

MΊ= f ί [Nsv^^o) + N-(1-1/2Xo)(m-^-W)(^-^)iι2-,00 βxT

- \\ηn

sN-(i-υκo)\\2-rJΛn(dm,dx,ds). (6.22)

We estimate the first integral of the right-hand side of (6.21), using (6.8), (5.15-17),
and

first term of (6.21)

1-1/*°(<^/m

where the scalar product < . , . > _ r o is equal to

Σ (1 + \P\2)~r°\ήn

s(p)\2L
pφ(nZ)d

since #J(p) = 0 for all /?e(nZ)d. From /λ"(p) = Y /(p + nq) and (6.2), we
qeZd

obtain the rough estimate

/ λ n ( p ) ^ /(ϋ) — 7(50/8, for all p^nZ.d and n ̂  n0,

which implies by (6.3)

Therefore, assuming Θ(N~1/K°M2) ^ \βγ"(Q)β0δ0 for n large, first integrand of (6.21)

(6.24)

for n^n0(M). The second integrand of (6.21) is bounded by some constant C2.
With C3(M) - Cι(M\M + C2,δ = 3/4f(tyβ0δQ > 0 and M^t = Mn

t- Ms

π, we have
for ti<t2^ τ"M, n ̂  nQ(M\

|| ηΐ21| 2_ro ̂  || η^ || 2_,0 - J (N1 - ̂ (51| ^s" ||
 2_ro - C3(M))ώ + M? l i f2. (6.25)

ίl

The drift term in the last member is strongly attractive to zero. To (6.25), we apply
the proposition on collapsing processes, given in the appendix, with m = jv1"1/^
Equations (6.16) and (6.15)^imply (A.2) and (A.3), and since here Y = B x T and

/ΓfaxHltf-'1-1'2*''^

+ AT - u - I/so n (m - ̂  - ι,*o>(x))(δx - A") || 2_ Γo, (6.26)

0?(dw, dx) - N2 ~ lίK°A(m, x, σ^i - ι/κ0))p(ίίm)/ln(^), (6.27)

it is easy to check that

'2*^^^^
(1-1/2K°), (6.28)
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,dX)^C5(\\^\\2.ru + N-(2'l/Ko)}, (6.29)
5 x T

which are both sharper than required by (A.5) and (A.8). Therefore

Pn< sup \\ηΐ\\2-ro>C6(M)N(l-1/Koy*a-^ε (6.30)
U ^ T A i " M J

for all large n. Since C6(M)^N(1"1/κ°)(1/Jf/ 1/Jf) for large π, we find that the sets

An = \ sup m2-r0^rfl-l!KQ)il*'*^^\ (6.31)

have P"-probabilities greater than 1 — ε for n ̂  n0(M, ε).
Similarly to (6.21-23), we investigate the ferromagnetic component θ" in ^ ̂

ί2 ̂  T Λ τ^, using (5.20), (6.8) and the expression /(Z) - /'(0)Z + y(2*o)(0)Z2*0~ V
(2X0 - 1)! + (9(Z2Ko\ We have

0(1)1 θ» II _ro II ̂ il_ro

ί2

° l l ®n

s I I - r 0 I I £" II -rojM5 + J J I I (m ~~ σ^yi-i/xoίx))^11 i i _ r o

• "̂(m, x, σn

sNι-nκ0)p(dm)λn(dx)ds + M? l ίf2, (6.32)

where

— |i θ^y-d - i / K o ) || l ro)ΛΛ(dm, dx, ds). (6.33)

By (6.3) and (5.10), we have the estimates

N1 - 1/Ko |[

= 1 - 1/κ°
|| θ"s || _ro),

(6.34)

l -2'κ° || 0; || ̂ ro || ξj || _ r o || ̂ s" || iro), (6.35)
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and, using ξ"s = θ"s + η"s,

< β;, 7(2*°>(0)/(2K0 - I)!(j80/ * ξ"s)
2K° ~ U" > _ r o

= y<2K°>(0)/(2K0 - l)!^0'1/^)2*0-1^))2^"!!2^
(6.8)

+ ^(||^||24Γ2 | |^il2.ro+||^IUroNsΊI24Γ1), (6-36)

since / *ί/5>(0) = ̂ (0)̂ (0) = 0 and (6.12) implies <6>;,/*»;;A">_ro = 0. The
second integral in (6.32) is again bounded by (t2 — t^C j with C7 independent of
M. Hence

I 2-ro ̂  I I ΘΓ, II -ro + 2

+ ΛΓ ̂ ^ + 7V~ 1/2*°) + o(l)M2] ds + CΊ(t2 - ίi) + M?1>t2, (6.37)

where the constants in the term ΦM depend on M. The first condition of (6.16)
shows that we can find nλ(ε, M) ̂  n0(ε, M) such that on the sets An from (6.31),
the second integrand in (6.37) is less than 1 for all n ̂  n^ε, M), and the first
integrand is non-positive, thanks to y(2K°\0) < 0. Equation (6.14) implies
Pn{ || ΘQ || 2_ro ^ C8} < ε for C8 large enough and for all n, by which, together with
(6.37), we obtain for n ̂  n^ε, M),

SUp | |0?||t ro^Γ(C7 + l)+C 8 + (

£<{ sup M f ^ C 9 i . (6,38)

But

Γ supn Mn

t ^ C9\ ̂  Cj2E(M"TaM) ^ C9

 2C10 ̂  ε, (6.39)

where C10 is independent of n and M and C9 ̂  (C10/ε)1/2. By (6.31) and (6.38-39),
we finally get for M > 1 + T(C7 + 1) + C8 + C9

^1} = \ SUp | | ζΠ|_ r o ^M j > c < j sup ||l/; ι | | !L l,0>

sup II θ" II i
~T Λ Ίjfl

(6.40)

which show P"{τ^ ̂  Γ} ̂  4ε.
Hence, the condition (5.10) is satisfied. In order to establish (5.11) for £", it is

enough to show it for θ", since (6.30) and (6.40) show that the sequence of processes

ηn

t converges in law to ηt = 0.
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Thus, we have, for 0 ̂  τ1 ^ τ2 ^ (τ1 -f δ) Λ Γ,

[m - (74V-ι/*o(x)]

A^x)^ + MJ1>r2, (6.41)

with

M"ίtΐ2 = gλ"(0) j 7V~ ( 1~ 1 / 2 K o )[m — σll

s_(x)~\Λn(dm, dx, ds). (6.42)

After the same expansion of the first integral as in (6.32-37), we have for large n

> T } <{ - >τ)<£, Θn

τ2 - θn

τy ^ C9(M)(τ2 - τ,}2 + 2(M?i;τ2)
2, (6.43)

such that by (6.40)

^ 4ε -f C9(M)δ2/η2 + C10δ/η2 ^ 5ε (6.44)

for n ̂  n2(ε, M) and δ sufficiently small. This completes the proof of the tightness of
the critical fluctuation process ξn.

b) Before we can characterize the limit process of ξn, we need a precise control for
the convergence of the (speeded-up) process (σ")2 given by (3.3):

X»t = KNl-ι/κo)2 - /'(Oμ'etf _Γ 0. (6.45)

We claim that for some n(ε)

sup Pn\ sup \\Xn\\2.ro>N(1-ί/Ko)l2 AfQί-~ίl2\^ε. (6.46)
n^n(ε) U ^ Γ Λ τ ^ J

Using Ito's formula for || X" || lro, and computing Sobolev-norm estimates as above,
we get for TJ ^ τ2 ̂  τ^ :

" 11 2 — 11 Ύn 11 2 Γ 9 \Λ ~ I/ K O n V
ί2 I ' -ro - H A ίi II -ro ~ J Z^V II A

?, II 2_ro - (N1 " !*' || X" || 2_ro (6.49)

for ί2 ̂  τn

M and n ̂  n(M). Applying the proposition on collapsing processes to
\\X^τ

n I I -ro Wi^ ΰn from (6.18), we see that (6.17) corresponds to (A.3) and
(6.49)To (A.4). Here,

/?(m, x) = 2N-1 (XI [m2 - (σ?Nι -ι/^o(x))2]δx> _ r o

4-^-2 | |[m2-(σ^-1/χo

and

x) - A^2 ~ 1/KoA"(m, x, σ^Nι - ι/κ 0
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such that (A.5) and (A.8) are also satisfied. Therefore, the proposition on collapsing
processes implies (6.46).

We now compute the limit of ξn

t. It is enough to compute the limit of the one
dimensional process ξf(0) = $"(0), since ξ" = θ" + ηn

t, where η" converges to 0,
and θγ = θ?(Q)λn = θΐ(Q)lλn-λ] + θΐ(Q)λ with ||0?(0)[;.w - λ] | |_,0 - Θ(Nllκ°-ro)
going to 0. Let fe^(U), and

f — τ» Λ i n f i f - \ \ n n \ \ 2 > Λ/^-^oV ^ ' / y - i l
L — I \Λ / \ 1111 \ L, ' / 1 I I f n ^ ->• ' M i

Λ ί n f / f I I ~V^ I I ^ ^̂  \T^ — ^/J^-o)/2«^/ .r; — l / 2 \ . //Γ C Γ\\

from (6.30-31,40,46), we have Pn{τ ^ T} ̂  6ε. Define the martingale
f _ Λ / l - l / K o

«-<.(x)])

dm,dx,ds). (6.51)

Using (2.12, 13), we write Ito's formula for /(0'/(0)) - /(<f?(0)), ^ ̂  ί2 ̂  τA:

/(ft2(0)) = /(^1(0))+i//(ft(0)) J {m-σ.V-i/xo
ίi Bx. T

• y4w(m, x, σ"Nι - υκ0)p(dm)λn(dx)ds

4(m, x, σs"/v. - i,K0

(6.52)

using Taylor's formula for the term between [ ] and replacing An with A. In the first
integrand of (6.52), we expand / and the exponential term as in (6.31-37), and we
conclude that this integrand is equal to

This yields for t ̂  τ,

ί2

> f .
ίl

1/2 J /"(^(0))2/'(0)ds + oM(l)
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From (6.52) and (2.14), supEn(M^ί2)
2 g Cn(ί2 - ίj, which shows that the

π
martingales M";^2 are uniformly integrable; we then conclude that any limit

process θt(0) of 0"(0) solves the martingale problem:

1)1 [

- 1/2 j /''(£s(0))2/'(0)<is is a martingale,
f i

which is equivalent to (6.19). This completes the proof of Theorem 5.
The unique invariant probability measure of the process θt(0)eU from (6.19) is

v^dx) = exp(7(2Ko)(0)/[2(2X0)!(7//(0))2Ko]x2Ko)dx/Z1 (6.53)

where Z1 is the normalization constant.

7. Critical Fluctuations at an Antiferromagnetic Phase Transition

Instead of the critical fluctuations at the ferromagnetic phase transition, we now
study critical fluctuations at the point of an antiferromagnetic transition with
frequency pQ ^ 0. This means that instead of (6.2) and (6.3), we now have

/(Po) = /(-Po)>0 and /(p0) - /(q) £ <50 > 0 for all qeZd\{±Po}9

(7.1)
and

In addition, we strengthen assumption (Al) of the last section by requiring

y(4)(0) < 0, (7.3)

i.e. K0 - 2 in (6.5). For example, this is true for Ising spins with

p = (δ, + (5_ J/2, where /(O) - 1 and y(4)(0) - - 2.

We keep the assumption (A2) of the last section with K0 = 2. We now split
the critical fluctuation process

1/2 (7.4)

into the p0-antiferromagnetic component and its complement

φΐ(dx) - 2[Re (ξ$(p0)) cos (2πp0x) -f Im (SlPo)) sin (2πp0x)] Aπ(dx). (7.5)

(7.6)

Theorem 6, Let (7.1-2), (Al) with (73) and (A.2) hold. For the starting configurations,
we assume

(i) σoey^JJ, and φ'o(po) ~ N1/4aQ(p0) converges in law to some ΦO(PQ)', (7.7)

(ii) for some K > 1 and an increasing sequence an with

Λ r l 2 ^α f 7
1 -^0, and ΛΓ1 / 2αn->0, (7.8)
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we have
E"Ul\\2-ro^C^K- (7.9)

and

E"( || (K( ))2 - y"(0)μ- II iκro) g C2«;κ (7.10)

for all large n. Then the critical fluctuation process converges in law to the p0-
antίferromagnetic process,

φt(dx) - 2[Re(φr(p0))cos(2πp0x) + Im(φt(p0)sm(2πp0x)]λ(dx\ (7.11)

where φt(p0)eC satisfies the complex diffusion equation

dφt(p0) = y(4\ty/2y"(V)3\Φt(Po}\2φt(Po)dt + (2y"(0))1/2dwf, (7.12)

starting at φ0(Po) Here, wc

t denotes a complex-valued Brownian motion.

Proof. Since the proof follows the same lines as that of the last section, we will
give only the main estimates. Like in (6.21-25), we obtain for tl<t2<τn

M =

ίι) + β?1rJ, (7-13)

with the martingale

β",,ί2

 = ί [||^-»/2 + JV-3/>-< (x))(δx-2 cos (2πp0(x - ))λ"\\ iro
ί lN 1 / 2 βχl

-II^L'^l-roJ/ί"^^*). (7.14)

Using (7.1-2), we have

^o for all ^e(Z/nZ)d\{ ± p0}, (7.15)
and

I I K I I -ro ̂  I I K II -ro + ί ( - Nl'2y"(0)βpoδ0 II lA;1 II 2-,0 + C3(M))ώ + Q? l i f 2.

(7.16)

By (7.8-9) and estimates, similar to (6.28-29), we see that the assumptions of the
proposition of the Appendix with m = N112 are satisfied, so that

s u p | | ι - , 0 > ^ X Γ ^ Ί s u p -ro>
Γ Λ τ ^

(7.17)

for all « ̂  «0(^
 £) F°r tne /?0-

antiferromaβne^c component and ti<t2< τ"M, we
get the estimate
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n

s i i -ro i i <κ i i -ro i i « 11 -J + ®(N~ 1/2 n <?: n -r0 11 « 11 -J
s" II _ r o II ξs" || _ ro]rf5 -f 0(l)(ί2 - tj + βίlita, (7.18)

6!U = ί
t ι N 1 / 2 J B x T

-\\φn

sNn2\\2-rJΛn(dm,dx,ds). (7.19)

We calculate

y(4W3!/^0<φM/*Φsnm

• Σ (l + IPo + 4l2ro<0, (7.20)
qe(nZf

since y(4)(0) < 0. Therefore, using (7.17), we find that for n ̂  n0(ε, M),

ro + (Q + i)ί + es,i (7.21)
with C4 independent of M and ί < τn

M. Reasoning in the same way as in (6.38-40),
we conclude from (7.17) and (7.21) that

Pn{τn

M^T}^4ε (7.22)

for M large enough and n ̂  n^ε, M). The modulus of continuity of φ" is shown
to be uniform in probability in the same way as in (6.41-44). Thus, by (5.10-11),
the sequence of processes ξ? is tight in Ω. Of course, (6.46) also holds here. Thus,
it only remains to identify the limit process of the critical fluctuations £".

Since ψϊ converges to zero, we need only to investigate the limits of φ", which
are clearly concentrated on the set of processes with values in Vpo, the linear space
spanned by cos2π/?0 x, sin2π/v* Let fe<S%(R2)9 #/eVp o for j= 1,2, and set

JΪ. (7.23)

Again, we may restrict ourselves to tί<t2<τ with

f = τi Λ inf {ί, || ψ? || 2_ Γ v || (σJWO2 - y"(0)μΛ || 2_ro > Λ^1^- 1/2}, (7.24)
and

P n{t^T}^6ε for n^n^M). (7.25)

Now, with Mf;"2 from (6.51), we get

(7.26)
Now

= Σ ^>(9ι + ί2 + is) Π Jtaϊ^i)
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= /3(Po)[3 1 φ*(p0)\22 Re (^"(p0)^(Po)) + 2 Re (0?(3p0)^
3 (p0))]

(7.27)

Hence, by (7.25, 26), any limit process φ, of φ" satisfies the martingale problem

ίi k

, (7.28)

which is equivalent to (7.12). This completes the proof.
The unique invariant probability measure of the process φ,(p0)eC is

v2(dz) = exp {γ<4)(0)/[16/(0)4] \z\4}dz/Z2 (7.29)

with normalization constant Z2.

8. Critical Fluctuations at a Triple Point

Let us suppose that we are at a triple point where a ferromagnetic second-order
phase transition and an antiferromagnetic one of frequency p0 occur simulta-
neously. This means that

/(-Po)>0 and /(O) - /fa) £ δ0 > 0 (8.1)

for all <?eZd\{0, ±p0}, and

1 = (y"(0)/(Po)Γ x (8-2)

We continue to let assumptions (Al) and (A2) from Sect. 6 hold, with (7.3), i.e.
K0 = 2, like in the last section. The surviving component of the critical fluctuation
process £" from (7.4) is now

μΐ(dx) = ξΐ(0)λn(dx) + 2[Re (£(p0)) cos (2πp0x) + Im (^(p0)) sin (2πpQx)]λn(dx)9

(8.3)

vn

t(dx) = ξn

t(dx)~μn

t(dx). (8.4)

Theorem 7. Let (8.1-2), (Al) with (7.3), and (A2)from Sect. 6 hold. Assume

(i) σn

QeJ{n

b, and μn

Q converges in law to μ0; (8.5)

(ii) Equations (7.8) and (7.9) hold, together with

E"IKll2-κ

r o SίC ι α;κ. (8.6)

Then ξ" converges in law to the mixed-phase process

μt(dx) = μt(0)λ(dx) + 2[Re (μt(p0)) cos (2πpQx) + Im (μt(p0)) sin (2πpQx)~]λ(dx).
(8.7)

(ftt(0)9 μt(po)) satisfies the coupled stochastic equation

dμt(0) = 7(4)(0)/[3!(7"(0))3](A(0)2 + 6\μt(p0)\2)μt(Q)dt + [2y'W2dwt, (8.8)
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dμt(p0) = y(4)(0)/[2(/'(0))3M(0)2 + \μt(Po)\2)μt(Po)dt + [2/'(0)]1/2Avf (8.9)

starting at (μ0(0), fioίpo)), where w, and wf are independent real, respectively
complex-valued Brownian motions.

Proof. Again, we give only the main estimates and formulas, the arguments being
the same as in the proof of Sect. 6.

For tι < t2 ^ τ^, we have

l |v?Ji r o Hlv?Jl r o + 2f[^

+ o(l)| |v s |r_ r oM]d5 + fl?(l)(ί2-ί1) + R? l f f 2 (8.10)
with

RL^^2]^ ί [| |v^ :ι/2 + ]V~3/>--^Jx))(^-^-2cos(2πp0(x- )μΊ|2-,0

This time, (7.15) holds for all ge(Z/nZ)d\{0, ±p0}; as above, we obtain

ί2

with some martingale Rn; the proposition of the appendix yields

Pn< sup | | vΠi 2 -, 0 >N 1 / 4 κ α / Γ 1 / 2 i<ε (8.13)

for all n ̂
From the semi-martingale decomposition for Hμ"!!2.^, we derive estimates

similar to (7.18,19); combining the arguments of (7.20) and of (8.16) below, we
prove y(4)(0)/3! 0g<μj, (/*/^"> _ r o < 0: hence || μt \\ _ r o g || μ0 \\ _ r o + (C4 + l)ί +
Rn

0,t, which implies, like in (6.38-40), Pn{τ"M ^ T} ̂  4ε for large M and
n ̂  nx(ε, M). μ" is shown to have a modulus of continuity uniform in probability,
such that by (5.10-11) ξn

t is tight. The inequality (6.46) still holds. We only need to
characterize the limits of ξn

t\ they are continuous processes, with values in V 3 the
linear space spanned by H , cos2π/?0 χ, and sin2πp0 χ. Let /6^([R3), gkeV3 for
j = 1,2, 3, and define

7(μ) = /«0ι,μ>,<02,μ>,<03,Λ», μeV^T)'. (8.14)

We define t as in (7.25) with ι/>" replaced by v", such that (7.26) still holds, because
of (8.13), and we get for tl < t2 < τ,

p7(4)(0)/3! ̂

o(l))2y"(0)[<ί7,

(8.15)
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with M{*2 from (6.51) with K0 - 2. We compute

p0)lμπ(po)iy'(θ)]
- 6Re Igfrd ^ ^ ^

- 6Re [gλn(2pol
x\ ^ ̂  /\^

- 2Re [gλn($po)/ (pQ)μn (PO)] (8.16)

Taking the limit n-> oo, the last two terms vanish, and we get a limit process μt

given by (8.7-9), since this is the only solution to the martingale problem

o=ί
ίl ]

+ 3(μs(0)2

ί. (8.17)
J

The proof of Theorem 7 is complete.

Appendix, A Proposition on Collapsing Processes

Proposition
(i) Let XT ^ 0 be a sequence of positive semίmar ting ales with

dX? = S?dt + J7Γ_ (y}lAm(dt, dy) - g<ΐ(άy)άt}. (A.I)

Here S™ and f™ are adapted processes, Λm is a point process on some measurable
space Y with compensator g™(dy)dt. Let κ> I and let αm be an increasing sequence
with

Em(X^}K^C^m

K for all m. (A3)

Furthermore, τm are stopping times such that for £e[0, τm], m^l,

S?^-mδX? + C2, δ>0 (A.4)

sup |/f ί |^C 4α~ 1, (A.5)

J (fΓ(y))2dt(dy) ^ C5, (A.6)
Y

(Here, and in the sequel, Ct are constants independent of m and X™). Then for any
ε > 0, there exists C6 > 0 and m0 such that

sup Pm| sup XT > C6(m1/καm

 1 v c^wΓ1) [ ̂  ε. (A.7)
m > mn 10 < ί < T Λ τw J
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(ii) If instead of'(A.6\ we have even

f (fT(y))29,(dy) ^ C5(X? + m~1), (A.8)

then we get instead of'(A.7),

sup Pm< sup X™ > C6m
1 / καm

 1 V ^ ε. (A.9)
m ̂  m0 10 ̂  t <; T Λ τw J

Proof. (We drop the superscript m everywhere). Let /ι be a smooth, positive,
increasing, convex function on ίR with

and

sup sup hί(yί + y2)/hf(y1) = CΊ < oo. (A. 11)

Equation (A.I 1) implies h(y1 + y2) - h(yλ}- h'(y1)y2 g l/2h'(yι)CΊyl for all

i^ 2 | ^C 4 and all y^U. (A. 12)

Now for / = 1,. . . , [Γw] + 1 and ί ̂  //m Λ T Λ τ, let

<5(mί~/)(^ f-C2/(5m)-C7

•]^2

me2^s-^\fs(y)\2gs(dy}ds] (A. 13)
o y /

ϊto's formula gives

4- j \h(Xt + ft) - h(Xt) - h'(Xt)(ame^
Y

+ I WX, + /«) - h(Xt)~](Λ(dy, dt) - gt(dy)dι). (A. 14)
Y

Using (A. 5), wί — / r g O and (A. 12), the first two terms in (A. 14) are non-positive,
such that Z\ are positive supermartingales on t ̂  l/m Λ T Λ τ. Doob's inequality
and (A. 3) yield

/ [ m Γ J + 1 Γ

P( U 1 SUP Z{>m>/
\ / = 1 U ̂  //m Λ T Λ τm

(A. 15)

for η sufficiently small. But sup Z\ g mη~ 1 is equivalent to
ί ̂  ///?! Λ Γ Λ T

oίme^ml-l\Xt - C2/δm) g h-1(,mΓί) + C7}a^24<"»-')J | /s(}0 1 2gs(^)<fc (A.I 6)
o y

for all Z g //m Λ T Λ τ. if we restrict t to the interval [/ — l/m, l/m Λ T Λ τ], we see
that by (A. 10) and (A.6), respectively (A. 8), (A. 16) implies
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β'C7αmsupf \fs(y)\2gs(dy)e2«mt-l) - e-2δl/4δm

(A. 17)

where the first component in the last bracket refers to the condition (A.6) and the
second to (A.8). Thus by (A.2),

[mΓ]+l

sup Z^mη- > ̂  up Xs^

( •••
sup Xs -h m7 ./I. s T Λ / ί -

\ S ^ f

C Ξ J sup A^Q

(A. 18)

for m sufficiently large. (A. 15) and (A. 18) prove (A.7), respectively (A.9).
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