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Abstract. We show that a class of ID statistical mechanics models known as IRF
models can be viewed as a subalgebra of the operator algebra of vertex models.
Extending the Wigner calculus to quantum groups, we obtain an explicit
intertwiner between two representations of this subalgebra.

Two major progresses have recently been made in the understanding of two
dimensional lattice models. The first is the classification of rational and trigo-
nometric solutions of the Yang-Baxter equations for a class of models known as
vertex models [1 -5]. The second is the discovery of many representatives of another
class known as IRF (interacting round a face) models and their study in connection
with conformal field theories [6-11 ]. In the appendix of [11 ] it was shown that both
classes correspond to different representations of the same algebra, and it is the aim
of this letter to complete the identification by building an explicit intertwiner
between them. The method we use is an application to the quantum group case of
Ocneanu's cell technique [12].

Quantum Wigner Calculus. Consider the associative algebra U(SU(2)) [4,5]
generated by the symbols qhβ, J+, J_ under the following relations:

qki2q-hi2 = q-hi2qhj2 = 1 ? qWj+q-W = qJ+ , qhl2j^ q'h'2 = q~1 J_ ,

We denote by A{N) the coproduct homomorphism A{N)U-+U®N (N fold tensor
product)

A{N)(qh/2) = qh/2®qhl2... ®qh/2 ,

=Σ qh'2 ® ... ®qhβ ®j±®q~h/2 ••• ®q~h/2 (2)
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In what follows, unless we specify it, q is not a root of unity. Forjej Jf, Vj denotes
an irreducible U module of spiny and \jm} its canonical bases. Let Vjι VJ2 Vs be three
such modules, an intertwiner between Vh ® VJ2 and V3 is given by the (q) Wigner
coefficients

(m2) . ( 3 )

Following the arrows from the upper left to the down right corner, we describe the
two states \(jJ2)JMy and \j\m1} ®|y2

m2> The Wigner coefficients can be deduced
from the recursion relations:

where

q-q

We list them fory2=4,1 Table 1.
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The exponents of ^ are ordinary [not (q)] numbers
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Let Vj Vgι Vg2 be [/-modules and TΆ homomorphism of Vgι (x) Vg2 in Vg2 (x) Vgi such
that A >2)(X)T= TΔ(2)(X) for all Xe V. Matrix elements of Tcan be described in the
bases (,g2a\(S)<,g1β\,\gιoc'}®\g2β'y:

(5)
βW

Alternatively, we can recouple angular momentums:

and describe matrix elements of T as:

The reduced matrix element being denoted

( 9 2 )

J / \ ( g i )

(6)

The two representations are related by Wigner coefficients through the following
equations:

J m

(7)

We call them respectively vertex and path representations of T.

Path Representation of the R Matrix. Let Vg be a 0 module. In End (Vg ® Vg), the
vertex R matrix obeying the Yang Baxter equation [3-5] is characterized by the
following equations :

R(x)(xj- -) = (j- ®qhl2jrXq~hβ®j-)R{x) .

/OΛ

The first equation expresses that R(x) is in the commutant of Δ {2){U). Hence it can
be written

(9)
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With PU) projectors onto irreducible components Vj of Vg®Vg. The second
equation determines Qj(x) and we quote the result from [4]:

(10)
Qj(x) 1 -xq2j '

The vertex matrix elements of PU) are by definition

β"

(11)

due to the charge conservations, σ breaks into block matrices according to the total
charge Q = a + β = oίfJrβ'. The path representation of P(U) follows from (7).

Examples. (All matrices are symmetric)

0 = 2~: (6 vertex model)

There are two projectors P{O\P{1) = 1 -P{0\ the matrix elements of P{0) are:

a) Vertex:

Q=\ , σ=0 ,

2 = 0 ,

b) Path:

σ -

σ l/2-l/2, -1/21/2 \ _

1/21/2,1/2-1/2 σ~ 1/21/2, -1/21/2/

*

-q2)Pi0) . (12)

Both expressions of P{0) are known representations of the Temperley and Lieb-
Jones algebra [13-14].

There are 3 projectors P ( 0 ) , P{1\
and P ( υ are:

a) Vertex:

pίO).

-p^\ The matrix elements of P
{0)

/σi-1 - 1 , 1 - 1 σ i _1-1,00

σoo,i-i σoo,oo

V^7 — 11,1 — 1 σ - l l , 0 0

σ l - l , - l l \

"(3)

q * ~q

Q-1 1

-<ι
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p d ) .

(2) (q~2

(2) fq~2

io \J = {A
σ l - l , 0 0 σ l - l , -

y = U , j σΌo,!-i σoo,oo ^oo,-i

σ - n , o o C Γ — l i , — 1 1 /

( 4 ) , _χ

- 1

q~ι~q (q~ι-q)2 q~q~Λ2M.,-1 ,f /^-1_^2 Λ _ Λ - 1

b) Path:

p(0).

J=j ,

(27-1) _

I)" (2./ + 1) *

pίi).

|/(2/)(2y + 4)

"(4)

1

(2j+l)J (27) ' (27)(27+ 2)

f(2j+3)V'2 q2J + 1+q~2j'1 ί (2)

(2j + l) ' V(2i + 1 ) / (2i + 2) ' V (2y+l)(2/ + 2)/

(13)
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Path Algebra. Let us fix Vg an irreducible 0 module. We define paths
(J)(0) = UO = Q>JI> ' JN) bY a sequence jke \ Jf such that Vh + 1^Vjk®Vg. We

consider the matrix algebra generated by matrix units ((J){g), (J f){g)), j N =jχ under the
following multiplication law:

(0").0"'))((Λ),(Λ')) = V).(*)(0"),(Λ')) • (14)

In a similar way, we define a base of matrix units of Έnά{Vg ®
N) by ((μ), (μ'))ί

(μ) = (μ 1 ; μ 2 , . . . ,μN)μke{ —g, —g + l,...,g}. The first algebra is isomorphic to the
commutant zl ( Λ r )(^y of zl(iV)(<[7) in End (Vg ®

N) and the inclusion (i) in End (Vg ®
N)

can be described with Wigner coefficients:

/),(/'))= Σ
with

μ ) , ( μ ' ) ) _ V
)ΛJΊ) ~ Li

0 nπ 1 m2—nrifvj — m 2 m i 0

where

m j

=(jmgμ\(jg)JM) . (15)

The fact that (i) defines a homomorphism requires the orthogonality relations:

j j

(16)

A trace on /l(N)(f/)' is defined [14,15] by

(μ')) = <W) Π

Both expressions define the same trace due to the identity

M,μ M,μ

m m

*

J J

(17)

= (2J+\)δ}rδmm, .

The proofs can easily be done using the graphical representations.

(18)
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Restricted Algebras. We define the (q) dimension of Vj by dim Vj = (2jΛ-\). When
q = eπί/L, L e y F w e restrict to values of j such that (d\mVj)>0. This imposes

j^jmax = 1. In this case we define paths by the connection matrices

^jmax determined by the recursion relations:

' = 0 if \j-j'\

1 if I7-/I=K
(19)

A path (j)g is admissible if 0^/ k ^/ m a x and Λ^]jk+l = \. The path algebra is a in
(14) with admissible paths. Then it can be shown that (i) defines an isomorphism
between the path algebra and the quotient of the algebra generated by the projec-
tors P(j) (expressed in the vertex representation) by the ideal of operators the
product of which with any operator of the algebra is traceless. In particular, the
matrix elements of Pij) are obtained by taking the generic expression (12), (13)
(setting q = eiπ/L) and restricting them to admissible paths.

GL(n). What precedes can be extended to an arbitrary Lie group [9,11]; let us
consider U(gl(n)) defined in [3, 5]. Irreducible Ό modules are characterised by a
Young pattern [m] = (mln^m2n... ^ra w w ^0) . The Gelfand Zetlin bases of [m]
consists of states (m) which are highest weights [m]k of U(gl(k)) for the natural
inclusion gl(l)c ... αgl(n). They are denoted by the symbol [16]

mλ

mΛ

[m]

M
(20)

Using similar notations as for U(SU(2)), we denote the Wigner coefficients for
FruiC FΓ w l(x) Fr,, by

[m] [m]n_, — [m],

(([m] [g]) [M] [M]k\[m] [m]k[g] [g]k) = [g]n • (21)

[M]n [M]n_, --- [M]!

They factorize into the product of reduced coefficients

[m]k [mlk-i

-talk-, (22)

[ M ] k [M] k _,

If [gf] = (l,O,O,...) is the fundamental representation, [gf]k = (μ k,O, ...) = μk with
μπ = 1 ̂ μ n _ 1 . . . ^ μ x ^ 0 . The corresponding reduced coefficients are listed in
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Table 2. Reduced Wigner Coefficients of U(gl(n))a

I N ' N ' μ

J,n-l
if μ =

4 V

(ί--Σ ',.«-i

π (/;„-/;)
7 = 1
j * l

i + 1 ) FT (/

11
)

1/2

Vjn~lin)

1/2

S(i) = sign of i

The exponents of # are ordinary [not (q)] numbers

Table 2. Since F ( 1 ' ° ' - ) ® F ( 1 °'-) = F(2'°'---} 0 κ ( 1 ' 1 0 - ) . We can build two projec-
torsp(i,i,o,...) jp(2,o !...) = | _p(i,i,o,...)> Let us denote by α the state μ k = l k^n-oc,

μk = 0k<n—ot. Then, the vertex matrix elements of Pα'x' } are denoted by σα/5 α^^.
Due to the charge conservations, o^^^ — ̂ ) unless {α,β} = {α/,β'}, and we have
for oc>β;

(23)
( 2 ) V - 1 q

From the gl(n) generalisation of (7) we deduce the path matrix elements

[m]

,. = ^([m][m2l)

We set

[m2]

(24)

kπ + δ k I
(25)
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then iί, i[e{ij] and:

j , min>mjn\

1 / (26)

with l{ = min — i.

Both expressions correspond to known representations of the Hecke algebra
[5,17]. The R matrix:

(27)

is obtained in [18] in the vertex representation and studied in [8,11] in the path
representation. For V[d] an irreducible 0 module, the path algebra is defined as for
SU(2). The Wigner coefficients intertwine the path algebra and Δ{N\U)' in
End(F 0 )® i V . The expression of the trace in the path algebra is:

tr(([m]),([m'])) = « W ] Π — ^ ,

where
([m]) = {[m]x,..., [m]N) denotes a path . (28)

When q = eιπ/L, we must restrict [m] to values such that

M = Π ( / ^ > 0 . (29)

This imposes mln —mnnf^L—n and the connection matrices defining admissible
paths are determined by the recursion relations:

Άi0)=l ,

(1 0 ) the matrix of the generic model restricted to [m][m;]
Λ w i ^ t h a t d i m F[m]5 d i m v[mΊ>0 , ( 3 0 )

ίg']

Discrete Groups. We consider the limit q — \, where the R matrix degenerates to its
rational limit. Let Γ be a discrete group, Vg&Γ module and Δ(2) the homomorphism
of Γ in End(K0 ®Vg). Assume that [R{x\ Δ2(y)] = 0 for all yeΓ. The preceding
method yields a path representation of R with intertwiner given by the Γ Wigner
coefficients. The case where Γ is a discrete subgroup of SU(2) and Vg its two
dimensional module is considered in [19-21]. The connection matrix of the path
algebra: A9 is the incidence matrix of an extended Coxeter diagram and the
components of its Perron-Frobenius vector are the dimensions of the representa-
tions of Γ [22]. Other models associated with ordinary Coxeter diagrams have been
discussed [10]. It is natural to ask whether they correspond to a Hopf algebra [3].
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Then each vertex of the Coxeter diagram should be associated to a [/module Va of

(q) dimension Sa with Sa the component of the Perron-Frobenius vector normalised

so that its smallest component 5° = 1. One must therefore define commuting

matrices Aa with positive integer coefficients characterising the paths built on Va

and determined by the identities (expressing the associativity of the tensor product) :

= the incidence matrix of the Coxeter diagram ,

= ^A^Aφ) . (31)

Remarkably, this is only possible for An, D2n, E6, E8 as in Ocneanu's classification

of subfactors [12]. We hope to be able to discuss this point further separately.
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